

OS/390 IBM

MVS Programming:
Sysplex Services Guide

 GC28-1771-07

OS/390 IBM

MVS Programming:
Sysplex Services Guide

 GC28-1771-07

 Note

Before using this information and the product it supports, be sure to read the general information under Appendix A, “Notices”
on page A-1.

Eighth Edition, September 1999

This is a major revision of GC28-1771-06.

This edition applies to Version 2 Release 8 of OS/390 (5647-A01) and to all subsequent releases and modifications until otherwise
indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

IBM welcomes your comments. A form for readers' comments may be provided at the back of this publication, or you may address
your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
522 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States and Canada): 1+914+432-9405
FAX (Other Countries):

Your International Access Code +1+914+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
IBM Mail Exchange: USIB6TC9 at IBMMAIL
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/s390/os390/

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

� Title and order number of this book
� Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1994, 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Contents

About This Book . xvii
Who Should Use This Book . xvii
How This Book Is Organized . xvii
Where to Find More Information . xvii

Notes on Terminology . xviii

Summary of Changes . xix

Introduction to Sysplex Services

Chapter 1. Introduction to Sysplex Services 1-1
Sysplex Services for Communication . 1-1
Sysplex Services for Recovery (Automatic Restart Management) 1-1

Sysplex Services for Data Sharing . 1-2

Sysplex Services for Communication (XCF)

Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-1
XCF Concepts . 2-1
XCF Communication Services . 2-3

Group Services . 2-4
Signalling Services . 2-5
Status Monitoring Services . 2-5

Member Attributes . 2-6
Permanent Status Recording . 2-6
The Five Member States . 2-7
The User State Field . 2-10
Member Name and Group Name . 2-11
The Member Token . 2-12
The User Routines . 2-13
Member Association . 2-14
XCF-Managed Response Collection . 2-15
Providing Information to Your System Programmer 2-15

Summary of XCF Communication Macros . 2-15
Defining Members to XCF . 2-20
Changing the Value in a User State Field . 2-23

Using the IXCSETUS Macro . 2-23
Using IXCSETUS for Active Members on Different Systems 2-24

Using Signalling Services to Send and Receive Messages 2-25
What Is a Message? . 2-25
Using the IXCMSGO Signalling Service . 2-25
Using the IXCMSGO Macro . 2-28
Using the IXCMSGI Macro . 2-44
Using the IXCMSGC Macro . 2-48
Handling Member Termination . 2-55
Coding a Message User Routine . 2-55
Coding a Message Notify User Routine . 2-63

Requesting XCF Status Monitoring . 2-68
Using a Status User Routine . 2-69

 Copyright IBM Corp. 1994, 1999 iii

Updating the Status Field . 2-75
Setting and Changing a Status-Checking Interval 2-76
Coding a Status User Routine . 2-77

Notifying Members of Changes . 2-85
How XCF Works Together with the Group User Routine 2-86
Events that Cause XCF to Schedule a Group User Routine 2-86
Skipping of Events . 2-91
Coding a Group User Routine . 2-95

Obtaining XCF Information . 2-109
Obtaining Sysplex, Group, and Member Information 2-109
Using the IXCQUERY Macro . 2-110
Obtaining Tuning and Capacity Planning Information 2-120

Disassociating Members from XCF . 2-124
Using the IXCQUIES Macro . 2-125
Using the IXCLEAVE Macro . 2-125
Using the IXCDELET Macro . 2-125
Using the IXCTERM Macro . 2-126
Member Termination . 2-126

Example of Designing and Implementing a Multisystem Application 2-128
How Does PHONBOOK Work? . 2-130
How Does a Member Update its Status Field? 2-131
What Data Structures Does PHONBOOK Use? 2-131
What Do the User Routines Do? . 2-133
How Does the Installation Set Up PHONBOOK on Each System? 2-137
How Does PHONBOOK Handle Different Types of Work Requests? 2-139
What Happens When all Processing is Complete? 2-142
What is Another Method for Designating Members? 2-142

Sysplex Services for Recovery (Automatic Restart Management)

Chapter 3. Using the Automatic Restart Management Function of XCF . . 3-1
Understanding How Your Installation Uses Automatic Restart Management . . 3-1

Requesting Automatic Restart Management Services 3-2
Understanding How MVS Handles Restart Processing 3-3

Designing Your Application to Use Automatic Restart Management Services . 3-4
Registering as an Element and Specifying Restart Parameters (IXCARM

REQUEST=REGISTER) . 3-5
Indicating Readiness for Work (IXCARM REQUEST=READY) 3-7
Deregistering the Element (IXCARM REQUEST=DEREGISTER) 3-7
Waiting for Other Work to be Restarted (IXCARM REQUEST=WAITPRED) . 3-7
Associating One Element with Another (IXCARM REQUEST=ASSOCIATE) . 3-8
Designing an Event Exit . 3-8
Gathering Statistical Data . 3-11
Monitoring Restarts through the ENFREQ Macro 3-11
Displaying Information about Automatic Restart Management 3-11

| IBM-Supplied Automatic Restart Manager Policy Levels 3-13
Example of Using the IXCARM Macro . 3-14

Sysplex Services for Data Sharing (XES)

Chapter 4. Introduction to Sysplex Services for Data Sharing (XES) . . . 4-1
Data Sharing Concepts and Terminology . 4-2

iv OS/390 V2R8.0 MVS Sysplex Services Guide

The Coupling Facility from the Point of View of the Programmer 4-3
Types of Coupling Facility Structures . 4-4
Using Sysplex Services for Data Sharing . 4-5
Guide to Sysplex Services Topics . 4-8

Chapter 5. Connection Services . 5-1
Overview of Connection Services . 5-2

Authorizing Coupling Facility Requests . 5-3
Structure Concepts . 5-4

Defining the Structure Attributes . 5-4
Identifying Connection States . 5-4
Understanding Connection Persistence and Structure Persistence 5-7

Allocating a Structure in a Coupling Facility . 5-8
MVS Considerations When Allocating a Structure 5-8
Specifying the Required Coupling Facility Attributes 5-10
Selecting a Coupling Facility for Structure Allocation 5-16
Coupling Facility Considerations When Allocating a Structure 5-18
Coupling Facility Resource Allocation “Rules” 5-19
Successful Completion of Structure Allocation 5-20

Connecting to a Coupling Facility Structure . 5-22
Overview of Connect Processing . 5-22
Specifying Structure Attributes for All Structures 5-28
Connecting to a Cache Structure . 5-29
Connecting to a List Structure . 5-32
Connecting to a Lock Structure . 5-37
Defining the Required Exit Routines . 5-39
Determining the Success of a Connection 5-41
Receiving Answer Area Information . 5-42
Handling Failed Attempts to Connect to a Structure 5-47

| Understanding the Structure Version Numbers 5-50
Reconnecting to a Structure . 5-50

| Connecting to a Structure During User-Managed Rebuild 5-52
Connecting to a Structure During User-Managed Duplexing Rebuild 5-53

| Connecting to a Structure During a System-Managed Process 5-54
Connecting to a Structure That Is Being Altered 5-54
Connecting to a Structure when a Synchronization Point Is Set 5-55
Dumping Considerations . 5-55
Handling a Connection's Abnormal Termination 5-55
Deleting Persistent Structures . 5-61
Deleting Failed-Persistent Connections . 5-62
Using IXLFORCE or the SETXCF FORCE Command 5-63

| Structure Rebuild Processing . 5-63
| Initiating a Structure Rebuild . 5-65

Overview of User-Managed Rebuild Processing 5-66
Using the IXLREBLD Macro . 5-71

| User-Managed Rebuild Events and the Event Exit 5-72
Starting the User-Managed Rebuild Process 5-74
Connecting to the New Structure . 5-77
Working with Structures in the Duplex Established Phase 5-85
Stopping a Duplexing Rebuild Process to Forward Complete 5-86
Completing the User-Managed Rebuild Process 5-87
Stopping a User-Managed Rebuild Process 5-89
Handling New Connections During a User-Managed Rebuild Process . . . 5-91
Handling Disconnections During Rebuilding 5-92

 Contents v

Handling Failed Connections During Rebuilding 5-92
Handling Rebuild Connect Failures . 5-94
Handling Failures during Duplexing Rebuild 5-94
MVS-Initiated Rebuild Processing . 5-96
Dumping Considerations . 5-99
Summary of User-Managed Structure Rebuild Processing 5-99
User-Managed Rebuild Timeline . 5-100
Summary of User-Managed Duplexing Rebuild Process 5-102
User-Managed Duplexing Rebuild Timeline 5-103
Summary of Rebuild and Duplexing Rebuild Stop Processing 5-104

| Overview of System-Managed Rebuild Processing 5-104
| Requesting System-Managed Rebuild Processing 5-105
| Role of CFRM in the System-Managed Rebuild Process 5-105
| Phases for System-Managed Rebuild . 5-105
| System-Managed Events Presented to an Active Connector 5-107
| Using the IXLREBLD Macro for System-Managed Processes 5-107
| Starting the System-Managed Rebuild Process 5-108
| Creating a New Structure during System-Managed Rebuild 5-109
| Completing the System-Managed Rebuild Process 5-112
| Stopping the System-Managed Rebuild Process 5-112
| Handling Connection Changes During System-Managed Rebuild 5-113
| Handling Loss of Connectivity during System-Managed Rebuild 5-114
| Handling Structure Failure during System-Managed Rebuild 5-115
| Dumping Considerations during System-Managed Rebuild 5-116
| Summary of System-Managed Rebuild Processing 5-116

Altering a Coupling Facility Structure . 5-117
Overview of Structure Alter Processing . 5-118
Starting the Structure Alter Process . 5-122
Completing the Structure Alter Process . 5-123
Handling New Connections during Alter Processing 5-128

Responding to Connection Events . 5-128
Using IXLYEEPL to Provide a Response . 5-129
Using IXLYEEPL and the IXLEERSP macro 5-130
Events Reported to the Event Exit . 5-130

Using IXLUSYNC to Coordinate Processing of Events 5-140
Overview of IXLUSYNC Processing . 5-141
Handling Connection Failures during Synchronization 5-142

Disconnecting from a Coupling Facility Structure 5-143
Overview of Disconnect Processing . 5-143
Coding the IXLDISC Macro . 5-143
Disconnect Events and the Event Exit . 5-144
Persistence Considerations . 5-145
Dumping Considerations . 5-147
Successful Completion of a Disconnection 5-147

Forcing the Deletion of a Coupling Facility Object 5-147
Deleting a Coupling Facility Structure . 5-148
Deleting a Coupling Facility Connection to a Structure 5-148
Deleting a Structure Dump . 5-148
Deleting Structure Dump Serialization . 5-149
Authorizing the Use of IXLFORCE . 5-149
Forcing a Structure with Failed-Persistent Connections 5-149

Coding Exit Routines for Connection Services 5-149
Coding the Event Exit . 5-150
Using IXLEERSP . 5-152

vi OS/390 V2R8.0 MVS Sysplex Services Guide

Chapter 6. Using Cache Services (IXLCACHE) 6-1
Benefits of Using Cache Services . 6-1
Elements of A Cache System . 6-2
Elements of a Cache Structure . 6-3
Important Terms . 6-6
Using the Cache Structure . 6-7

Store-in Cache . 6-8
Store-through Cache . 6-9
Directory-only Cache . 6-9

Summary of IXLCACHE Requests . 6-10
Cache Structure Allocation and Connection . 6-12
Accessing and Managing Data Within a Cache System 6-14

Managing Local Cache Buffers . 6-14
Identifying a Data Item to the Cache Structure 6-15
Changing a Data Item in the Cache Structure 6-16
Casting out Data or Updating Permanent Storage 6-17

Maintaining Data Consistency . 6-19
Registering Interest in a Data Item and Validating Local Copies 6-20
Deregistering Interest in a Data Item and Invalidating Local Copies 6-22
Determining the Validity of a Data Item through IXLVECTR 6-24

Serializing and Managing Access to Shared Data 6-25
Using but not Updating Data in a Store-in Cache 6-25
Updating Data in a Store-in cache . 6-26
Using but not Updating Data in a Store-through Cache 6-26
Updating Data in a Store-through Cache . 6-27
Using but not Updating Data in a Directory-only Cache 6-27
Updating Data in a Directory-only Cache . 6-28

Managing Cache Structure Resources . 6-28
Storage Reclaim . 6-28
Deleting Data Items and Reclaim Processing 6-33
Casting out Data Items and Reclaim Processing 6-33
Measuring Cache Structure Resource Usage 6-35

Understanding Synchronous and Asynchronous Cache Operations 6-36
The MODE Parameter — Summary . 6-37
Using the IXLFCOMP Macro . 6-38
Selecting a Data Buffer For a Request . 6-38

Receiving Information from a Request . 6-46
Requesting Return and Reason Codes . 6-46
Defining an Answer Area (ANSAREA) . 6-46
Determining Valid Information in the Answer Area 6-47

Specifying the Vector Entry Index on IXLCACHE Requests 6-47
Using Filters for Names on Requests . 6-48
Restarting a Request that Ends Prematurely 6-49

Using the Restart Token . 6-50
Using an Index Value . 6-51
Understanding the Cache Data Entry Version Number 6-52

Other Services Used with IXLCACHE . 6-53
WRITE_DATA: Writing a Data Item to a Cache Structure 6-53

IXLCACHE Functions for REQUEST=WRITE_DATA 6-54
READ_DATA: Reading a Data Item from a Cache Structure 6-65

IXLCACHE Functions for REQUEST=READ_DATA 6-66
REG_NAMELIST: Registering Interest in a List of Data Items 6-71

IXLCACHE Functions for REQUEST=REG_NAMELIST 6-72
CASTOUT_DATA: Casting Out Data from a Cache Structure 6-79

 Contents vii

Reasons for Casting out Data . 6-79
Cast-out Requests . 6-79
IXLCACHE Functions for CASTOUT_DATA 6-81

UNLOCK_CASTOUT: Releasing Cast-Out Locks 6-84
IXLCACHE Functions for REQUEST=UNLOCK_CASTOUT 6-85

UNLOCK_CO_NAME: Releasing a Single Cast-Out Lock 6-91
IXLCACHE Functions for REQUEST=UNLOCK_CO_NAME 6-92

DELETE_NAME: Deleting Data Items From a Cache Structure 6-95
IXLCACHE Functions for REQUEST=DELETE_NAME 6-96

DELETE_NAMELIST: Deleting a List of Data Items 6-100
IXLCACHE Functions for REQUEST=DELETE_NAMELIST 6-100

CROSS_INVAL: Invalidating Other Users' Copies of Data Items 6-103
Timing and CROSS_INVAL Requests . 6-103
IXLCACHE Functions for REQUEST=CROSS_INVAL 6-104

SET_RECLVCTR: Overriding or Restoring the Default Reclaim Algorithm . . 6-105
Defining the Reclaim Vector . 6-106
IXLCACHE Functions for REQUEST=SET_RECLVCTR 6-107

PROCESS_REFLIST: Marking Data Items as Referenced 6-112
IXLCACHE Functions for REQUEST=PROCESS_REFLIST 6-112

RESET_REFBIT: Marking Data Items as Unreferenced 6-114
IXLCACHE Functions for REQUEST=RESET_REFBIT 6-115

READ_DIRINFO: Reading Cache Directory Entries 6-116
IXLCACHE Functions for REQUEST=READ_DIRINFO 6-117

READ_COCLASS: Reading A Cast-Out Class 6-120
IXLCACHE Functions for REQUEST=READ_COCLASS 6-122

READ_COSTATS: Reading Cast-Out Class Statistics 6-124
IXLCACHE Functions for REQUEST=READ_COSTATS 6-125

READ_STGSTATS: Reading Storage Class Statistics 6-129
IXLCACHE Functions for REQUEST=READ_STGSTATS 6-129

Coding a Complete Exit for IXLCACHE . 6-132
Information Passed to the Complete Exit . 6-132
Environment . 6-133
Input Specifications . 6-133
Return Specifications . 6-134
Programming Considerations . 6-134

| Managing Cache Structure Utilization . 6-135
| Detecting When a Cache Structure Is Becoming Full 6-136
| Responding When the Structure Is Getting Full 6-136

Chapter 7. Using List Services (IXLLIST) . 7-1
List Structure Concepts . 7-3

What is a List Structure? . 7-3
How Is Data Maintained in a List Structure? 7-6
What Functions Does the List Structure Provide? 7-7
Referencing List Entries . 7-9
Understanding the List Cursor . 7-14
Understanding List Structure Monitoring . 7-28
Understanding the Event Queue . 7-30
Understanding Event Monitor Controls . 7-31
Understanding Sublist Monitoring . 7-32
Reviewing Sublist and Event Queue Monitoring 7-33
Understanding List Entry Controls . 7-34
Understanding List Controls . 7-34
Understanding the List Authority Value . 7-36

viii OS/390 V2R8.0 MVS Sysplex Services Guide

Understanding the User Exits . 7-37
Understanding Synchronous and Asynchronous List Operations 7-37
Understanding the Serialized List Structure 7-40
Understanding the List Entry Version Number 7-49
Selecting the Buffer Format . 7-50

WRITE: Writing to a List Entry . 7-57
Understanding the Write Operation . 7-57
Passing Data for a WRITE Request . 7-59
Requesting a Lock Operation as Part of a WRITE Request 7-59
Updating an Existing List Entry . 7-60
Creating a New List Entry . 7-60
Receiving Answer Area Information from a WRITE Request 7-62

READ, READ_MULT, READ_LIST: Reading List Entries 7-64
READ: Reading a Single List Entry . 7-65
READ_LIST: Reading Multiple List Entries from a List 7-68
READ_MULT: Reading Multiple List Entries from One or More Lists 7-76

MOVE: Moving a List Entry . 7-79
Understanding the MOVE Operations . 7-79
Moving a List Entry Without Performing a Read or Write Operation 7-84
Performing a Read Operation as Part of a Move Request 7-84
Performing a Write Operation as part of a MOVE Request 7-84
Creating a New List Entry as Part of a MOVE Request 7-84
Receiving Answer Area Information from a MOVE Request 7-85

DELETE, DELETE_MULT, DELETE_ENTRYLIST: Deleting List Entries . . . 7-87
DELETE: Deleting a Single List Entry . 7-88
DELETE_MULT: Deleting Multiple List Entries 7-91
DELETE_ENTRYLIST: Deleting a List of Entries 7-93

READ_LCONTROLS: Reading List Controls 7-96
Obtaining List Monitoring Information . 7-96
Receiving Answer Area Information from a READ_LCONTROLS Request . 7-97

WRITE_LCONTROLS: Writing List Controls . 7-98
Changing the List Limit . 7-98
Effect of Structure Alter on the List Limit . 7-99
Receiving Answer Area Information from a WRITE_LCONTROLS Request . 7-99

LOCK: Performing a Lock Operation . 7-100
Selecting the Lock Operation . 7-100
Receiving Answer Area Information from a LOCK Request 7-101

MONITOR_LIST: Monitoring List Transitions 7-102
The List Notification Vector . 7-102
Indicating Your Interest in List Transition Monitoring 7-103
Starting Transition Monitoring of a List . 7-103
Stopping Transition Monitoring of a List . 7-103
Design Considerations for Using the List Transition Exit 7-104
Receiving Answer Area Information from a MONITOR_LIST Request . . . 7-105

MONITOR_EVENTQ: Monitoring an Event Queue 7-105
Steps to Set Up Event Queue Transition Monitoring 7-106
Indicating Your Interest in Event Queue Transition Monitoring 7-106
Starting Transition Monitoring of an Event Queue 7-106
Stopping Transition Monitoring of an Event Queue 7-106
Receiving Answer Area Information from a MONITOR_EVENTQ Request . 7-107

MONITOR_SUBLIST, MONITOR_SUBLISTS: Monitoring Sublists 7-107
Understanding the Event Queue . 7-107
Indicating Your Interest in Sublist Transition Monitoring 7-108
Specifying User Notification Controls . 7-108

 Contents ix

MONITOR_SUBLIST: Monitoring a Single Sublist 7-108
Starting Transition Monitoring of a Sublist 7-108
Stopping Transition Monitoring of a Sublist 7-109
Scenario for Monitoring a Sublist . 7-109
Receiving Answer Area Information from a MONITOR_SUBLIST Request 7-109
MONITOR_SUBLISTS: Monitoring Multiple Sublists 7-110
Receiving Answer Area Information from a MONITOR_SUBLISTS

Request . 7-111
READ_EMCONTROLS: Reading Event Monitor Controls 7-112

Receiving Answer Area Information from a READ_EMCONTROLS
Request . 7-113

READ_EQCONTROLS: Reading Event Queue Controls 7-113
Obtaining Event Queue Monitoring Information 7-114
Receiving Answer Area Information from a READ_EQCONTROLS

Request . 7-114
DEQ_EVENTQ: Retrieving Events from the Event Queue 7-115

Handling an Incompletely Processed DEQ_EVENTQ Request 7-115
Receiving Answer Area Information from a DEQ_EVENTQ Request 7-115

Coding a Complete Exit . 7-116
Information Passed to the Complete Exit . 7-116
Environment . 7-117
Input Specifications . 7-117
Return Specifications . 7-118

Coding a Notify Exit . 7-119
Information Passed to the Notify Exit . 7-119
Environment . 7-120
Input Specifications . 7-121
Return Specifications . 7-121

Coding a List Transition Exit . 7-122
Information Passed to the List Transition Exit 7-122
Environment . 7-122
Input Specifications . 7-123
Return Specifications . 7-123

Managing List Structure Utilization . 7-123
Detecting When a List Structure Is Becoming Full 7-125
Responding When the Structure is Getting Full 7-125

Chapter 8. Using Lock Services (IXLLOCK) 8-1
Resource Concepts . 8-1

What Is a Resource? . 8-1
State of a Resource Request Queue . 8-2

What Can You Do With the XES Lock Services? 8-3
Managing Contention . 8-5

Defining a Protocol to Handle Contention . 8-5
How is Contention Resolved? . 8-6
Sample Locking Protocol — Definition . 8-7
Sample Locking Protocol — Implementation 8-10

Informing a User of Request Completion . 8-11
Using the IXLLOCK MODE Parameter . 8-11

Lock Structure Concepts . 8-12
The Lock Table . 8-13
Record Data Entries . 8-20
Size Considerations for a Lock Structure . 8-21

Recovery Considerations . 8-22

x OS/390 V2R8.0 MVS Sysplex Services Guide

Designing for Recovery . 8-23
XES Cleanup Processing . 8-23
Sample Recovery Protocol . 8-25

Requesting Lock Services . 8-27
Requesting Ownership of a Resource (REQUEST=OBTAIN) 8-28
Determining the Completion of an OBTAIN Request 8-30
Changing Ownership Attributes (REQUEST=ALTER) 8-31
Determining the Completion of an ALTER Request 8-32
Releasing Ownership of a Resource (REQUEST=RELEASE) 8-32
Determining the Completion of a RELEASE Request 8-33
Processing Multiple Resource Requests (REQUEST=PROCESSMULT) . . 8-34
Determining the Completion of a PROCESSMULT Request 8-35

Using Exits for Coupling Facility Lock Services 8-36
General Requirements . 8-36
Coding a Complete Exit . 8-39
Coding a Contention Exit . 8-41
Coding a Notify Exit . 8-52
Using the Synchronous Update Service (IXLSYNCH) 8-54

Using the Lock Cleanup and Recovery Service (IXLRT) 8-55
Identifying the User . 8-56
Providing an Answer Area . 8-56
Identifying the Record Data . 8-56
Assigning a Record Data Type to the Record Data 8-56

| Handling an Incompletely Processed IXLRT Request 8-56
What You Can Request with IXLRT . 8-57

Chapter 9. Supplementary List, Lock, and Cache Services 9-1
Using the IXLFCOMP Macro . 9-1

Issuing IXLFCOMP During Recovery Processing 9-2
Purging a Coupling Facility Operation . 9-2

Handling Operations in Progress . 9-2
Handling Operations Yet to be Processed . 9-2
Timing Considerations . 9-2

Using the IXLVECTR Macro . 9-3
List Notification Vector . 9-3
Local Cache Vector . 9-5

Chapter 10. Coupling Facility Accounting and Measuring Services . . . 10-1
Using IXLMG . 10-1

Specifying the Information Level . 10-2
Types of Information Available . 10-2
Defining an Output Area . 10-4
Programming Considerations . 10-5
Specifying the Information To Be Returned by IXLMG 10-5

Chapter 11. Dumping Services for Coupling Facility Structures 11-1
Using the IHABLDP Macro . 11-1
Using the IXLZSTR Macro . 11-2

Requesting Structure Information . 11-2
Receiving Information Returned by the IXLZSTR Macro 11-2

Using Component Data in the Dump Data Set 11-3
Associating Macros with the Data Types . 11-5

Chapter 12. Documenting your Coupling Facility Requirements 12-1

 Contents xi

Specifying the Coupling Facility Structure Requirements 12-1
Naming the Structure . 12-1

| Determining the Structure Size . 12-1
Providing an Exclusion List . 12-4
Understanding the Persistence Attribute . 12-5
Specifying the Rebuild and/or Alter Attribute 12-5
Providing Connectivity Requirements . 12-5

Specifying the Coupling Facility Requirements 12-6
Summarizing Your Requirements . 12-6

Appendixes

Appendix A. Notices . A-1
Programming Interface Information . A-2
Trademarks . A-2

Index . X-1

xii OS/390 V2R8.0 MVS Sysplex Services Guide

 Figures

2-1. Systems, Groups, and Members in an XCF Sysplex 2-3
2-2. XCF Member States . 2-10
2-3. Address Space Restrictions for XCF Macros 2-17
2-4. Summary of XCF Communication Macros 2-18
2-5. Differences between IXCCREAT and IXCJOIN macros 2-22
2-6. Summary of options on IXCCREAT and IXCJOIN macros 2-23
2-7. Sending a Message from One Member to Another 2-26
2-8. Example of Queue of Message Data Elements 2-32
2-9. First Example of Table of Message Data Elements 2-32

2-10. Second Example of Table of Message Data Elements 2-33
2-11. Third Example of Table of Message Data Elements 2-34
2-12. XCF Status Monitoring Service Normal Processing 2-72
2-13. Status User Routine Events Other Than Normal Processing 2-75
2-14. Events that Cause XCF to Schedule a Group User Routine 2-87
2-15. Skipping of Events Presented to Group User Routines 2-92
2-16. Summary of Group User Routine Logic 2-103
2-17. Summary of IXCQUERY Macro Parameters 2-112
2-18. PHONBOOK Multisystem Application 2-130
2-19. Data structures used by PHONBOOK routine 2-132
2-20. Group User Routine Scheduled vs. Status Update Missing 2-135

3-1. Automatic Restart Management Element States 3-13
4-1. Multiple Systems Sharing Data Through a Coupling Facility 4-3
4-2. Structure-Specific Services . 4-7
4-3. Common Services for Coupling Facility Structures 4-7
5-1. Connection State Transitions: Undefined, Active, Disconnecting,

Failing . 5-6
5-2. Structure Size Allocation in SP 5.1 5-13
5-3. Structure Size Allocation in SP 5.2 5-14
5-4. Allocating a Structure . 5-21
5-5. Connecting to an Allocated Structure 5-21
5-6. List Structure Space Allocation . 5-35
5-7. Active Connections . 5-51
5-8. A Failed-Persistent Connection . 5-51
5-9. Acknowledging a Failed-Persistent Connection 5-52

5-10. Reconnection of a Failed-Persistent Connection 5-52
5-11. Deleting a Failed-Persistent Connection using IXLYEEPL 5-63

| 5-12. User-Managed vs. System-Managed Rebuild 5-64
5-13. Structure Attributes That Can Be Changed with IXLREBLD 5-78
5-14. User-Managed Rebuild Timeline . 5-101
5-15. User-Managed Duplexing Rebuild Timeline 5-103

| 5-16. Sequence of Events During System-Managed Rebuild 5-117
5-17. Summary of Events Reported to the Event Exit 5-131

| 5-18. Events Monitored by XES . 5-138
5-19. IXLYEEPL Data for IXLUSYNC . 5-142
5-20. Comparison of IXLYEEPL and IXLEERSP 5-153

6-1. Elements of a Cache System . 6-2
6-2. Major Elements of a Cache Structure 6-4
6-3. Data Entry, Data Element, and Adjunct Area Characteristics 6-5
6-4. Terms for Caching . 6-6
6-5. Description of IXLCACHE Services 6-10

 Copyright IBM Corp. 1994, 1999 xiii

6-6. Registered Interest in Data Items . 6-21
6-7. Invalidating Local Cache Copy of a Data Item 6-23
6-8. Two Reclaim Vectors . 6-30
6-9. Options for IXLCACHE Request Processing and Completion

Notification . 6-37
6-10. Format of Buffer List Specified by the BUFLIST Parameter 6-40
6-11. When Storage Areas Passed to IXLCACHE Can Be Made Pageable 6-45
6-12. Results of Specifying the Number of Data Elements 6-61
6-13. IXLCACHE Registration Block Information 6-72
6-14. IXLCACHE Registration Block Returned Information 6-75
6-15. Three Reclaim Vectors . 6-106
6-16. Identifying Data Items to Mark as Unreferenced 6-115
6-17. Identifying Directory Entries to Read 6-118
6-18. IXLCACHE Storage Class Statistics Description 6-130

7-1. Serialized List Structure . 7-3
7-2. Event Queues in a List Structure . 7-5
7-3. Components of a List Entry . 7-6
7-4. List Containing Entries with Various Numbers of Data Elements . . . 7-7
7-5. Summary of IXLLIST Macro Functions 7-7
7-6. Use of List Position . 7-12
7-7. Use of List Position with Entry Key 7-13
7-8. Example of Keyed List Entries that Cannot Be Referenced by Entry

Key . 7-13
7-9. Use of KEYREQTYPE and LISTPOS Parameters 7-14

7-10. Initializing a List Cursor with an IXLLIST WRITE_CONTROLS
Request . 7-16

7-11. Initializing a List Cursor with Another IXLLIST Request 7-16
7-12. Updating the List Cursor to the Next Entry 7-17
7-13. Updating the List Cursor Conditionally — Example 1 7-18
7-14. Updating the List Cursor Conditionally — Example 2 7-19
7-15. Updating the List Cursor to the Current Entry — Example 1 7-20
7-16. Updating the List Cursor to the Current Entry — Example 2 7-20
7-17. Conditionally Updating the List Cursor to the Current Entry —

Example 1 . 7-21
7-18. Conditionally Updating the List Cursor to the Current Entry —

Example 2 . 7-22
7-19. Updating the List Cursor without Using LOCBYCURSOR 7-23
7-20. Updating the List Cursor when Creating an Entry with WRITE . . . 7-24
7-21. Updating the List Cursor when Creating an Entry with MOVE 7-24
7-22. List Cursor After the List Entry is Deleted 7-26
7-23. List Cursor When Moved Before the First List Entry 7-26
7-24. List Cursor When Moved After the Last List Entry 7-27
7-25. List Cursor When Moved Conditionally Before First Entry 7-27
7-26. List Cursor When List Entry Is Deleted 7-28
7-27. Options for IXLLIST Request Processing and Completion Notification 7-39
7-28. List Structure Lock Operations . 7-41
7-29. Format of Buffer List Specified by the BUFLIST Parameter 7-51
7-30. When Storage Areas Passed to IXLLIST Can Be Made Pageable . 7-56
7-31. Results of Specifying the Number of Data Elements on a WRITE

Request . 7-59
7-32. Rules for Placement of Keyed List Entry for REQUEST=WRITE . . 7-61
7-33. Layout of List Entry Information Returned by READ_LIST Request 7-72
7-34. Possible Errors Resulting from Reissue of READ_LIST Request . . 7-74
7-35. List Entry Key Resulting from a MOVE Request 7-82

xiv OS/390 V2R8.0 MVS Sysplex Services Guide

7-36. List Structure Lock Operations . 7-100
8-1. XES Compatibility Rules . 8-2
8-2. Resource Request Queue Compatibility 8-3
8-3. Required Information for Application A 8-8
8-4. Lock Structure with Optional Record Data Entries 8-13
8-5. Lock Table — Using a Hash Value 8-15
8-6. IXLLOCK Lock Request Block Information 8-34
8-7. Receiving a Resource Request . 8-42
8-8. Contention Exit Processing . 8-50
8-9. Return Codes for the Contention Exit 8-51
9-1. Sample Serialization Protocol for Single Data Item 9-9
9-2. Sample Serialization Protocol for Multiple Data Items 9-10
9-3. Sample Serialization Protocol for a Range of Data Items 9-11

10-1. Layout of IXLYAMDA . 10-4
11-1. Format of Coupling Facility Structure Data in Dump Data Set 11-3
11-2. Coupling Facility Structure COMPDATA Space Descriptions 11-4

| 12-1. IXLCONN Information Used for Cache Structure Size Calculation . 12-2
| 12-2. IXLCONN Information Used for List Structure Size Calculation . . . 12-3
| 12-3. IXLCONN Information Used for Lock Structure Size Calculation . . 12-3
| 12-4. Determining DAEX or LELX from ELEMINCRNUM 12-4
| 12-5. Determining LTEX value from NUMUSERS 12-4

 Figures xv

xvi OS/390 V2R8.0 MVS Sysplex Services Guide

About This Book

This book describes the services that MVS provides to enable multisystem
applications and subsystems to:

� Run in a sysplex

� Share status information

� Send and receive messages using signalling paths

� Automatically restart jobs and started tasks if they or the system on which they
are running unexpectedly terminate

� Share data using the coupling facility

� Serialize on resources using the coupling facility

These sysplex services can be used by authorized assembler language programs.
In general, an authorized program meets one or more of the following
requirements:

� Runs in supervisor state
� Runs under PSW key 0-7
� Resides in an APF-authorized library

Some of the sysplex services, however, are restricted to callers with a PSW key of
0.

Who Should Use This Book
This book is for programmers designing or modifying a multisystem application or
subsystem to run in a sysplex and take advantage of the communication, recovery,
and data sharing functions available to sysplex members.

Programmers using this book should be extremely knowledgeable about the MVS
operating system and assembler language programming.

How This Book Is Organized
This book is divided into the following parts:

� Introduction to Sysplex Services
� Sysplex Services for Communication (XCF)
� Sysplex Services for Recovery (Automatic Restart Management)
� Sysplex Services for Data Sharing (XES)

Where to Find More Information
Where necessary, this book references information in other books, using shortened
versions of the book title. For complete titles and order numbers of the books for all
products that are part of OS/390, see OS/390 Information Roadmap. The following
table lists the title and order number for a book related to another product.

 Copyright IBM Corp. 1994, 1999 xvii

Short Title Used in This Book Title Order Number

PR/SM Planning Guide Processor Resource/Systems Manager Planning
Guide

GA22-7123

PR/SM Planning Guide Processor Resource/Systems Manager Planning
Guide (S/390 processors only)

GA22-7236

Notes on Terminology
References to ‘MVS’ in the book refer either to the MVS/ESA product or to an
element of OS/390. The OS/390 element is based on MVS/ESA SP Version 5.2.
When necessary, other version and release levels of the MVS/ESA product are
discussed.

xviii OS/390 V2R8.0 MVS Sysplex Services Guide

Summary of Changes

| Summary of Changes
| for GC28-1771-07
| OS/390 Version 2 Release 8

| The book contains information previously presented in GC28-1771-06 which
| supports OS/390 Version 2 Release 7.

| New Information

| � Guidance information to support system-managed processing is included.
| Affected macro services are IXLCONN, IXLEERSP, IXLCACHE, IXLLIST,
| IXLRT, IXLMG, and IXCQUERY.

| � The IXLCACHE macro provides new function in support of a coupling facility at
| CFLEVEL=7 or higher.

| � XCF signalling support for messages larger than 61K bytes in length is
| described. With this support, messages can now be as large as 134,217,728
| bytes (128M).

| � Support for the XES monitoring of certain processes that require a response
| from a connector to a coupling facility structure to avoid potential hang
| conditions is included.

| � Support for the following APAR is included:

| – OW37576, which supplements information about a “structure full” condition
| returned from the coupling facility.

| This book includes terminology, maintenance, and editorial changes. Technical
| changes or additions to the text and illustrations are indicated by a vertical line to
| the left of the change.

Summary of Changes
for GC28-1771-06
OS/390 Version 2 Release 7

The book contains information previously presented in GC28-1771-05 which
supports OS/390 Version 2 Release 6.

Summary of Changes
for GC28-1771-05
OS/390 Version 2 Release 6

The book contains information previously presented in GC28-1771-04 which
supports OS/390 Version 2 Release 5.

New Information

� Guidance information to support user-managed structure duplexing for cache
structures is included.

� The IXLCACHE macro provides new function in support of a coupling facility at
CFLEVEL=5.

 Copyright IBM Corp. 1994, 1999 xix

� The IXLMG macro has a new option to allow the return of only measurement
data from a coupling facility without including structure control information.

� The IXLRT macro provides a new function to assign a data type attribute to a
record data entry.

Summary of Changes
for GC28-1771-04
OS/390 Version 2 Release 5

The book contains information previously presented in GC28-1771-03 which
supports OS/390 Version 2 Release 4.

New Information

� Support for the following APARs is included:

– OW21511, which increases the limit for the number of members in an XCF
group to 1023. The previous limit was 511.

– OW24532, which provides support for a coupling facility at CFLEVEL=4 and
additional function to the IXLCONN, IXLCACHE, IHABLDP, and IXLZSTR
macros.

Summary of Changes
for GC28-1771-03
OS/390 Version 2 Release 4

The book contains information previously presented in GC28-1771-02 which
supports OS/390 Version 1 Release 3.

New Information

� Support for the following APARs is included:

– OW21596, which provides additional function to the IXLUSYNC,
IXLEERSP, and IXCQUERY macros.

- IXCQUERY now provides information about XCF and XES software
features that are installed on the system on which the request is made.

- IXLUSYNC allows a connector to confirm a user-specified
synchronization point on behalf of a failed connector that is unable to
provide its own confirmation.

- IXLEERSP allows a connector to respond to certain rebuild events on
behalf of a failed connector, while permitting rebuild processing to
continue.

– OW20824, which provides additional new XES functions for systems at
MVS/ESA SP 5.2 and above:

- The IXLUSYNC service now allows a user to specify a completion code
when confirming a sync point.

- The structure rebuild process now provides information to connectors to
a structure during an MVS-initiated rebuild due to a loss of connectivity.
Connectors to the structure can evaluate the information to determine if
rebuild is to continue or is to be stopped.

xx OS/390 V2R8.0 MVS Sysplex Services Guide

Summary of Changes
for GC28-1771-02
OS/390 Version 1 Release 3

The book contains information previously presented in GC28-1771-01 which
supports OS/390 Version 1 Release 2.

New Information

� IXCMSGC (XCF Message Control) is a new macro that allows a cross-system
coupling application to interact with the XCF signalling services to provide
additional functions.

� Support for the following APARs is included:

– OW15547, which increases the number of allowable connections to a
cache structure.

– OW21718, which allows the use of connection names that begin with a
national character.

Changed Information

� Version 1 of the IXCJOIN macro has new keywords:

– CANREPLY specifies whether the member can participate in a message
reply protocol.

– NOTIFYEXIT specifies the address of the message notify user routine.

� Version 2 of the IXCMSGI macro has a new keyword:

– TOKEN identifies the message whose message data is to be delivered.
Use this keyword instead of the MSGTOKEN keyword.

� IXCMSGO has 16 new keywords to support the new ordered delivery, message
response, and response management functions.

Summary of Changes
for GC28-1771-01
OS/390 Version 1 Release 2

This book contains information previously presented in GC28-1771-00 which
supports OS/390 Version 1 Release 1.

The following summarizes the changes to that information.

Changed Information

� The IXLCONN macro has two new keywords:

– CONNECTIVITY allows the connector to specify the required scope of
system connectivity in the sysplex.

– RNAMELEN specifies whether resource names are a fixed or a variable
length for a lock structure.

� The IXLLOCK macro has a new keyword, RNAMELEN, to specify the length of
the resource name.

 Summary of Changes xxi

Summary of Changes
for GC28-1771-00
OS/390 Version 1 Release 1

This book contains information previously presented in MVS/ESA Programming:
Sysplex Services Guide GC28-1495 which supports MVS/ESA System Product
Version 5.

xxii OS/390 V2R8.0 MVS Sysplex Services Guide

Introduction to Sysplex Services

 Copyright IBM Corp. 1994, 1999

OS/390 V2R8.0 MVS Sysplex Services Guide

Chapter 1. Introduction to Sysplex Services

MVS sysplex services consist of macros that provide communication, recovery, and
data sharing services to authorized multisystem applications or subsystems that are
running in a sysplex. The services can be used independently or together,
depending on the requirements of the application. This introduction assumes that
you know what a sysplex is and that you are familiar with its advantages for
multisystem applications and subsystems. If you need more information before
continuing, see the following books:

� OS/390 Parallel Sysplex Overview
� OS/390 MVS Setting Up a Sysplex

Sysplex Services for Communication
Cross-system coupling (XCF) services allow multiple instances of an application or
subsystem, running on different systems in a sysplex, to share status information
and communicate with each other.

Your application or subsystem might consist of multiple instances, each running on
a different system in the same sysplex. Typically, each instance performs certain
functions for the application as a whole. For example, one instance of a database
application might write changed database information to permanent storage on
behalf of all instances of the application. Alternatively, each instance could perform
all the application's functions on a given system.

Instances of an application can use XCF services to communicate with each other.
They can:

� Inform others of their status (active, failed, etc...)
� Obtain information about the status of the other instances of the application.
� Send messages to and receive messages from each other.

Sysplex Services for Recovery (Automatic Restart Management)
XCF services for recovery allow applications to be restarted automatically when
they, or the systems they are running on, terminate unexpectedly. Automatic restart
management services allow an application to:

� Request automatic restart in the event of application or system failure

� Wait for another job to restart before restarting

� Indicate its readiness to accept work

� Request that automatic restart no longer be performed

� Indicate that automatic restart should be performed only if the backup copy of
the application no longer exists.

 Copyright IBM Corp. 1994, 1999 1-1

Sysplex Services for Data Sharing
Cross-system extended (XES) services allow multiple instances of an authorized
application or subsystem, running on different systems in a sysplex, to implement
high-performance, high-availability data sharing by using a coupling facility.
Applications can maintain and access data in three types of structures (list, lock, or
cache). Features of the different structures, available through the use of XES
services, include the ability to:

� Share data organized as a set of lists (list structure)

� Determine whether a local copy of cached data is valid (cache structure)

� Automatically notify other users when a data update invalidates their local
copies of cached data (cache structure)

� Implement efficient, customized locking protocols, with user-defined lock states
and contention management (lock structure).

1-2 OS/390 V2R8.0 MVS Sysplex Services Guide

Sysplex Services for Communication (XCF)

 Copyright IBM Corp. 1994, 1999

OS/390 V2R8.0 MVS Sysplex Services Guide

Chapter 2. Using the Cross-System Coupling Facility (XCF)

The cross-system coupling (XCF) services provide the following functions that a
multisystem application or subsystem programmer can use:

� A way to define a collection of unique parts of a program, and a way for each
part to identify the other parts so they can work together.

� A way for program parts to send messages to or receive messages from other
parts on the same MVS system or on a different one, without regard for the I/O
considerations involved. Messages can be sent without knowing specifically
where the receiving part resides.

� A way to monitor the program parts that you (the programmer) define to XCF.
XCF maintains information about the parts you define, and provides notification
of changes. Again, these parts can be on the same MVS system or different
MVS systems.

� A way to design your program for high availability, such that primary parts are
on one system and backup parts are on another system. When the primary
system fails, XCF notifies the backup parts on the other system and the backup
parts can be designed to take over the function of the primary. The primary and
backup parts can also be running in different address spaces on the same
system. In this case, the parts running in the backup address space can be
designed to take over when the primary address space fails.

� A way to allow batch jobs and started tasks to be restarted automatically. You
can use the XCF recovery function, automatic restart management, to design
your application for high availability by allowing it to be restarted automatically
when it, or the system it is running on, fails. See Chapter 3, “Using the
Automatic Restart Management Function of XCF” on page 3-1 for more
information.

Examples of exploiting XCF appear in various sections of this chapter, as the XCF
services are explained. Before learning more about the XCF services and how to
use them, you must understand some basic XCF concepts.

 XCF Concepts
When you design and implement a multisystem application program to exploit
XCF, you define one or more members to a group that resides in a sysplex .
Figure 2-1 on page 2-3 illustrates how the sysplex, group, and members relate to
one another. These terms are defined as follows:

� What is a sysplex?

A sysplex (systems complex) is the set of one or more MVS systems that is
given an XCF sysplex name and in which the authorized programs in the
systems can then use XCF services. XCF services are available in both single
and multisystem environments. A multisystem environment is defined as two
or more MVS systems residing on one or more processors. In either
environment, as you proceed to design your multisystem application, you need
to communicate with the system programmer in your installation about the
resources you will need. See “Providing Information to Your System
Programmer” on page 2-15 for more information. System programmers should

 Copyright IBM Corp. 1994, 1999 2-1

consult OS/390 MVS Setting Up a Sysplex for complete information on
initializing and managing MVS systems in a sysplex.

� What is a group?

A group is the set of related members defined to XCF by a multisystem
application in which members of the group can communicate (send and
receive data) between MVS systems with other members of the same group. A
group can span one or more of the systems in a sysplex and represents a
complete logical entity to XCF.

� What is a multisystem application?

A multisystem application is defined as a program that has various functions
distributed across MVS systems in a multisystem environment. Examples of
multisystem applications are:

 – Installation applications
– Other products or subsystems that support a multisystem environment.

You can set up a multisystem application as more than one group, but the
logical entity for XCF is the group.

� What is a member?

A member is a specific function (one or more routines) of a multisystem
application that is defined to XCF and assigned to a group by the multisystem
application. A member resides on one system in the sysplex and can use XCF
services to communicate (send and receive data) with other members of the
same group. However, a member is not a particular task and is not a particular
routine. The member concept applies to all authorized routines running in the
address space in which the member was defined. The entire address space
has the ability to act as that member. All tasks and SRBs in that address space
can request services on behalf of the member.

When you define a member, it is associated with the address space in which
the IXCJOIN was issued. The member always terminates when the address
space terminates or when the system terminates. If you want the member's
existence tied to a more specific unit of work, you can further associate the
member with either the task or job step task in which the IXCJOIN was issued.
In this case, the member also terminates when the associated task (or job step
task, if selected) terminates. This is explained in more detail in the sections
entitled “Member Association” on page 2-14 and “Member Termination” on
page 2-126.

Members of XCF groups are unique within the sysplex. However, XCF allows
you to define more than one member from the same task or address space,
and have those members belong to different XCF groups. You might use this
option if the number of members you require exceeds the maximum (XCF
allows up to 1023 members in a group), and you must define another group.
You should be aware, however, that designing a multisystem application with a
very large number of members has an associated cost to the system in terms
of processor storage.

2-2 OS/390 V2R8.0 MVS Sysplex Services Guide

 SYSPLEX
 │
 │
 ┌──────────────────────────┼─────────────────────────┐
 │ │ │
 │ │ │
MVS SYSTEM 1 MVS SYSTEM 2 MVS SYSTEM 3
┌───────────────┐ ┌───────────────┐ ┌───────────────┐
 │ │ │ │ │ │
 │ │ │ │ │ │
 │ Group A │ │ Group A │ │ Group A │
 │ Member 1 │ │ Member 3 │ │ Member 5 │
 │ Member 2 │ │ Member 4 │ │ Member 6 │
 │ │ │ │ │ │
 │ │ │ │ │ │
 │ │ │ │ │ │
 │ │ │ │ │ │
└───────────────┘ └───────────────┘ └───────────────┘

Figure 2-1. Systems, Groups, and Members in an XCF Sysplex

With these terms defined, you can understand in greater detail the services that
XCF provides.

XCF Communication Services
The communication services that XCF provides fall into three broad categories:

� Group services (group and member relationships)
� Signalling services (sending and receiving messages)
� Status monitoring services.

In designing the multisystem application to exploit XCF services, you need to
decide the following:

� The structure of the group (group services):

– Will the group span more than one system or reside on only one system?

– If the group will span more than one system, will there be one member per
system or multiple members per system?

– What function will each member perform?

– Will some members duplicate the functions of other members?

– For which members, if any, will you require a record of the member's
existence after the member fails?

– What name will the group have?

– What names will the members have?

– Will the members be associated with a task, a job step task, or only an
address space?

– How will the members be started?

� Which members will be sending messages and which will be receiving
messages (signalling services). If messages will be sent, you must plan the
size of the messages, how frequently the messages will be sent, and the
message content.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-3

� Which members will be notified of changes to other members and changes to
systems in the sysplex, which members will take actions based on the
notifications, and what those actions will be (group services and status
monitoring services).

� Which members will have their activity monitored by XCF (status monitoring
services).

� How will your multisystem application handle compatibility in a sysplex made up
of varying system release levels?

� How will your multisystem application handle compatibility with varying release
levels of itself?

The following sections provide an overview on each of the three categories of XCF
services (group, signalling, and status monitoring). XCF provides its services
through authorized assembler macros. (See Figure 2-4 on page 2-18 for a
summary of all the XCF macros.) Certain XCF services also require you to identify
one or more user routines that you must code. Further details on how to use each
of the XCF services, how to code the XCF macros, and how to code the user
routines, appear later in this chapter.

 Group Services
XCF group services provide ways for defining members to XCF, establishing them
as part of a group, and allowing them to find out about the other members in the
group. Specifically, XCF provides the following for setting up, making changes to,
and obtaining information about groups and members:

� The IXCJOIN macro defines a member to an XCF group so the member can
use the XCF signalling and status monitoring services.

� The IXCCREAT macro defines a member to XCF to be used later during
execution.

� The IXCLEAVE, IXCQUIES, IXCDELET, and IXCTERM macros disassociate
members from XCF services. (IXCLEAVE and IXCDELET also disassociate a
member from its group.)

� The IXCSETUS macro changes a member's user state value (to be explained
later in this chapter).

� The IXCMOD macro changes a member's status-checking interval (to be
explained later in this chapter).

� The IXCQUERY macro provides you with information about groups, members,
and systems in the sysplex.

Through XCF group services, a member can identify an installation-written group
user routine. XCF uses this routine to notify the member about changes that occur
to members of the group, or systems in the sysplex. With a group user routine,
members can have the most current information about the other members in their
group without having to query the system.

In providing group services, XCF:

� Guarantees unique identification of each member of a group

� Provides for minimum interference from other multisystem applications when
members send messages to one another

2-4 OS/390 V2R8.0 MVS Sysplex Services Guide

� Maintains status information regarding each member of a group.

 Signalling Services
XCF signalling services are the primary means of communication between
members of an XCF group. XCF provides the following for sending and receiving
messages:

� The IXCMSGO macro, which allows members to send messages to other
members in their group, as well as to send responses to messages received.

� The ability to identify two user routines that do processing on behalf of a
member. One routine, the message user routine, is for message processing.
The other, the message notify user routine, is for processing message
responses.

� The IXCMSGI macro, which allows the message user routine to receive
messages from a member and allows the message notify user routine to
receive responses from a member.

� The IXCMSGC macro, which allows members to save, discard, reprocess, or
obtain information about messages or responses that have been sent.

XCF signalling services are the primary means of communication between
members of an XCF group. XCF provides the following for sending and receiving
messages:

� The IXCMSGO macro, which allows members to send messages to other
members in their group

� The ability to identify an installation-written message user routine that
processes messages on behalf of a member

� The IXCMSGI macro, which allows the message user routine to receive
messages sent from a member.

� The IXCMSGC macro, which allows members to interact with the signalling
services for enhanced signalling functions.

Status Monitoring Services
XCF status monitoring services provide a way for members to actively participate in
determining their own operational status, and to notify other members of their group
when that operational status changes. To accomplish this, XCF provides the
following:

� The ability to identify an installation-written status user routine, which
determines whether a member is operating normally.

� The ability to identify an installation-written group user routine, which allows a
member to maintain current information about other members in the group, and
systems in the sysplex.

The status user routine and the group user routine work together with XCF in the
following sense:

� Specifying a status user routine, status field, and status checking interval on
the IXCJOIN macro causes XCF to begin monitoring a specific field that the
member identifies. When the member fails to update the field within the
specified time interval, or resumes updating after a failure, XCF schedules the
status user routine to check on the member.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-5

� When the status user routine confirms that the member's status changed (either
it failed to update its status field or resumed updating), XCF notifies the group
user routines of other members in the group about the change in the member's
status. The group user routines can then take the appropriate actions.

Before proceeding with detailed information about how to use each of the XCF
services, you must understand more about the attributes that members of an XCF
group can have.

 Member Attributes
Members of XCF groups have one or more of the following attributes associated
with them:

� Permanent status recording (see “Permanent Status Recording”)

� Member state (see “The Five Member States” on page 2-7)

� User state (see “The User State Field” on page 2-10)

� Member name and group name (see “Member Name and Group Name” on
page 2-11)

� Member token (see “The Member Token” on page 2-12)

� One or more of the following user routines (see “The User Routines” on
page 2-13):

– Message user routine
– Status user routine (implies status monitoring is active)
– Group user routine
– Message notify user routine.

� Member Association (see “Member Association” on page 2-14)

� Participation in XCF-managed response collection (see “XCF-Managed
Response Collection” on page 2-15)

This section explains each of these attributes and, where appropriate, explains how
they relate to one another. This section also explains what member and group
information you should provide to the system programmer in your installation. (See
“Providing Information to Your System Programmer” on page 2-15.) Details on how
to define a member with specific attributes are in “Defining Members to XCF” on
page 2-20.

Permanent Status Recording
The concept of permanent status recording is closely related to both member states
and user states. When a member has permanent status recording, XCF:

� Maintains a record of the member's existence (including the member's current
member state and user state values) even when the member is dormant or has
failed.

� Recognizes five member states for that member. The five member states are:

 – Active
 – Created
 – Quiesced
 – Failed

2-6 OS/390 V2R8.0 MVS Sysplex Services Guide

 – Not-defined.

For members without permanent status recording, XCF recognizes only two
member states: active and not-defined.

When it is important to know what happened to a member the last time it was
running, choose permanent status recording for that member. To fully appreciate
this concept, you must understand what it means when a member is in each of the
five member states, and what it means to have a user state field.

The Five Member States
This section describes each of the five member states and, where appropriate, why
a member might choose that state. Figure 2-2 on page 2-10 summarizes how the
member states relate to each other, and how they can change. Figure 2-4 on
page 2-18 summarizes all the XCF macros and how they relate to member states.
From this point forward in the text, when a member is said to be active or in the
active state , that means the member is in the active member state . The same is
true of the other four member states (created, quiesced, failed, or not-defined).

The Active State
An active member is known to XCF and can use XCF services. Specifically, the
active member can:

� Send and receive messages
� Have its status monitored by XCF
� Be notified of status changes to other members of the group.

When a member becomes active (that is, joins a group using IXCJOIN), the
member is associated with the address space in which the IXCJOIN was issued.
To tie the member to a more specific unit of work, you can further associate the
member with either the task or job step task in which the IXCJOIN was issued (see
“Member Association” on page 2-14 for more information).

Members choose the active state when they need to use XCF services. Members
can be active with or without permanent status recording.

The Created State
A member in a created state is known to XCF, but cannot use XCF services.
Specifically, the created member cannot:

� Send or receive messages
� Have a status field monitored by XCF
� Be notified by XCF of status changes to other members of the group.

XCF does not associate the created member with a particular task, job step task,
address space, or system. (If queried, XCF returns 0 for the system name and job
name.)

Members in the created state do, however, have permanent status recording, and
can:

� Be queried (member name, member state, and user state field for a created
member are available through the IXCQUERY macro)

� Define a user state field on IXCCREAT

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-7

� Have their user state field changed by an active member of the same group
through IXCSETUS

� Become active through IXCJOIN.

You might place members in a created state, with the intent that they will
subsequently become active, under the following circumstances:

� You want to prepare a member with some information before the member
becomes active. For example, you can designate a primary member and a
backup member by putting an indication in the user state field. As each
member is started, it checks its user state field to determine if it is the primary
member or the backup member. If it is the primary member, it can then issue
IXCJOIN to become active with status monitoring. The backup member would
also issue IXCJOIN with the intent of being notified through its group user
routine if the primary member experiences problems.

� You need a record of a member's existence even before the member becomes
active, in the event that other members require a knowledge of all existing
group members.

You might want to place a member in the created state with no intention of making
it active. The created member cannot use XCF services, but the other members of
the group can use the created member's user state field for shared virtual storage.
Other members in a group could use the created member as a focal point for
tracking a group state or attribute that is not specifically related to any one active
member. (A complete explanation of the user state field appears later in this
section.)

The Quiesced State
Only members with permanent status recording can become quiesced. A member
in the quiesced state is disassociated from XCF services, but XCF still maintains a
record of the member's existence. The IXCQUIES macro places a member in the
quiesced state. The following are true for a quiesced member:

� The quiesced member can no longer send or receive messages, and XCF
stops scheduling the member's message user routine.

� The quiesced member can no longer have its status monitored by XCF, and
XCF stops scheduling the member's status user routine.

� The quiesced member can no longer be notified by XCF of status changes to
other members of the group (XCF stops scheduling the member's group user
routine).

� XCF no longer associates the quiesced member with a task, job step task,
address space, or system, although XCF maintains a record of the system that
the member was associated with when it was last active .

� A quiesced member can become active with permanent status recording once
again through IXCJOIN. When this happens, the member is treated as a new
member because XCF:

– Resets the user state field1

– Deletes any history information

1 See “Changing the Value in a User State Field” on page 2-23 for further information.

2-8 OS/390 V2R8.0 MVS Sysplex Services Guide

– Assigns the member a new unique member token.

� A quiesced member can have its user state value changed by another active
member of the same group through IXCSETUS.

A member might choose the quiesced state to avoid unnecessary recovery action.
When a member becomes quiesced, other members can infer that the member
cleaned up its own resources (closed any open data sets, released all serialization
on shared data sets, etc.) before terminating.

The Failed State
Only members with permanent status recording can become failed. A member in
the failed state is one whose associated task, job step task, address space, or
system terminated before the member was explicitly deactivated by invoking an
XCF service. When a member is in the failed state, other members can infer that
the member did not have an opportunity to clean up its own resources, and another
member should take recovery action.

For address space associated members, however, I/O is purged as part of address
termination cleanup before the group user routines of the surviving members
receive control to inform those members of the failure.

A failed member can:

� Become active with permanent status recording once again through IXCJOIN.
When this happens, XCF treats the member as a new member. XCF:

– Resets the user state field2

– Deletes any history information
– Assigns the member a new unique member token.

� Have its user state value changed by another active member of the same
group through IXCSETUS.

The Not-Defined State
A member in a not-defined state is not known to XCF. Members are in a
not-defined state before they are created or active, and after they are completely
disassociated from XCF.

XCF treats the not-defined member similarly to the quiesced member in terms of
sending and receiving messages, status monitoring, and notification of changes
(see “The Quiesced State” on page 2-8). Once a member is not-defined, XCF no
longer associates the member with a particular task, job step task, address space,
or system, and no longer maintains any information about the member.

When a member with permanent status recording becomes not-defined, other
members know that no recovery action is required.

When a member without permanent status recording becomes not-defined, the
other members cannot determine whether recovery action is required.

2 See “Changing the Value in a User State Field” on page 2-23 for further information.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-9

 ┌─────────────┐
 │ Not- │

│ Defined │
 └──────┬──────┘
 │
 ┌────────────────────┼──────────────────────┐
 │ IXCCREAT │ │ IXCJOIN
 │ │ │ LASTING=NO
 ┌─────┴─────┐ │ ┌──────┴───────┐

│ Created │ │ │ Active │
 │with P.S.R.│ │ │without P.S.R.│
 └──┬─────┬──┘ │ └──────┬───────┘
 │ │ │ │
 ┌───────┘ └─────────┬───────┘ │
 │ IXCDELET │ IXCJOIN ┌────┴────┐
 │ │ LASTING=YES │ Not- │
┌────┴────┐ ┌──────┴──────┐ │ Defined │
│ Not- │ │ Active │ └─────────┘
│ Defined │ │ with P.S.R. │ \or any
└─────────┘ └──────┬──────┘ event causing
 │ termination
 ┌───────────────┬──────────┴┬─────────────────────┐ (including
│ IXCLEAVE │ IXCQUIES │ normal or abnormal │ IXCTERM)

 │ │ │ termination │ IXCTERM
┌─┴───────┐ ┌─────┴─────┐ ┌───┴────┐ ┌-----┴-----┐
│ Not- │ │ │ │ │ │ Recovery │
│ Defined │ │ Quiesced │ │ Failed │ │ Routine │
└─────────┘ └────┬──────┘ └────┬───┘ └-----┬-----┘
 │ └───────────┐ │
 ┌────────┴───────┐ │ └─────────┐
 │ IXCJOIN │ IXCDELET │ │
 │ LASTING=YES │ │ │
 ┌───┴─────────┐ ┌────┴─────┐ │ │
 │ Active │ │ Not- │ ┌────────┴───────┐ │

│ with P.S.R. │ │ Defined │ │ IXCJOIN │ IXCDELET │
 └─────────────┘ └──────────┘ │ LASTING=YES │ │
 ┌──┴──────────┐ ┌───┴──────┐ │
 │ Active │ │ Not- │ │

│ with P.S.R. │ │ Defined │ │
 └─────────────┘ └──────────┘ │
 │ no XCF
 ┌────────────┬──────┴────┐ service

│ IXCQUIES │ IXCLEAVE │ invoked
┌─────┴────┐ ┌─────┴─────┐ ┌───┴────┐

 │ │ │ Not- │ │ │
│ Quiesced │ │ Defined │ │ Failed │
└──────────┘ └───────────┘ └────────┘

P.S.R. = permanent status recording

XCF member states = not-defined IXC--- are macros
 created
 active
 quiesced
 failed

Figure 2-2. XCF Member States

The User State Field
Every member of an XCF group, regardless of member state, has a user state field
associated with it. Each member decides whether it wants to place values in that
field. The field is 32 bytes long; a member can use all or part of this field. If a
member chooses not to use this field, XCF sets the field to zeros.

While XCF recognizes five member states (not-defined, created, active, quiesced,
and failed), the user state field allows you to specify additional, application-defined,
internal states that XCF does not use or recognize.

User state information is available to members and other authorized routines in the
following ways:

2-10 OS/390 V2R8.0 MVS Sysplex Services Guide

� XCF includes the user state field as part of the parameter list it passes to the
group user routines of active members.

� XCF includes the user state field as part of the data it returns to the caller of
the IXCJOIN, IXCCREAT, and IXCQUERY macros.

The following are examples of ways you can use the user state field:

� Use the user state field as shared virtual storage. For example, you can use
the user state field to keep track of an increasing sequence number across
multiple systems. Each member that wants the next sequence number can
increment a counter in the user state field.

� Use the user state field to determine which member of the group might perform
a particular function. For example, each member places a value in its user state
field, and one member examines all the values and chooses the member with
the highest value to perform the function.

� Use the user state field to record steps in a process. As each step is
completed, update the user state field with a corresponding value. In the event
of abnormal termination, other members can determine exactly which steps in
the process completed and thereby determine at which point to continue
processing.

� Use the user state field to indicate for a failed member that a restart is in
progress. For example, when member 1 fails because the system it is running
on fails, member 1A can become active in its place. Member 1A can change its
user state field to indicate that a restart is in progress. Other members can do
recovery for member 1. When recovery is complete, member 1A can change its
user state field to indicate it is fully operational.

Members with permanent status recording can reap the most benefit from the user
state field. Even if the member terminates abnormally, XCF still has a record of the
member's existence, and other members can determine what action to take based
on the contents of the user state field. Without permanent status recording, if the
member terminates abnormally, it is no longer defined to XCF, and the contents of
the user state field are no longer available to other members.

Details on initializing and changing a user state field are in the sections entitled
“Defining Members to XCF” on page 2-20 and “Changing the Value in a User State
Field” on page 2-23. Refer to “Skipping of Events” on page 2-91 for user state
design considerations related to skipped events.

Member Name and Group Name
Every member of an XCF group has a unique combination of a member name and
a group name associated with it. You can specify both the member name and
group name on the IXCCREAT and IXCJOIN macros. XCF includes both the
member name and group name in the parameter list passed to the group user
routine, and in the information provided through the IXCQUERY macro.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-11

The Member Token
When you define a member to XCF through either IXCCREAT or IXCJOIN, XCF
assigns a unique (within the sysplex) member token to the member. If a member
issues IXCJOIN multiple times, XCF returns a member token for each invocation.
In this case, multiple member tokens are associated with the same member.

The member token that XCF returns on IXCCREAT or IXCJOIN can change. XCF
assigns a new member token when:

� A created member issues IXCJOIN to become active.
� A quiesced or failed member issues IXCJOIN to become active once again.
� A member terminates (becomes failed or not-defined) because its associated

task, job step task, address space, or system terminates; and the member is
then restarted.

Aside from these circumstances, a member token remains the same throughout the
duration of the sysplex.

Authorized routines use the member token when requesting XCF services on behalf
of a member. For the following macros, a member specifies a member token
associated with itself:

 � IXCLEAVE MEMTOKEN=...
 � IXCQUIES MEMTOKEN=...
 � IXCMOD TARGET=...
 � IXCQUERY MEMTOKEN=
 � IXCSYSCL MEMTOKEN=
 � IXCMSGC MEMTOKEN=

For the following macros, a member uses two member tokens. The two member
tokens can be the same, or can represent two different members of the same
group.

� IXCSETUS MEMTOKEN=the caller's member token,TARGET=the target
member's member token

� IXCTERM MEMTOKEN=the caller's member token,TARGET=the target
member's member token

� IXCMSGO MEMTOKEN=the sender's member token,TARGET=the receiver's
member token

� IXCMSGO MEMTOKEN=the caller's member token,TARGETS=a table of the
member tokens for each receiver

� IXCMSGC MEMTOKEN=the caller's member
token,SOURCE=token,SOURCE=the member token for which incoming
messages are to be collected

Any authorized routine can issue IXCDELET TARGET=the target member's
member token.

2-12 OS/390 V2R8.0 MVS Sysplex Services Guide

The User Routines
Every member of an XCF group can define one or any combination of the following
user routines to XCF:

� Message user routine
� Status user routine
� Group user routine
� Message notify user routine.

You are responsible for coding these routines. This section briefly explains each
user routine's purpose, and why you might want to code one or more of them.
Detailed information on how to code and use each of these routines appears later
in this chapter.

� The Message User Routine

The message user routine enables an active member of an XCF group to
receive messages from other members of the group. Without a message user
routine, a member cannot receive any messages.

The message user routine also can be used to provide a response to a
message, when the member is capable of participating in a protocol that
involves sending a response to a sender.

Code a message user routine when you have one or more members in a group
that will be receiving messages from other members and possibly sending
responses to those messages. You can use the same message user routine for
different members.

� The Status User Routine

The status user routine determines whether a member is operating normally.
By identifying a status user routine, the member alerts XCF to begin monitoring
a field that the member might be updating. If the member fails to update the
field within a member-specified time interval, XCF schedules the status user
routine to determine if a problem exists. (XCF schedules the status user routine
only for active members.) If a problem does exist, XCF notifies other active
members of the group through their group user routines.

Code a status user routine when you want XCF to monitor the status field of a
member. You can use the same status user routine for different members.

� The Group User Routine

The group user routine enables XCF to notify an active member of a group
when there is a change in the operational state of any other member in the
group, or a change to the status of any system in the sysplex. If a member
does not have a group user routine, XCF cannot notify that member of changes
that occur.

Code a group user routine when you want XCF to notify the member about
changes to other members of the same group or about changes to systems in
the sysplex. You can use the same group user routine for different members.

� The Message Notify User Routine

The message notify user routine enables XCF to notify a sender about the
completion of a message. If the sender specified that a response to the
message was required, the message notify user routine is used to process the

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-13

collected responses. If the sender specified that a response was not required,
XCF notifies the sender about the status of the message.

Your application can specify a message notify user routine when it joins a
group, when it sends a message, or when it explicitly calls the user routine to
process a response. This allows you to assign a different message notify user
routine to different messages.

Code a message notify user routine if your application includes a protocol for
sending messages that require a response or if your application wants to be
notified when the message completes. You can use the same message notify
user routine for different members.

 Member Association
Member association, specified using the MEMASSOC parameter on the IXCJOIN
macro, allows you to control the length of time the XCF member will remain in
existence. Member association links the newly-created member with a unit of work.
When the unit of work terminates, so does the member. The member can remain:

� Until the task that issued the IXCJOIN macro terminates (MEMASSOC=TASK)

� Until the job step task under which the IXCJOIN macro was issued terminates
(MEMASSOC=JOBSTEP)

� Until the address space in which the IXCJOIN macro was issued terminates
(MEMASSOC=ADDRSPACE).

Every member is associated with the address space in which the IXCJOIN was
issued. Member association permits you to associate the XCF member with a more
specific entity than an address space, namely a task or a job step task.

Note: If a member is termed address space associated, the member is associated
only with an address space.

When a member is address space associated and the address space terminates,
all I/O related to the address space is purged before XCF places the member into
the failed or not-defined state (whichever is appropriate.) When a surviving
member's group user routine receives control, it can assume that the terminated
member's I/O has been purged.

The outstanding I/O requests of task or job step associated members might not be
purged by the time the group exit receives control.

Note: If the member becomes not-defined using IXCLEAVE, purging of I/O cannot
be guaranteed. However, a protocol could be established by the XCF group
in which each member purges its own I/O before issuing the IXCLEAVE
macro and sets the user state value on the IXCLEAVE invocation to inform
the other members of the group that it has purged its I/O.

The member association also has implications regarding SRB-to-task percolation
processing during recovery. For percolation to occur, an associated task (the task
that receives control as a result of percolation) must be defined. SRB-to-task
percolation, therefore, can be provided only for members that are task or job step
associated.

See “Defining Members to XCF” on page 2-20 for how to specify a member
association.

2-14 OS/390 V2R8.0 MVS Sysplex Services Guide

XCF-Managed Response Collection
Your application can request that XCF is to manage the collection of responses to
messages you send. Once collected, XCF presents the set of responses to the
sender for individual processing.

To exploit this feature, both sending and receiving members must reside on
systems running the appropriate OS/390 level. The sending member, when sending
a message, specifies GETRESPONSE=YES on the IXCMSGO macro. And, the
receiving member must have specified CANREPLY=YES on the IXCJOIN macro to
be able to provide a response.

A sending member can use the IXCQUERY service to determine if a target
member is capable of participating in a response-collection protocol. See
“Specifying Message Response Collection” on page 2-36 for how to implement
XCF-managed response collection.

Providing Information to Your System Programmer
You should provide the system programmer in the installation using your
multisystem application with overview information about the application, including a
description of the purpose of the groups and the members within each group.
Additionally, the following information will help the system programmer plan the
sysplex:

� How many groups and members will be defined.

� The names of the groups that will be defined.

� Whether members require permanent status recording.

� The size of the messages that will be sent, how frequently the messages will
be sent, and the distribution of the messages amongst the members.

� The consequences that might occur if XCF does not have enough message
buffer space to send one or more of your messages.

� The effect of altering the application's configuration on the amount of signalling
that might subsequently be generated.

� Specific work load characteristics that might aid in planning transport class
definitions.

Providing this type of overview information enables the system programmer to
create the proper couple data set(s), to prepare the sysplex configuration, and to
establish run-time procedures for the application.

Summary of XCF Communication Macros
XCF provides its services through executable assembler language macros.
Members issue some macros on their own behalf, and some macros on behalf of
other members. Some macros can be issued by any authorized routine.

Figure 2-3 on page 2-17 illustrates these categories by listing the macros that
authorized routines can issue from various address spaces on behalf of a particular
member. For those macros that have address space restrictions, the key is the
IXCJOIN macro. Usually, the primary address space of the caller of an XCF macro

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-15

must match the primary address space of the caller of IXCJOIN that defined the
calling member to the group. The following is an explanation of this figure:

� Address space X represents member 1 of group 1. (IXCCREAT defined
member 1 to XCF with permanent status recording, and IXCJOIN made
member 1 active.)

� Address space Y represents member 2 of group 1. (IXCJOIN defined member
2 to XCF and made member 2 active. Member 2 issued IXCJOIN with
LASTING=YES to request permanent status recording.)

� Address space Z is not a member of any XCF group. (IXCJOIN was not issued
from this address space.)

� The following are true regarding address space X:

– Any authorized routine can issue IXCMOD, IXCMSGO, IXCQUIES,
IXCMSGC, or IXCLEAVE on behalf of member 1, but not on behalf of
member 2.

– Any authorized routine can issue IXCSETUS on behalf of member 1 or on
behalf of member 2.

– A message user routine can issue IXCMSGI to receive a message on
behalf of member 1 but not on behalf of member 2.

– Any authorized routine can issue IXCTERM to terminate member 1 or
member 2.

– Any authorized routine can issue IXCDELET to delete member 2 (if
member 2 is created, quiesced, or failed), but not to delete member 1
(because member 1 is active.

– Any authorized routine can issue IXCQUERY.

� The following are true regarding address space Y:

– Any authorized routine can issue IXCMOD, IXCMSGO, IXCQUIES,
IXCMSGC, or IXCLEAVE on behalf of member 2, but not on behalf of
member 1.

– Any authorized routine can issue IXCSETUS on behalf of member 2 or on
behalf of member 1.

– A message user routine can issue IXCMSGI to receive a message on
behalf of member 2 but not on behalf of member 1.

– Any authorized routine can issue IXCTERM to terminate member 1 or
member 2.

– Any authorized routine can issue IXCDELET to delete member 1 (if
member 1 is created, quiesced, or failed), but not to delete member 2.

– Any authorized routine can issue IXCQUERY.

� The following are true regarding address space Z:

– Any authorized routine can issue IXCDELET to delete member 1 or
member 2 (if the member being deleted is created, quiesced, or failed).

– Any authorized routine can issue IXCQUERY.

� The following is true regarding the master scheduler address space:

2-16 OS/390 V2R8.0 MVS Sysplex Services Guide

– A member can have an end-of-memory resource manager routine running
in the master scheduler address space. The routine can issue IXCMSGO,
IXCQUIES, or IXCLEAVE on behalf of the member.

Note however, that when invoked from the master scheduler address
space, the following IXCMSGO functions are not available:
SENDTO(GROUP), GETRESPONSE(YES), NOTIFY(YES), or TIMEOUT.

MVS SYSTEM 1 MVS SYSTEM 2
Address space X (Member 1 of Group 1) Address Space Y (Member 2 of Group 1)

┌───────────────────────────────────────┐ ┌───────────────────────────────────────┐
│ MACRO: TARGET OF MACRO SERVICE: │ │ MACRO: TARGET OF MACRO SERVICE: │
│ │ │ │
│ IXCCREAT Member 1 │ │ IXCJOIN Member 2 │
│ IXCJOIN Member 1 │ │ │
│ IXCQUERY │ │ IXCQUERY │
│ IXCMOD Member 1 │ │ IXCMOD Member 2 │
│ IXCSETUS Member 1 │ │ IXCSETUS Member 2 │
│ IXCSETUS Member 2 │ │ IXCSETUS Member 1 │
│ IXCMSGO Send Message from Member 1 │ │ IXCMSGO Send Message from Member 2 │
│ to Member 2 │ │ to Member 1 │
│ IXCMSGI\ Receive Message for Member │ │ IXCMSGI\ Receive Message for Member │
│ 1 from Member 2 │ │ 2 from Member 1 │
│ IXCQUIES Member 1 │ │ IXCQUIES Member 2 │
│ IXCLEAVE Member 1 │ │ IXCLEAVE Member 2 │
│ IXCTERM Member 1 │ │ IXCTERM Member 1 │
│ IXCTERM Member 2 │ │ IXCTERM Member 2 │
│ IXCDELET Member 2 │ │ IXCDELET Member 1 │
│ IXCMSGC Member 1 │ │ IXCMSGC Member 2 │
└───────────────────────────────────────┘ └───────────────────────────────────────┘

\ Only a message user routine or a message notify user routine can
 issue IXCMSGI.

MVS System 3
Address Space Z (Not a Member)

 ┌─────────────────────────────────────┐
│ MACRO: TARGET OF MACRO SERVICE: │

 │ │
 │ IXCQUERY │
 │ IXCDELET Member 1 │
 │ IXCDELET Member 2 │
 │ │
 └─────────────────────────────────────┘

MVS System 1\\
Master Scheduler Address Space

 ┌───────────────────────────────────────┐
 A member can have an │ MACRO: TARGET OF MACRO SERVICE: │
 end-of-memory resource │ │
 manager routine run- │ IXCMSGO Send a Message from │
 ning in the master │ Member 1 │
 scheduler address space │ IXCQUIES Member 1 │
 that can issue these │ IXCLEAVE Member 1 │
 macros on behalf of the └───────────────────────────────────────┘
 member.

\\ The master scheduler address space for
MVS system 2 could also have an
end-of-memory resource manager routine
for Member 2.

Figure 2-3. Address Space Restrictions for XCF Macros

Figure 2-4 on page 2-18 provides a summary of all the XCF macros, the service
each macro provides, the effect each macro has on the member state of the target
member (where appropriate), what type of routine can issue the macro, and the
relationship between the caller of the macro and the target of the macro service.
Use the following definitions to interpret the requirements of the caller:

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-17

� A member is any authorized routine running under any task or SRB in the
primary address space of the caller of IXCJOIN that defined the member to the
group.

� A calling member is the member invoking the macro.

� A target member is the target of the macro service.

Figure 2-4 (Page 1 of 2). Summary of XCF Communication Macros

Macro
Name Function

Target
Member
State
Before
Macro
Executes

Target
Member
State After
Macro
Completes Requirements of Caller

IXCCREAT Defines a member to XCF, but
the member cannot use
signalling and status
monitoring services.

Not-defined Created Any authorized routine in
task(1) mode.

IXCDELET Disassociates a member from
XCF.

Created
Quiesced
Failed

Not-defined Any authorized routine in
task(1) mode.

IXCJOIN Enables a member to join a
group and use signalling and
status monitoring services.

Not-defined
Created
Quiesced
Failed

Active Any authorized routine in
task(1) mode.

IXCLEAVE Disassociates a member from
XCF.

Active Not-defined The calling member equals the
target member, or the caller
can be any authorized routine
running in the master
scheduler address space. The
caller must be in task(1) mode.

IXCMG Provides tuning and capacity
planning information for the
sysplex. Intended for use by
system programmers.

N/A N/A Any authorized routine in task
or SRB mode.

IXCMOD Changes a member's
status-checking interval.

Active No change The calling member equals the
target member. The caller
must be in task(1) mode.

IXCMSGC Interacts with the XCF
signalling service to control
message disposition and to
obtain information about
messages that are held for the
user.

Active No change Any authorized routine in task
or SRB mode. Some request
types are valid only when
running in task mode, or when
running as a message user
routine or message notify user
routine (SRB mode).

IXCMSGI Receives a message on behalf
of an active member.

Active No change Must be invoked from within
either a message user routine
or a message notify user
routine.

2-18 OS/390 V2R8.0 MVS Sysplex Services Guide

Figure 2-4 (Page 2 of 2). Summary of XCF Communication Macros

Macro
Name Function

Target
Member
State
Before
Macro
Executes

Target
Member
State After
Macro
Completes Requirements of Caller

IXCMSGO Sends a message to one or
more active members in the
same group.

Active No change The member sending the
message can equal the
member receiving the
message, but if not equal, the
sending and receiving
member(s) must be active
members of the same group.
The caller can also be any
authorized routine running in
the master scheduler address
space. The caller can be in
task or SRB mode.

IXCQUERY Returns information about
groups, members, and the
sysplex.

N/A N/A Any authorized routine in
task(1) mode.

Some request types are valid
in both task and SRB mode.

IXCQUIES Disassociates a member from
XCF services, but XCF
maintains a record of the
member's existence.

Active(2) Quiesced The calling member equals the
target member, or the caller
can be any authorized routine
running in the master
scheduler address space. The
caller must be in task(1) mode.

IXCSETUS Changes the value in a
member's user state field.

Active
Created
Quiesced
Failed

No change The calling member can equal
the target member, but if not
equal, they must be members
of the same group. The caller
must be in task(1) mode.

IXCSYSCL Indicates that a member has
completed cleanup processing
or that no cleanup was
required.

Active No change Any authorized routine in task
or SRB mode.

IXCTERM Abnormally ends a
task-associated member's task
with system completion code
00C and reason code 4. The
member's recovery routine
cannot retry.

Active Quiesced,
failed, or
not-defined(3)

The calling member and target
member must be members of
the same group. The caller
must be in task(1) mode.

Notes:

1. When the caller must be in task mode, the caller must also be enabled, unlocked, and have no FRRs
established.

2. With permanent status recording.

3. The member's state might not have changed when control returns from IXCTERM. The member's recovery
routine determines the member's final state, and this processing occurs asynchronously.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-19

Defining Members to XCF
Defining members to an XCF group is a process that requires planning. For each
member, you have the following choices:

� Define the member to XCF and immediately make the member active (issue
the IXCJOIN macro).

� Define the member to XCF in the created state with the intent to subsequently
make the member active (issue the IXCCREAT macro, and later on, issue the
IXCJOIN macro).

� Define the member to XCF in the created state without intending to make the
member active (issue the IXCCREAT macro).

� Define the member with permanent status recording.

� Define the member with a value in the user state field.

� Define the member with one or more of the following optional user routines on
IXCJOIN:

– Message user routine
– Status user routine
– Group user routine.
– Message notify user routine

� Define the member's association with a task, job step task, or address space.

� Define the member, specifying that the system should wait for the member to
clean up resources before the system performs an automatic restart.

� Define the member, specifying that it is capable of participating in XCF's
response collection protocols.

Once you define a member, XCF maintains information about the member, along
with a timestamp. XCF updates the timestamp on every change to the member's
state or the member's user state value.

“Member Attributes” on page 2-6 provides the information you need to choose
attributes for defining each member to XCF. This section provides the information
you need to use the IXCCREAT and IXCJOIN macros to define members with the
desired attributes.

� Obtaining Permanent Status Recording

When you issue the IXCCREAT macro to define a member to XCF, the
member automatically has permanent status recording. If, instead, you use the
IXCJOIN macro to define a member to XCF, you can choose permanent status
recording by coding the LASTING=YES parameter.

If you plan to define members to XCF with permanent status recording, you
should inform the system programmer in your installation, because the systems
on which your multisystem application will run cannot be in XCF-local mode .
Permanent status recording requires a sysplex couple data set, which is not
supported in XCF-local mode. See OS/390 MVS Setting Up a Sysplex for
further information.

Members requesting permanent status recording should check the return codes
from either IXCCREAT or IXCJOIN. Both of these macros provide return codes
indicating that the system is in XCF-local mode.

2-20 OS/390 V2R8.0 MVS Sysplex Services Guide

A member cannot discontinue permanent status recording once it is in effect. If
a member with permanent status recording is in a created, quiesced, or failed
state and then issues IXCJOIN to become active, the member must specify
LASTING=YES on the IXCJOIN macro.

� Initializing a User State Field

You can initialize the 32-byte user state field on the IXCCREAT macro or the
IXCJOIN macro (USTATE and USLEN parameters). The USLEN parameter
indicates the number of bytes of user state data you provided on the USTATE
parameter. If you specify a USLEN of fewer than 32 bytes, XCF pads on the
right with zeros, thus initializing the remainder of the user state field to zeros.

If you specify the user state field on the IXCCREAT macro, you do not have to
specify it again when you issue IXCJOIN, unless you want to change the value.

You can also define a member to a group without specifying a value for the
user state field on IXCJOIN, and subsequently set the user state field by coding
the USTATE and USLEN parameters on IXCLEAVE, IXCQUIES, or IXCSETUS.

See “Changing the Value in a User State Field” on page 2-23 for further
information.

� Identifying One or More User Routines

Identify user routines on the IXCJOIN macro as follows:

– Message user routine: code the MSGEXIT parameter.

– Status user routine: code the STATEXIT, STATFLD, and INTERVAL
parameters (you must code all three).

– Group user routine: code the GRPEXIT parameter.

– Message notify user routine: code the NOTIFYEXIT parameter.

When you code one or more user routines, you might want to use the member
data field (MEMDATA parameter on IXCJOIN). This is an 8-byte field that can
contain whatever information you want to provide to the user routines. XCF
includes this information as part of the parameter list that it passes to the
message, status, message notify, and group user routines. You might use the
member data field to pass the address and ASID or ALET of a particular
control structure that the user routine needs to do its work.

� Associating the Member

To specify the unit of work with which the member is to be associated, code
the MEMASSOC parameter on the IXCJOIN macro. See “Member Association”
on page 2-14 for more information about member association.

� Specifying Resource Cleanup for Automatic Restart

To specify that the system should wait for the member to clean up resources
before automatic resource management restarts batch jobs and started tasks
on another system, code the SYSCLEANUPMEM parameter on the IXCJOIN
macro. When the group user routine gets control for a system that was
removed from the sysplex, the routine must issue the IXCSYSCL macro to
indicate that system cleanup has completed.

� Participating in Message Response Collection Protocols

To specify that a member is to participate in XCF-managed response collection,
code the CANREPLY parameter on the IXCJOIN macro. See “Specifying

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-21

Message Response Collection” on page 2-36 for more information about
XCF-managed response collection.

� Summary: Using the IXCCREAT and IXCJOIN Macros

Both the IXCCREAT and IXCJOIN macros allow you to:

– Define a new group name to XCF and define a new member to that group
(XCF supports a maximum of 2045 groups and a maximum of 511
members per group, provided the system programmer in your installation
defines sufficient capacity in the sysplex.)

– Define a new member to an existing XCF group (XCF insures that the
member name is unique within the group).

– Initialize a user state field (USTATE and USLEN parameters).

Figure 2-5 specifies how the IXCCREAT and IXCJOIN macros differ. Figure 2-6
summarizes the parameters you code on each macro to obtain the desired member
attributes.

Figure 2-5. Differences between IXCCREAT and IXCJOIN macros

Area of Difference IXCCREAT IXCJOIN

Member state Defines a member to XCF and places that
member in the created state. The created
member cannot use XCF signalling and
status monitoring services.

Defines a member to XCF and places that
member in the active state. Only members
in the active state can use XCF signalling
and status monitoring services.

Issue IXCJOIN to change an existing
member from the created, quiesced, or
failed state to the active state.

Permanent status
recording

Defines a member with permanent status
recording.

Defines a member with permanent status
recording only if you code LASTING=YES.
You can code LASTING=NO if the member
does not already have permanent status
recording in effect.

Member name Requires that you provide a member name
(MEMNAME parameter).

Requires that you provide a member name
(MEMNAME parameter) when you code
LASTING=YES. If you code LASTING=NO,
you can code MEMNAME, or let XCF
generate a unique name for the member.

Member token Returns a unique (within the sysplex)
member token that you can use to code
the TARGET parameter on IXCSETUS or
IXCDELET. However, when the member
becomes active through IXCJOIN, XCF
returns a new unique member token, and
the old token is no longer valid.

Returns a unique (within the sysplex)
member token that you use on subsequent
calls to XCF. (If a created, quiesced, or
failed member issues IXCJOIN, XCF
returns a new unique member token, and
the old token is no longer valid.)

User routines Does not allow you to identify user
routines.

Allows you to identify a message, status,
group, and message notify user routine.

Member
association

Does not allow you to associate a member
with any particular task, job step task,
address space, or system.

Allows you to associate the member with a
task, job step task, or address space on a
particular system.

Member cleanup Does not allow you to specify that the
system should wait for the member to
clean up resources before the system
performs an automatic restart.

Allows you to specify that the system
should wait for the member to clean up
resources before the system performs an
automatic restart.

2-22 OS/390 V2R8.0 MVS Sysplex Services Guide

Figure 2-6. Summary of options on IXCCREAT and IXCJOIN macros

Option Macro Parameter

Permanent status recording IXCJOIN LASTING=YES

IXCCREAT Automatic

User state value IXCCREAT or IXCJOIN USTATE and USLEN

Message user routine IXCJOIN MSGEXIT

Status user routine IXCJOIN STATEXIT, STATFLD, and
INTERVAL

Group user routine IXCJOIN GRPEXIT

Message notify user routine IXCJOIN NOTIFYEXIT

Member association IXCJOIN MEMASSOC

Member cleanup IXCJOIN SYSCLEANUPMEM

Message response collection IXCJOIN CANREPLY=YES

Changing the Value in a User State Field
Once you have assigned a value to a user state field for a member, you can
change it. When you change the value in a user state field, XCF broadcasts the
change to those active members that have group user routines.

You can change the user state value for a member by using the IXCSETUS macro
or by coding the USTATE and USLEN parameters on any of the following macros:

 � IXCJOIN
 � IXCLEAVE
 � IXCQUIES

For IXCLEAVE and IXCQUIES, if you do not specify the USTATE and USLEN
parameters, XCF does not change the existing value in the user state field. For
IXCJOIN, if you do not specify the USTATE and USLEN parameters, XCF retains
the existing value in the user state field unless the joining member was previously
not-defined. In this case, XCF clears the user state field to zeroes.

For IXCLEAVE, IXCQUIES, and IXCSETUS, you specify on USLEN the number of
bytes of the user state field you want.

Using the IXCSETUS Macro
Two ways to use the IXCSETUS macro are as follows:

� An active member can issue IXCSETUS to change its own user state value.
� An active member can issue IXCSETUS to change the user state value of

another member in the same group. (The target member can be in any of these
states: created, active, quiesced, or failed.)

When you issue the IXCSETUS macro, you provide the value (NEWUS parameter)
that you want XCF to place in the user state field of the target member. Before
making the change, you can take advantage of the compare and swap capability of
the IXCSETUS macro to serialize the user state field.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-23

If you code IXCSETUS and attempt to change a user state value without first doing
a compare, XCF still checks the current value. If the current value equals the new
value you specify on NEWUS, XCF does not make the change, does not notify the
other members, and returns an unsuccessful completion code.

Example of Using the IXCSETUS Macro
In this example, the caller of IXCSETUS checks the value in the user state field
before attempting to change it.

� Member A and member B are members of the same XCF group. Member C is
a member in the created state.

� Member B (the caller of IXCSETUS) expects that member C's current user
state value is x and wants to change it to y, the new user state value (NEWUS
parameter).

� Member B makes x the user state compare value (COMPUS parameter) and
issues IXCSETUS.

� XCF compares member C's current user state value with the user state
compare value.

� If member C's current user state value is x (the current value equals the
compare value), XCF changes member C's current user state value to y (the
value member B specified on the NEWUS parameter).

� If member C's current user state value does not equal x (the current value does
not equal the compare value), some other member (member A) might have
already changed member C's user state value, so XCF does not change the
current value.

– If member B specified the OLDUS parameter, XCF places member C's
current user state value in that field. Member B can now update its
COMPUS parameter to member C's current user state value and try again.

– If member B specified the OLDUS parameter to be the same storage area
as the COMPUS parameter, XCF will place member C's current user state
value in the OLDUS parameter, thus automatically updating the compare
value for the retry.

Using IXCSETUS for Active Members on Different Systems
When a member on one system (member A on system 1) uses IXCSETUS to
update the user state field of a member on a different system (member B on
system 2), a problem could occur. If member A updates the user state field of
member B, this causes XCF to notify the group user routines of the active members
of the group that member B's user state field changed. However, system 1 might
fail before XCF on that system has a chance to make the notification. The other
members on the other systems receive a notification that member A terminated
because system 1 failed, but will not know about member B's user state change.
To avoid this problem, you can:

� Have a member issue IXCQUERY (to obtain the latest user state values of the
other members in the group) whenever XCF notifies the member's group user
routine that another member terminated because of a system failure.

� Have a member change only its own user state value and not that of another
member.

2-24 OS/390 V2R8.0 MVS Sysplex Services Guide

Using Signalling Services to Send and Receive Messages
Members of an XCF group can send messages to each other and receive
messages from each other using a set of macros:

� IXCMSGO for sending messages
� IXCMSGI for receiving messages
� IXCMSGC for saving, discarding, reprocessing, forcing a message to

completion, or obtaining information about messages.

What Is a Message?
A message is any piece of information that you want to transmit in an active group
from one member to another. The data that makes up the message is of interest to
the multisystem application only and not to OS/390.

| A message can vary in length up to 128M bytes and resides in the storage area of
the sending or receiving member. The data that makes up the message can reside
in a single buffer or in multiple buffers. An additional 32 bytes of control information
can be associated with each message.

Using the IXCMSGO Signalling Service
The IXCMSGO service allows your multisystem application to:

| � Send messages, including those up to 128M bytes in length
� Broadcast a message to members of a group
� Request that XCF consolidate responses to a message
� Provide for ordered delivery of messages
� Specify a timeout value for message delivery.

An overview of each of these services follows.

Sending and Receiving Messages
Messages can be sent from one member to one or more other members as follows:

� A member sends a message by invoking the IXCMSGO macro.

� The system gives control to the message user routine of the member that is to
receive the message and passes the member a parameter list containing
information about the message to be received. To receive the message the
receiving XCF member must be active and must have provided the appropriate
message user routine.

� The message user routine invokes the IXCMSGI macro to receive the
message.

Figure 2-7 on page 2-26 illustrates the process of sending and receiving a
message.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-25

Figure 2-7. Sending a Message from One Member to Another. In this figure, MEM1 sends a message to MEM2 in
the same XCF group, but on a different system.

| Sending Large Messages
| Prior to OS/390 Release 8, the maximum length of a message was 62464 (61K)
| bytes. Release 8 and higher provide support for the delivery of “large messages”,
| where a large message is defined to be one that is greater than 61K bytes up to a
| maximum of 128M bytes. XCF imposes the following restrictions when sending
| large messages:

| � Both the sending and the target systems must be running OS/390 Release 8 or
| higher.

| � Both the sending and the target members must have specified when they
| joined the XCF group that they supported the large message delivery protocol.

| The IXCMSGO service has been extended to support the large message delivery
| protocol. There is no change to the IXCMSGI service for receiving the large
| messages. Specific IXCMSGO requirements for large message delivery are the
| ability of XCF to access the message-related storage even after returning to the
| IXCMSGO caller and an enforced need for a timeout value.

| It is the responsibility of the application using large message delivery to determine
| whether a particular target member is capable of receiving such a message. To
| determine whether a member is able to receive a large message, use the
| IXCQUERY service. IXCYQUAA contains fields that indicate whether the member
| resides on a system that supports large message delivery
| (QUAMPROGT61KDELIVERY) and whether the member specified that it was
| capable of large message delivery when it joined its XCF group
| (QUAMPROGT61KMSG).

2-26 OS/390 V2R8.0 MVS Sysplex Services Guide

| IXCMSGO returns reason code IXCMSGORSNTARGETMAXMSGLEN61K when
| either the target member or the system on which the target member resides does
| not support messages larger than 61K.

Saving and Discarding Messages
A member can save a message for later processing or discard a message by
invoking the IXCMSGC macro. A member can also invoke the IXCMSGC macro to
call a user routine to process a message that was previously saved.

Broadcasting a Message to Members of a Group
XCF broadcast is a function that allows a member to send message data and the
message control information to multiple target members. The member specifies the
target members that are to receive the message in a user-defined table that
contains the member tokens of the target members. The number of target members
that the sender can specify depends on the maximum number of members per
group that is currently supported in the sysplex.

The broadcast function of XCF is not atomic. An atomic broadcast would guarantee
that if one target member receives the message then all target members receive
the message. The XCF broadcast function allows some members to receive their
copy of the message while other target members might not receive their messages.
There are instances when XCF is unable to deliver a message, such as when the
sender has specified a timeout value that expires before message delivery (see
“Specifying a Timeout Value for Message Completion” on page 2-41).

Consolidating Responses to a Message
A sender can request a response to a message and specify that XCF is to manage
the collection of responses. The target member must have indicated its ability to
participate in response collection by specifying CANREPLY=YES when it invoked
IXCJOIN to join the group.

When XCF invokes a member's message user routine to receive a message, the
message exit user routine parameter list (MEPL) contains an indication that the
sender has requested that XCF consolidate responses to the message. To
respond, the member:

� Uses the IXCMSGO macro to send a response to the sender.

� Identifies the sender by specifying that the response is to be sent to the
message “originator”.

� Identifies the message by specifying a “response ID” passed in the MEPL.

The system then

� Collects the response and holds it until all responses (if applicable) to the
message are received.

� When all responses are collected, gives control to the originator's message
notify user routine, passing it a parameter list containing information about the
responses received.

The message notify user routine invokes the IXCMSGI macro to receive the
response(s) or the IXCMSGC macro to save or discard them.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-27

Providing Ordered Delivery of Messages
Ordered message delivery means that messages are presented for input to the
receiving member's message user routine in exactly the same order that they were
accepted by the XCF Message Out service. Ordered message delivery is only
provided between a particular pair of members; the sequencing is performed for a
particular sender/receiver pair. The sender must ensure that the message-out
requests are made in the desired order. The sender should wait for successful
return from the XCF Message Out service before initiating the next ordered request
for the same sender and receiver pair.

Specifying a Message Timeout Value
A timeout value is the amount of time a sender is willing to wait for its IXCMSGO
request to complete. When the timeout value has been exceeded, XCF can notify

| the sender and discontinues trying to send the message.

Using the IXCMSGO Macro
Use the IXCMSGO macro to specify the following:

� The sending member
� The target member or members
� Information about the storage area(s) in which the message resides

| � Whether the application supports allowing XCF to access the message data
| asynchronously to the IXCMSGO call

� Delivery options for the message
� Whether XCF is to manage the collection of responses to a message
� Whether message completion notification is necessary.

Identifying the Sending Member
To identify the XCF member sending the message, specify your member token
using the MEMTOKEN parameter. You receive your member token as output when
you issue the IXCJOIN macro to join an XCF group. You can also obtain your
member token by:

� Issuing the IXCQUERY macro. The token is returned in the QUAMTOKN field
of the answer area mapped by IXCYQUAA, which is used for both IXCJOIN
and IXCQUERY.

� Using the target member token (MEPLTARGETMEMTOKEN) passed in the
version 1 level of the MEPL when responding to a message.

Identifying the Target Member or Members
To identify the one or more members to receive a message, use the member's
member token. You can obtain the member token in a variety of ways. Some of the
options are:

� Issue the IXCQUERY macro to obtain information about the target member.
The token is returned in the QUAMTOKN field of the answer area mapped by
IXCYQUAA.

� Save the member token that your group user routine receives when it gets
control to notify you of a change to that member's state. The token is passed in
the GEPLMTOK field of the parameter area mapped by IXCYGEPL.

� Save the member token that your message user routine receives when it gets
control to receive a message from that member. The token is passed in the
MEPLSRCE field of the parameter area mapped by IXCYMEPL

2-28 OS/390 V2R8.0 MVS Sysplex Services Guide

� Establish a table, accessible to all members of the XCF group, where each
member stores the token it receives from IXCJOIN.

� Save the member token that your message notify user routine receives when it
gets control to notify you of message completion. The token is passed in the
MNPLMEMTOKEN field of the parameter list mapped by IXCYMNPL.

| � Save the member token that your message notify user routine receives when it
| gets control to notify you that response collection has completed. The token is
| passed in the MNPLTRRESPSRCE field of the parameter list mapped by
| IXCYMNPL.

Identifying a Single Target Member: To identify a single target member, specify
its member token using the IXCMSGO TARGET parameter.

Identifying Multiple Target Members: To identify multiple target members, create
a table containing the member token of each member that is to receive the
message. Use the IXCMSGO SENDTO=GROUP,MEMBERS=TABLE option and
identify the table with the TARGETS parameter.

Programming Note — Single Target Member Processing

There is a difference between sending a message to a single target member
| and broadcasting a message to a list of one target member. For example, if the

one target member is not active, the result will vary as follow:

� For a send to a single target member that is not active, XCF rejects the
send request with a failing return code.

� For a broadcast to a list of one target member that is not active, XCF
returns a warning return code to the sender, but does not reject the request.

Creating the Table of Target Members: The table containing the member tokens
of the target members is an array of entries. Each entry has the same fixed size
(specified by NEXTTARGETOFF) and can contain data other than the target
member token. The number of entries in the table is specified with the #TARGETS
keyword. XCF iteratively processes the table for the specified number of entries,
sending the message to the member indicated by each member token in the entry.

To maintain a fixed size table that allows for members to join and leave an XCF
group, XCF ignores member tokens with a value of X'0'. The sender then can use
these “slots” at a later time for insertion of a new member token. The sender is
assured that the table of target members has a one-to-one correspondence with
any other XCF table constructed for this request. Be aware however, that a table
containing a significant number of null entries can cause additional system
overhead.

Maintaining the Integrity of the Table of Target Members: The member
invoking the broadcast service is responsible for maintaining the integrity of the
TARGETS table until the message-out service returns. If a table changes while
being processed by the message-out service, the system might send the message
to a different set of target members than expected. Also, the content of the entries
in tables that XCF constructs for this request might no longer correspond to the
contents of the entries in the TARGETS table.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-29

Identifying the Message Data
The data that is to be sent as one message can reside in one contiguous storage
area or in multiple, discrete storage areas. If in discrete storage areas, the

| message can be organized as a queue of elements or as a table of elements. An
element can contain the text of the message or pointer to locate the message text.

| IXCMSGO keywords allow you to describe how the message data is organized so
that XCF can access the data to be sent to the target member.

Note that there is no requirement for messages to be sent and received using the
same number of buffers or the same buffer format. However, XCF members that
communicate with each other must know the format in which they are to receive
message data so they can interpret the message correctly.

Sending Message Data Using a Single Buffer: You can send up to 62464 bytes
| of message data (or up to 128M bytes for large messages) in a single buffer you

specify with the MSGBUF parameter. Use the MSGLEN parameter to indicate the
size of the message.

Each message buffer can be in your primary address space, in an address space
accessible through your dispatchable unit access list (DU-AL), or in a common area
data space.

Sending Message Data Using Multiple Buffers: This section describes the
formats you can use to pass message data to IXCMSGO in multiple buffers.
Illustrations of the formats are shown in the figures on pages 2-32 through 2-34.

Use the ELEMFORM parameter to indicate how the message is maintained in
multiple data buffers. Create either a queue (ELEMFORM=QUEUE) or a table
(ELEMFORM=TABLE) of message data elements, each representing a buffer
containing message data.

� Specifying the Message Data Elements

Message data elements contain:

 – Either:

- A buffer containing message data
- A pointer to a buffer containing message data.

– The length of the buffer (optional)

– The ALET to qualify the address of the buffer if message data elements
contain pointers to the buffers (optional).

Buffer lengths and ALETs can be passed separately as described below
instead of including them in each message data element.

� Specifying the Location of Each Buffer

Specify the location of the buffer or buffer pointer within each message data
element using one of the following parameters:

– If the message data elements contain the buffers, use the PARTOFF
parameter to specify the offset of the buffer area from the start of each
message data element.

– If the message data elements contain pointers to the buffers, use the
PARTPTROFF parameter to specify the offset of the buffer address from
the start of each message data element.

2-30 OS/390 V2R8.0 MVS Sysplex Services Guide

� Specifying the Location of Each ALET

Specify the ALETs to qualify the buffer addresses using one of the following
parameters:

– The PARTALET parameter to specify a single ALET to qualify each buffer
address.

– The PARTALETOFF parameter to identify a location in each message data
element that contains the ALET to qualify the associated buffer address.

– The PARTALETTBL parameter to specify a separate table of ALETs.

� Specifying the Size of Each Buffer

Specify the lengths of the buffers using one of the following parameters:

– The PARTLEN parameter to specify a single length for all buffers.

– The PARTLENOFF parameter to identify a location in each message data
element that contains the length of the associated buffer.

– The PARTLENTBL parameter to specify a separate table of buffer lengths.

� Specifying the Location of the Next Message Data Element

If you have a table of message data elements, use the NEXTOFF parameter to
specify, in each element, the location of the next element. NEXTOFF contains
the length in bytes of each entry in the table.

If you have a queue of message data elements, use the NEXTPTROFF
parameter to specify, in each element, the pointer to the next element.

IXCMSGO processes message data elements in consecutive order, copying
message data from each buffer until either the number of bytes copied matches
the specified buffer length or the entire message has been copied.

Processing of message data continues until one of the following occurs:

– All message data has been copied, as determined by the value specified by
the MSGLEN parameter.

– IXCMSGO has processed the number of buffers specified by the
#MSGPARTS parameter

– IXCMSGO has reached the end of the queue of message data elements as
specified by the ENDOFQUEUE parameter or its default

– IXCMSGO finds more than 65536 consecutive buffers of length 0 and does
not know how many message parts to search because you did not specify
the #MSGPARTS parameter. IXCMSGO assumes an error has occurred.
The message is not sent and you receive a return code and reason code
indicating the error.

Note that if the receiver is going to receive the message into multiple buffers and
requires that the sender provide the length of each message part, the sending and
receiving member must devise a protocol for transmitting this information. For
instance, the length of each message part could be sent in the message data itself
or as part of the message control data.

Examples of Message Data Element Formats for Multi-Buffer Messages: The
figures on pages 2-32 through 2-34 show examples of various message data
element formats. Fields within each element need not be in any particular order.
The examples show only a few of the possibilities.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-31

Figure 2-8 on page 2-32 shows a queue of message data elements in which each
element contains a buffer address and a pointer to the next element in the queue.
All buffers reside in the same address space and are to be accessed using the
ALET specified by the PARTALET parameter. All buffers are of the length specified
by the PARTLEN parameter.

PARTALET PARTLEN

BUFFER
LENGTH

BUFFER
ALET

BUFFER
ADDRESS

ADDRESS
OF

NEXT
ELEMENT

PARTPTROFF

NEXTPTROFF

BUFFER
ADDRESS

ADDRESS
OF

NEXT
ELEMENT

BUFFER
ADDRESS ADDRESS

END OF
QUEUE

END OF QUEUE

ELEMENT n ELEMENT n+ 1

Figure 2-8. Example of Queue of Message Data Elements. Each element contains a buffer address. The length of
each buffer is specified by PARTLEN and the ALET to qualify each buffer address is specified by PARTALET.

Figure 2-9 shows a table of message data elements in which each element
includes the following information relating to the buffer it describes:

� The ALET to qualify the buffer address
� The length of the buffer
� The address of the buffer.

BUFFER
LENGTH

BUFFER
LENGTH

BUFFER
ADDRESS

BUFFER
ADDRESS

PARTALETOFF

PARTLENOFF

ELEMENT

BUFFER
ALET

BUFFER
ALET

PARTPTROFF

NEXTOFF

Figure 2-9. First Example of Table of Message Data Elements. Each element contains the ALET to qualify the
buffer address, the buffer length, and the buffer address.

Figure 2-10 on page 2-33 shows a table of message elements in which each
element contains a buffer. No ALETs are specified because the buffers reside in

2-32 OS/390 V2R8.0 MVS Sysplex Services Guide

the table itself. A separate table, specified by PARTLENTBL, contains the length of
each buffer.

PARTLENTBL

BUFFER
LENGTH

BUFFER
LENGTH

n n+1

BUFFERBUFFER

PARTOFF

NEXTOFF

ELEMENT n ELEMENT n+ 1

Figure 2-10. Second Example of Table of Message Data Elements. Each element contains a buffer. The length of
each buffer is contained in the table specified by PARTLENTBL.

Figure 2-11 on page 2-34 shows a table of message elements in which each
element contains a buffer address. A separate table, specified by PARTALETTBL,
contains the ALETs to be used with each buffer address. A separate table,
specified by PARTLENTBL, contains the length of each buffer.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-33

PARTLENTBL

PARTALETTBL

BUFFER
LENGTH

BUFFER
LENGTH

n

n

n+1

n+1

BUFFER
ALET

BUFFER
ALET

BUFFER
ADDRESS

BUFFER
ADDRESS

PARTPTROFF

NEXTOFF

ELEMENT n ELEMENT n+ 1

Figure 2-11. Third Example of Table of Message Data Elements. Each element contains a buffer address. The
length of each buffer is contained in the table specified by PARTLENTBL. The ALET to qualify each buffer address is
contained in the table specified by PARTALETTBL.

Specifying the Storage Key
Specify the storage key of the buffers containing the message data by using the
MSGSTGKEY parameter. If you specify the storage key of your buffers, the system
transfers data from your buffers using a MOVE WITH KEY (MVCK) instruction. The
operation is successful only if the buffers are in the storage key specified or if the
buffers are not fetch protected.

If you omit the MSGSTGKEY parameter, the system transfers the data from your
buffers regardless of their storage key.

2-34 OS/390 V2R8.0 MVS Sysplex Services Guide

| Supporting Asynchronous Message Access by XCF
| XCF can access the storage area in which the message resides or that contains
| information identifying the message data either synchronously or asynchronously,
| as specified by the MSGACCESS parameter. The default access method,
| MSGACCESS=SYNC, implies that the storage is accessed synchronously with the
| IXCMSGO request. When IXCMSGO returns to the sender after accepting the
| message for delivery, XCF has already made a copy of the message data and the
| sender can dispose of the storage containing and identifying the message. XCF
| will always attempt synchronous access even if the sender supports the
| asynchronous protocol.

| Asynchronous access to the message data allows XCF to access the storage
| containing or identifying the message even after IXCMSGO returns to the sender.
| The sender must not dispose of the message-related storage until the message is
| completed. XCF indicates that the sender must preserve the storage either by:

| � IXCMSGO return code X'4', reason code X'410'

| � IXCMSGO return code X'0', when the sender has specified that the message
| notify user routine is to receive control when the message is complete. In this
| case, the application must coordinate responsibility for freeing the
| message-related storage between the sender and the notify exit. The notify
| exit can determine whether the message-related storage had to be preserved
| by checking the MNPLMSGOASYNCMSGACCESS flag.

| For any other IXCMSGO return and reason codes, the sender can dispose of the
| storage as with MSGACCESS=SYNC.

| MSGACCESS=ASYNC is required when sending a message longer than 61K
| bytes. If MSGACCESS=SYNC is specified for a message longer than 61K bytes,
| the message is rejected.

Specifying Message Control Information
In addition to the message buffers, IXCMSGO allows you to pass 32 bytes of
user-defined message control information using the MSGCNTL parameter. The
message control information is included in the message exit parameter list (MEPL)
passed to the receiving member's message user routine. If message control
information is provided when sending a response, the information is included in the
message notification parameter list (MNPL) passed to the originator's message
notify user routine.

You can use the message control information area to hold whatever information
you like. XCF members planning to send messages to one another should agree
on how the message control information is to be used, for example to:

� Indicate where to store the message if multiple users will share access to the
message data

� Identify the format of the message or message parts so the message data can
be accessed correctly

� Pass additional information needed to receive the data

� Identify the message so it can be acknowledged by the receiver

� Hold the message data, if the message is 32 bytes or less.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-35

Specifying Message Response Collection
A sender can specify whether XCF is to manage the collection of responses to a
message with the IXCMSGO GETRESPONSE parameter.

� GETRESPONSE=NO indicates that XCF is not to manage response collection
for the message. Either there is no response expected or the member is
managing its own response collection.

� GETRESPONSE=YES indicates that a response is expected and XCF is to
manage the collection of responses.

A sender can request that XCF is to manage the collection of responses to a
message sent to a single target or broadcast to many targets. The target member
can recognize that XCF is managing responses (by checking the
MEPLNEEDSRESPONSE field in the MEPL) and reply in a way that allows XCF to
do so. XCF gathers all responses and when all that are expected have been
collected, schedules an SRB to call the sender's message notify user routine. The
message notification parameter list (MNPL), mapped by the IXCYMNPL macro,
contains information about the collected responses. In the message notify user
routine, the member can issue the IXCMSGI macro to receive each response.

The sender can determine whether the target member is able to participate in
response collection by issuing the IXCQUERY macro requesting member
information.

� The QUAMPROCANREPLY field indicates whether the target member specified
IXCJOIN CANREPLY=YES when it joined the group.

� The QUAMPRORESPONSECOLLECTION field indicates whether the target
member resides on a system at a level that supports XCF-managed response
collection.

When response collection is complete, XCF notifies the sending member by calling
the message notify user routine specified by the IXCMSGO NOTIFYEXIT
parameter when the message was sent.

When Does XCF Not Expect a Response?: XCF does not expect to receive a
response from a target member that is running on a system that does not support
message response collection or from a target member that specified (or defaulted
to) CANREPLY=NO when it invoked IXCJOIN to join its group. A member must
specify IXCJOIN CANREPLY=YES to indicate to XCF that it can participate in the
XCF response collection protocol.

When expecting a response from a target member, XCF automatically detects
situations for which the target member is unable to supply a response. For
example,

� The target member resides on a system that is removed from the sysplex.
� The target member becomes not active.

In the latter case, XCF will wait for the arrival of any response that was “in flight”
when the member became not active. A response is in flight if XCF has initiated the
send of the response. (IXCMSGO returned return code X'0'. Note that if
IXCMSGO returns return code X'4', that code indicates that the send is pending,
but has not yet been initiated nor is it in flight. At some later time, XCF might
initiate the send.)

2-36 OS/390 V2R8.0 MVS Sysplex Services Guide

Note that, even though a member did not specify CANREPLY=YES when joining
the group (and therefore XCF is not expecting a response), the target member is
not prevented from responding. However, XCF will not wait for the response to
arrive. If the response arrives before message completion occurs, XCF will include
the unexpected response with those presented to the sender in the MNPL;

| otherwise, the unexpected response data is not included in the MNPL information.

Providing a Response for XCF Response Collection: When a target member's
message user routine receives a message for which XCF is managing responses,
the MEPLNEEDSRESPONSE flag in the message exit parameter list (MEPL) is set
and a response identifier (MEPLRESPONSEID) is provided. The target member
uses the response identifier when responding to the message with IXCMSGO
SENDTO=ORIGINATOR. The response identifier allows XCF to identify the
message for which the response is intended. You must specify the
SENDTO=ORIGINATOR keyword when sending a response that is to be collected
by XCF. Otherwise, XCF is unable to identify the message as a response to be
collected, and the will deliver the message as an ordinary message.

A target member can respond to the message in the message user routine or
under some other unit of work. XCF accepts only the first response that it receives
on the originating system. Responses can be delivered in any order, so there is no
guarantee that the first response sent will be the first to be received.

Providing a Response on Behalf of Another Member: XCF does not require
that the target member be the member that responds to a message. Any member
of the XCF group can use the response identifier to respond to the message.
However, XCF expects the original target member to be the one to respond. If that
target member becomes inactive, XCF no longer expects a response from that
member. When no further responses are expected, XCF considers the message to
be complete. Any response that arrives after the message completes is discarded.

If your application protocol has some other member send a response on behalf of
the original target member, you must be aware that XCF has no ability to recognize
this situation. If the original target member becomes inactive, the timing could be
such that the message will complete (because XCF no longer expects the
response) before the other member's response arrives. The message notify user
routine would be missing a response even though the member that your application
expects to respond is active and still has plenty of time remaining before the
message times out.

Calling the Message Notify User Routine: XCF presents the collection of
responses to the message notify user routine of the originating member, in the
message notification parameter list (MNPL).

MNPL maps a table that contains information about the response, if any, that was
collected from each target member. When more than one target member exists, the
entries in the table are in one-to-one correspondence with the entries in the table of
targets specified (with the TARGETS= parameter) when the original broadcast
message was sent. The one-to-one correspondence applies to all entries in the
table of targets, including any entries containing a null member token. If any target
table entry contains a null member token, the corresponding entry in the MNPL
identifies that state with one of the following flags:

 � MNPLTOSENDSKIPPED
 � MNPLTRSENDSKIPPED

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-37

When either of these flags is set to B'1', the corresponding target member token is
hexadecimal zero, indicating that the sender wanted to skip an entry in the
message-out target table.

If no response was received, XCF provides a code in the table. (The
MNPLTRRESPCODE field indicates why the expected response was not received.)
Note that failure to receive a response does not imply that the target member did
not receive its copy of the message. Some reasons why an expected response
might not be received are:

� The send of the message-out request has yet to be initiated.
� The target member is not coded to support XCF-managed response collection.
� The target member is not running on a system that supports XCF-managed

response collection.
� The system on which the target member resides was removed from the sysplex

before the response was sent.
� The target member became inactive before it could send the response.
� The message was not sent because the target member is not active.

If a response was received, use the XCF Message In service (IXCMSGI) to retrieve
the data or the XCF Message Control service (IXCMSGC) to save or discard the
data. Note that IXCMSGI and IXCMSGC must be invoked from within the message
notify user routine.

Response collection is considered complete when all the expected responses have
arrived, when IXCMSGC is used to force completion, or when the timeout value
expires, whichever occurs first. (See “Specifying a Timeout Value for Message
Completion” on page 2-41 for a description of the timeout value.)

Specifying the Delivery Options for Messages
The XCF signalling service supports options that allow ordered message delivery
between members and the specification of a time limit within which message
delivery must complete.

� Ordered message delivery means that messages are presented for input to the
receiving member's message user routine in exactly the same order that they
were accepted by the XCF Message Out service. Ordered message delivery is
only provided between a particular pair of members; the sequencing is
performed for a particular sender and receiver pair. The sender must ensure
that the message-out requests are made in the desired order. The sender
should wait for successful return from the XCF Message Out service before
initiating the next ordered request for the same sender/receiver pair.

� A timeout value is the amount of time a sender is willing to wait for its
IXCMSGO request to complete. XCF can notify the sender when the timeout
value has been exceeded and the message is no longer available for
processing.

The timeout value can also be used to indicate that XCF is to queue any
messages that cannot be sent because of a lack of XCF resources (such as
buffers or signalling paths). See “Queueing Messages for Later Delivery” on
page 2-43 for a description of this service.

Requesting Unordered Delivery: Unordered delivery (IXCMSGO
DELIVERMSG=UNORDERED) is the default mode and means that messages can
be delivered in any order, regardless of the order in which they were sent. The

2-38 OS/390 V2R8.0 MVS Sysplex Services Guide

delivery of unordered messages might even be interspersed among messages for
which ordered delivery was requested.

Unordered delivery occurs if a message is sent to a target member that resides on
a system running a release of OS/390 or MVS that does not support ordered
message delivery.

Requesting Ordered Delivery: Ordered delivery (IXCMSGO
DELIVERMSG=ORDERED) can be used to send messages between a particular
pair of members in independently ordered streams. Both the sending and the
receiving member must reside on systems that support ordered message delivery.
If a message is sent to a member on a system not at the required level, the
message is delivered as an unordered message. To avoid sending messages to a
downlevel target member, the sender can issue IXCQUERY and examine the
QUAMPROORDEREDDELIVERY field to determine if the target member resides on
a system that supports ordered message delivery.

The sender can define up to 15 different streams of ordered messages. Identify
the stream to which a message belongs with the IXCMSGO STREAMID parameter.
The messages in any given stream are delivered in the order in which they were
accepted for delivery; the messages in each stream are delivered independently
from those in another stream.

To process ordered messages, XCF passes control to the message user routine.
The routine must either receive the message or indicate that XCF is to save the
message in XCF-managed storage. If the routine does neither, XCF discards the
message when the message user routine gives up control. Once the message user
routine gives up control, the next ordered message is eligible for delivery
(regardless of whether the previous message was received, saved, or discarded).
Note that the message user routine needs to process the message and return to
XCF as quickly as possible. If the message user routine is suspended for any
reason while processing an ordered message, the routine will delay the delivery of
subsequent messages in the ordered delivery stream. Such delays could allow a
large backlog of messages to accumulate. This, in turn, might cause XCF to reject
message-out requests (local or on remote systems) that are targetted to this
member.

Note that each stream is processed as a separate entity, so that a delay in
processing messages in one stream does not affect the processing of messages in
another stream nor of unordered messages.

Within the sequence of ordered messages to be delivered, “gaps” in the sequence
might occur. These gaps could be the result of either XCF or application
processing. In both cases, the multisystem application must be able to recognize
that a gap has occurred. Two examples are:

 � XCF processing

A member sends messages A1, A2, A3 in order. Suppose that messages A1
and A3 are successfully transferred to the target system. XCF delivers
message A1, but delays delivery of message A3 because message A2 has not
yet arrived at the target system. In the meantime, suppose that the sending
member decided to cancel message A2 before XCF was able to initiate the
send or that the sending system failed before the transfer of message A2 was

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-39

completed. XCF recognizes that message A2 cannot be delivered to the target
system and so delivers message A3.

 � Application processing

A member sends messages A1, A2, A3 in order and all messages are
transferred successfully to the target system. XCF delivers message A1, which
is processed successfully by the receiving member. XCF then delivers message
A2, but the receiving member fails to process the message correctly. XCF then
delivers message A3. From XCF's perspective, message A2 had already been
delivered, but from the application's perspective, message A2 is missing.

If the presence of gaps in the sequence is not tolerable, the application must
provide its own protocols to react to a gap's occurrence. For example, the
application might need to discard incoming ordered messages until the target
member resynchronizes with the sender.

| There could be multiple instances of a message user routine running, each under a
| different unit of work. It is not predictable which instance of the message user
| routine or which work unit will be given control to process the next ordered
| message in the stream.

Understanding Message Completion
The XCF signalling services use the concept of message completion. Message
completion occurs in the following circumstances:

� Any message is considered complete if it times-out, if the XCF Message
Control Completion service (IXCMSGC) is used to force its completion, or in the
case of a send to a single target member, the target member becomes not
active.

� A message without response is considered complete as soon as XCF has
initiated the send of the message. For a message broadcast to multiple targets,
the message is considered complete when XCF has initiated the send of the
message to every valid target member. Message completion for a message
without response implies nothing about whether the message was actually
delivered to a target member or whether the message data was transferred to
the system on which the target member resides.

Note that a message is considered complete even if the initial send of the
message fails and XCF has to resend the message.

� A message with response is considered complete when its expected response
arrives. For a message broadcast to multiple targets, the message is
considered complete when the expected response from each target member
arrives.

XCF does not expect a response to a message from a member residing on a
system that does not support XCF-managed response collection, or from a
member that did not specify CANREPLY=YES on IXCJOIN when joining the
group. Note that if a response to a message is not expected, the message is
considered complete.

Message completion might trigger the invocation of a user routine based on the
requirements specified on the XCF Message out service. See “Requesting
Notification of Message Completion” on page 2-41 for information about the
IXCMSGO parameters to specify to be notified of message completion.

2-40 OS/390 V2R8.0 MVS Sysplex Services Guide

Specifying a Timeout Value for Message Completion
With the XCF Message Out service, the sender can specify a timeout value after
which the message is to be considered complete. The timeout value is the number
of seconds the sender is willing to allow for the message-out request to complete.
XCF declares the message to be complete if it does not otherwise complete during
the timeout interval. The sender is notified of the message completion in the
manner requested when the message was sent. The system discards any response
that is received after the message is considered complete.

| A nonzero timeout value is required when MSGACCESS=ASYNC is specified on
| the Message Out service. Users sending large messages should allow sufficient
| time for the message to be sent. As a general rule, allow at least one millisecond
| per 4K of message data for data transfer time. Multiply the value by the number of
| targets and add additional time for system delays, such as spin loops, dumps, or
| response collection.

When selecting a timeout value, consider the following:

� The timeout value should conform to the service goals established for the
application.

� The timeout value should be approximate. XCF does not guarantee that
notification of timeout completion occurs precisely at the specified interval.

Consider also the rate at which the member processes its messages and the size
of the messages. If a large number of messages arrive at a rate greater than the
system's ability to process them, the system might need large amounts of storage
to maintain the backlog. If a broadcast with response to a large number of target
members requires a large response from each member, the system might need
large amounts of storage to maintain the responses. Although XCF uses pageable
data spaces to manage the message traffic, your application must be aware of the
system resource impact to the system and the sysplex.

Requesting Notification of Message Completion
With the XCF Message Out service, the sender can specify that the system is to
provide notification when the message completes. The notification occurs
automatically through the message notify user routine. Notification is relevant only
if the message-out request is accepted for delivery. XCF does not provide
notification for rejected message-out requests.

XCF maintains status information about the request. Even if notification is not
requested, this information might be temporarily available to the XCF Message
Control service.

Specifying Data to be Associated with the Message: The sender optionally can
specify eight bytes of user data to be associated with the message-out request with
the IXCMSGO USERDATA parameter. When the message completes, the system
passes a copy of this user data in the MNPL presented to the message notify user
routine. The field MNPLMSGOUSERDATA contains this data. You can also use the
IXCMSGC QUERYMSG service to retrieve this data. The field
MQAMOSUSERDATA in the answer area contains this data.

Identifying the Message: With the IXCMSGO RETMSGOTOKEN parameter, the
sender optionally can specify that the system is to return a 16-byte token that can
be used to identify the message to the XCF Message Control service.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-41

Qualifying the Notification Request: With the NOTIFYIF parameter of the XCF
Message Out service, the sender can specify the circumstances under which
notification should occur. The sender can choose to be notified regardless of how
the message completes (either successful or failed) or to be notified only if the
message is considered to have failed.

� A completed message without response is considered successful if XCF
initiated a send to every possible target member.

� A completed message with response is considered successful if a response
was received from every possible target member.

� If neither case applies, the message is considered to have failed with regard to
message completion.

When the message completes, XCF determines whether the message succeeded
or failed. If the sender requested notification for the type of completion that
occurred, XCF begins the requested type of notification. Otherwise, all information
related to the request is discarded and no notification occurs.

Specifying the Notification Process: With the NOTIFYBY parameter of the XCF
Message Out service, the sender specifies that XCF is to give control to the
message notify user routine upon completion of the message. When message
completion occurs, XCF schedules an SRB to the address space that was primary
when the sending member invoked IXCJOIN to join the XCF group. The message
notify user routine is called while running under this SRB (comparable to how the
message user routine runs). The message notify user routine can be specified
either when the member joins the XCF group or when the member invokes the
Message Out service for the request.

On entry to the message notify user routine, register 1 contains the address of a
message notification parameter list (mapped by IXCYMNPL). The parameter list
contains information about the message-out request, a table of information
describing the result of the send to each target, and if relevant, information about
each response. From within the message notify user routine, an individual response
is received by invoking the XCF Message In service to copy the text of the
response message from XCF-managed storage to user-supplied storage. See
“Coding a Message Notify User Routine” on page 2-63 for detailed information
about using a message notify user routine.

It is the responsibility of the sender to ensure that completed messages are
processed in a timely manner so as to avoid undue consumption of resources
within the sysplex. Failure to do so might cause XCF to reject message-out
requests with return code X'0C', reason code X'0C', indicating that there is no
user message space left. XCF might also reject a Save Message request of the
XCF Message Control service.

Handling Error Conditions
When you issue IXCMSGO to send a message, it is possible that XCF will be
unable to deliver the message, either because message buffers are temporarily
unavailable or because signalling paths to the target member's system are
temporarily unavailable.

� IXCMSGO returns return code X'0C', reason code X'04' when XCF has used
up the installation-specified amount of message buffer space allotted for
queueing the signals targeted to the destination system.

2-42 OS/390 V2R8.0 MVS Sysplex Services Guide

� IXCMSGO returns return code X'0C', reason code X'08' when XCF has lost
all signalling path(s) to the destination system.

As a general rule, these are temporary conditions for which recovery routines are
not required. In both instances, you can try sending the message again after a
short period of time (such as ten milliseconds).

� If the condition is a message buffer shortage, it might be necessary for the
installation to allocate additional message buffers.

� If signalling paths are unavailable, something might be wrong with the target
member's system or with its signalling paths.

You can keep trying periodically to send the message until your group user
routine receives a system-status-update-missing notification (event type
GESYSSUM). You could then try again when your group user routine receives
the system status update resumed notification (event type GESYSSUR). See
“Events that Cause XCF to Schedule a Group User Routine” on page 2-86 for
an explanation of the GESYSSUM and GESYSSUR events.

Queueing Messages for Later Delivery: With the IXCMSGO support for the
specification of a timeout value, you can request that XCF queue a message that
might otherwise have been rejected because of a lack of XCF resources.
Specifying a non-zero timeout value tells XCF to save the message in
XCF-managed storage until it can be sent. IXCMSGO returns a return and reason
code to the sender to indicate that it has accepted and queued the message for
delivery. Note that if you do not specify a non-zero timeout value, XCF will reject
the message if resources are not available.

The queued message remains pending until either

� XCF automatically sends the message when the resource constraint is
resolved.

� The message completes.

XCF notifies the sender of message completion as specified when IXCMSGO was
invoked.

Handling IXCMSGO Requests When a Member Terminates
A member can voluntarily leave its XCF group by using the IXCLEAVE macro or
the IXCQUIES macro. See “Disassociating Members from XCF” on page 2-124 for
general information about member termination. If the member is using the
IXCMSGO service, XCF discards any completed IXCMSGO requests that are
pending presentation to a message notify user routine and any incomplete
IXCMSGO requests. The message notify user routine does not receive control for
these messages.

If XCF has initiated a send for a message-out request, XCF continues to attempt
delivery of the message. XCF does not guarantee that the message will be
delivered, even if it has already initiated the send, because a system can be
removed from the sysplex before a message is transferred to its target system.
Despite the potential for non-delivery, a member might want to take steps to ensure
that XCF has initiated the send of its messages before the member becomes
(voluntarily) not active.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-43

See “Handling Member Termination” on page 2-55 for a description of how XCF
handles messages that might still be associated with the member that is terminating
and a suggested method for ensuring that XCF has initiated the member's
message out requests.

Using the IXCMSGI Macro
The IXCMSGI macro allows an active member of an XCF group to receive
messages that were sent by another active member of the group and to be notified
of XCF signalling related events for processing.

| � To receive messages sent to your member, you must

– Write a message user routine that invokes the IXCMSGI macro

– Specify the address of your message user routine using the MSGEXIT
parameter when you issue the IXCJOIN macro to join the XCF group.

The message user routine receives control when the message is ready for
delivery. The message user routine can receive, save, or discard the message.

| � To receive response messages collected by XCF for your member, you must

– Write a message notify user routine that might invoke the IXCMSGI macro

– Specify the address of your message notify user routine using the
NOTIFYEXIT parameter when you issue the IXCJOIN macro to join the
XCF group or the NOTIFYEXIT parameter when you issue the IXCMSGO
macro to send a message.

The message notify user routine receives control when message completion
occurs for a message-out request that specified a broadcast or message
response collection. The message notify user routine can receive, save, or
discard an individual response and can also save or discard an entire collection
of responses and message control information.

| The IXCMSGI user routines must be prepared to receive whatever data is sent by
| its peer members. Prior to OS/390 Release 8, the maximum length of a message
| that a member could send was 61K bytes. With Release 8, support for messages
| up to 128M bytes in length was added. To allow its peer members to send a
| message that is greater than 61K bytes, the receiving member must specify
| GT61KMSG=YES on its invocation of IXCJOIN to join the XCF group.

The IXCMSGI service copies message data from XCF-managed storage to a
user-specified storage area. The IXCMSGI service can place the message data
received from the IXCMSGO service into either a single buffer or a user-specified
number of buffers.

When your user routine (either a message user routine or a message notify user
routine) receives control from XCF, GPR 1 points to a parameter list containing
information about the message or signalling-related event to be received. The
parameter list for the message user routine is mapped by the IXCYMEPL macro.
The parameter list for the message notify user routine is mapped by the
IXCYMNPL macro.

2-44 OS/390 V2R8.0 MVS Sysplex Services Guide

Identifying the Message to Be Delivered
Identify the message to be delivered with the TOKEN parameter of IXCMSGI. The
value of TOKEN is passed in the MEPL or MNPL parameter list —
MEPLMSGITOKEN, the token for a message presented to a message user routine
or MNPLTRMSGITOKEN, the token for a response message presented to a
message notify user routine. Note that this message token is valid as input to
IXCMSGI while the user routine is in control, as long as the message has not been
saved or discarded using the IXCMSGC service. When the user routine gives up
control, or saves or discards the message using the IXCMSGC service, XCF
invalidates the message token.

If the message is to be delivered on a system running a release prior to OS/390
Release 3, you can use the MSGTOKEN parameter to identify the message. The
value of MSGTOKEN is passed in the MEPL parameter list — MEPLMTOK, the
32-bit token for a message presented to a message user routine. Use the TOKEN
parameter instead of the MSGTOKEN parameter on systems running OS/390
Release 3. The TOKEN parameter is required when IXCMSGI is issued within a
user routine that gained control through the IXCMSGC Call Exit service or within a
message notify user routine.

Determining the Length of the Message to be Received
Depending on the parameter list that is passed to the user routine, the length of the
message to be received is obtained as follows:

Using the MEPL: Field MEPLMLEN in IXCYMEPL contains the length of the
message. Use this information to determine how much buffer storage you need to
accommodate the message being received. See “Coding a Message User Routine”
on page 2-55 for information on writing a message user routine to issue the
IXCMSGI macro.

Using the MNPL: Field MNPLTYPE contains the type of signalling-related event
notification being presented. The contents, and therefore the length, of IXCYMNPL
can vary depending on the type of notification. See “Coding a Message Notify User
Routine” on page 2-63 for information on writing a message notify user routine to
issue the IXCMSGI macro.

See OS/390 MVS Data Areas, Vol 3 (IVT-RCWK) for more information about the
IXCYMEPL and the IXCYMNPL mapping macros.

Determining Message Disposition
Within a user routine, an active member can receive or save a message.

� Use IXCMSGI to receive the message and have XCF copy it into a
user-specified storage area.

� Use IXCMSGC to save the message and have XCF copy it into XCF-managed
storage.

If a message is neither received nor explicitly saved or discarded, XCF
automatically discards the message when the user routine gives up control.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-45

Specifying the Storage Key
Specify the storage key of the buffers to receive the message data by using the
MSGSTGKEY parameter or by taking its default. If you specify the storage key of
your buffers, the system transfers data into your buffers using a MOVE WITH KEY
(MVCK) instruction. The operation is successful only if the buffers are in the
storage key specified.

If you omit the MSGSTGKEY parameter, the system uses as a default the value of
the PSW key at the time you issued the IXCJOIN macro.

Receiving Message Data into a Single Buffer Area
| Use the MSGBUF parameter to specify the one contiguous buffer that is to receive

the message. Please note, however, that you must provide sufficient storage to
receive the entire message . If the storage cannot hold the entire message, the
system will either program check or overlay storage. Furthermore, you cannot
reissue IXCMSGI to obtain the message data that couldn't fit in the buffer when you
issued IXCMSGI the first time.

Receiving Message Data into Multiple Buffers
| To have XCF distribute the message data into multiple buffer areas, you must
| ensure that those areas can be described in either a table structure or a queue
| structure. This section describes the different formats you can use to receive

message data from IXCMSGI into multiple buffers. Illustrations of the different
formats are shown in the figures on pages 2-32 through 2-34. The formats and
parameters for using multiple buffers are the same for both IXCMSGO and
IXCMSGI. Note that there is no requirement that a message sent using multiple
buffers be received using multiple buffers. The formats of the buffers used to send
and receive a given message are completely unrelated.

If the receiver is going to receive the message into multiple buffers and requires
that the sender provide the length of each message part, the sending and receiving
member must devise a protocol for transmitting this information. For instance, the
length of each message part could be sent in the message data itself or as part of
the message control data.

To receive a message using multiple buffers, you must create a queue
(ELEMFORM=QUEUE) or a table (ELEMFORM=TABLE) of message data
elements, each representing a buffer that is to receive message data.

Specifying the Message Data Elements: Message data elements contain:

 � Either:

– A buffer that is to receive message data
– A pointer to a buffer that is to receive message data.

� The length of the buffer (optional)

� The ALET to qualify the address of the buffer if message data elements contain
pointers to the buffers (optional).

Buffer lengths and ALETs can be passed separately as described below instead of
including them in each message data element.

2-46 OS/390 V2R8.0 MVS Sysplex Services Guide

Specifying the Location of Each Buffer: Specify the location of the buffer or
buffer pointer within each message data element using one of the following
parameters:

� If the message data elements contain the buffers, use the PARTOFF parameter
to specify the offset of the buffer area from the start of each message data
element.

� If the message data elements contain pointers to the buffers, use the
PARTPTROFF parameter to specify the offset of the buffer address from the
start of each message data element.

Specifying the Location of Each ALET: Specify the ALETs to qualify the buffer
addresses using one of the following parameters:

� The PARTALET parameter to specify a single ALET to qualify each buffer
address.

� The PARTALETOFF parameter to identify a location in each message data
element that contains the ALET to qualify the associated buffer address.

� The PARTALETTBL parameter to specify a separate table of ALETs.

Specifying the Size of Each Buffer: Specify the lengths of the buffers using one
of the following parameters:

� The PARTLEN parameter to specify a single length for all buffers.

� The PARTLENOFF parameter to identify a location in each message data
element that contains the length of the associated buffer.

� The PARTLENTBL parameter to specify a separate table of buffer lengths.

Specifying the Location of the Next Message Data Element: If you have a
table of message data elements, specify the location in each message data
element of the next message data element using the NEXTOFF parameter.

If you have a queue of message data elements, specify the location in each
message data element of the pointer to the next message data element using the
NEXTPTROFF parameter.

When the Message Can't Fit in the Buffer Storage Provided: If you provide
less total message buffer storage than is needed to receive the entire message,
IXCMSGI fills the available buffers and returns a return code of X'4' with a reason
code of X'224' to indicate that more message data remains. Reissue the IXCMSGI
macro while your message user routine is still running and continue to do so
until you have received all the message data.

If you want to receive and process a message in pieces, you can deliberately
provide less buffer space than is needed for the entire message and issue
IXCMSGI repeatedly until you have received the whole message.

IXCMSGI processes message data elements in consecutive order, copying
message data into each buffer until either the receiving buffer is full or all the
message data has been stored.

Processing of message data continues until one of the following occurs:

� All message data has been copied.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-47

� IXCMSGI has processed the number of buffers specified by the #MSGPARTS
parameter

� IXCMSGI has reached the end of the queue of message data elements as
specified by the ENDOFQUEUE parameter or its default

� IXCMSGI finds more than 65536 consecutive buffers of length 0 and does not
know how many message parts to search because you did not specify the
#MSGPARTS parameter. You do not receive the message; you receive a
return code and reason code indicating the error.

Examples of Message Data Element Formats for Multi-Buffer Messages:
Figure 2-8 on page 2-32 shows a queue of message data elements in which each
element contains a buffer address and a pointer to the next element in the queue.
All buffers reside in the same address space and are to be accessed using the
ALET specified by the PARTALET parameter. All buffers are of the length specified
by the PARTLEN parameter.

Figure 2-9 on page 2-32 shows a table of message data elements in which each
element includes the following information relating to the buffer it describes:

� The ALET to qualify the buffer address
� The length of the buffer
� The address of the buffer.

Figure 2-10 on page 2-33 shows a table of message elements in which each
element contains a buffer. No ALETs are specified since the buffers reside in the
table itself. A separate table, specified by PARTLENTBL, contains the length of
each buffer.

Figure 2-11 on page 2-34 shows a table of message elements in which each
element contains a buffer address. A separate table, specified by PARTALETTBL,
contains the ALETs to be used with each buffer address. A separate table,
specified by PARTLENTBL, contains the length of each buffer.

Using the IXCMSGC Macro
The IXCMSGC macro allows you to interract with the XCF signalling services by
providing services that:

� Save a message or response into an XCF-managed storage area for later
processing (REQUEST=SAVEMSG)

� Discard a saved message or response, cancel an incomplete message-out
request, or discard a completed message-out request
(REQUEST=DISCARDMSG)

� Request information about incomplete message-out requests, completed
message-out requests that are pending notification, or messages that have
been saved with IXCMSGC (REQUEST=QUERYMSG)

� Force a message to be immediately considered complete
(REQUEST=COMPLETION)

� Allow a user routine to receive control to process a saved message or a
completed message-out request (REQUEST=CALLEXIT).

2-48 OS/390 V2R8.0 MVS Sysplex Services Guide

Understanding the Programming Environment
You can invoke IXCMSGC either while running in task mode or in SRB mode. In
both cases, the caller's address space must be the primary address space that was
current at the time the member invoked IXCJOIN to join its XCF group.

Identifying the Requestor
An active member of an XCF group is eligible to use the IXCMSGC services. To
identify the member making the request, specify the member token that was
returned when the member joined the XCF group. See “Identifying the Target
Member or Members” on page 2-28 for a list of sources for obtaining a member
token.

Requesting that a Message or Response Be Saved
IXCMSGC allows a user to request that XCF save messages or responses into
XCF-managed storage areas if the user does not want to process the data
immediately. The IXCMSGC Save Message request can be invoked only from a
message user routine or a message notify user routine.

Identifying a Message to be Saved: The message exit parameter list (MEPL),
mapped by IXCYMEPL, or the message notification parameter list (MNPL), mapped
by IXCYMNPL, passed to the user routine contains the 16-byte token that the
system uses to identify the message or response to be saved. This token is valid
only for input to IXCMSGC; once the user routine returns control to XCF, the token
is no longer valid. The system also invalidates the message token if the message is
discarded or if the Message In service finished delivering all the message data.
Once invalidated, the message token will not be accepted by either the IXCMSGC
service or the IXCMSGI service.

Saving a Message: A message that is saved by a message user routine can be
processed at a later time by invoking the IXCMSGC Call Exit service. The Call Exit
service passes control to a message user routine from which you can invoke the
IXCMSGI service to obtain the message data associated with the message. Once
this message data is saved, the message data is no longer accessible to the
instance of the user routine that saved it. Information about the saved message that
was passed in the input parameter list remains accessible. However, the text of
the saved message is accessible only by invoking the IXCMSGC Call Exit service
to give control to a new instance of a user routine from which the IXCMSGI can be
invoked to retrieve the message data.

When a message is saved, whatever data is needed to create a new MEPL is also
saved along with the message. Some of the data saved with the message includes
the source member token, the target member token, and the sender's message
control information.

Saving a Partially Delivered Message: A partially delivered message is one in
which only part of the message data has been moved from XCF-managed storage
to user-specified storage. It is not possible to save that portion of the message that
has been received by the user. Only the undelivered portion of the message can be
saved by invoking the IXCMSGC Save Message service. The portion of the
message that was saved can then be retrieved the next time an instance of the
message user routine processes the message.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-49

Saving a Message and its Associated Responses: From within a message
notify user routine, one or more responses are eligible to be saved. The message
and any responses still associated with it can be saved as a single entity, or each
individual response can be saved independently of the message. The saved
message/response entity can be processed by a message notify user routine at a
later time by invoking the IXCMSGC Call Exit service to pass control to a message
notify user routine.

When saving a message and its responses (if any) as a single entity, the data
saved is sufficient to create a new MNPL that contains a descriptor for the
message itself and a table of target/response information. Once the
message/response entity is saved, the individual responses will not be accessible
to the instance of the message notify user routine that saved the entity. To access
the responses that remain associated with the saved message/response entity, you
can invoke the IXCMSGC Call Exit service to give control to a new instance of a
message notify user routine, from which the IXCMSGI service can be used to
retrieve the response message data or the IXCMSGC service can be used to save
or discard an individual response.

Saving an Individual Response: When a response is saved independently of the
message/response entity, it becomes an independent message. The message
notify user routine will not be able to use the IXCMSGI service to access the
response data after it has been saved independently of the message/response
entity. Note, however, that it is only the response data that becomes unavailable to
the message notify user routine. Information about the response, such as the
message control information and who sent the response, is still available to the
instance of the message notify user routine that saved the response as well as to
any new instances of the message notify user routine that might be called at a later
time to process the saved message/response entity.

The message token for an individual response (MNPLTRMSGITOKEN) that is
passed in the MNPL is invalidated when the response is saved or discarded, or if
the XCF Message In service delivers all the message data. The message tokens
for all the associated responses are also invalidated if the message/response entity
is saved or discarded.

When saving a response independently of the message/response entity, the
undelivered portion of the response is saved along with whatever data is needed to
create a new MEPL. A saved response can be processed by invoking the
IXCMSGC Call Exit service to call a message user routine.

Performance Implications: You should process or discard a saved message as
soon as possible so that XCF can release the storage used for the message. An
active member can discard a saved message by invoking the IXCMSGC Discard
Message service.

Requesting that a Message Be Discarded
IXCMSGC allows a user to request that XCF discard its messages or its
message/response items. The IXCMSGC Discard Message service also allows a
user to cancel incomplete message-out requests or to discard completed
message-out requests.

A discarded message is:

� No longer available for processing

2-50 OS/390 V2R8.0 MVS Sysplex Services Guide

� Not presented to any user routine
� Not visible to the IXCMSGC Query Message service.

The system discards any response associated with a message/response entity, but
does not discard any response that has been saved. (Saving a response causes it
to be disassociated from the message/response entity. See “Saving an Individual
Response” on page 2-50.)

Identifying the Message To Be Discarded: Identify the message to be discarded
with the TOKEN parameter of IXCMSGC. This 16-byte token can be obtained from
one of the following:

� For an incoming message

– The RETMSGTOKEN parameter on the IXCMSGC Save Message service
– The IXCMSGC Query Message service (specify MSGIN for DATATYPE)
– The MEPLMSGITOKEN token from the message exit parameter list

(MEPL), if the routine has not yet finished processing the message
– The MNPLTRMSGITOKEN token from the message notification parameter

list (MNPL), if the routine has not yet finished processing the response
message.

Note that the system invalidates these tokens when the user routine gives up
control.

� For a message/response entity

– The RETMSGOTOKEN parameter on the IXCMSGO service
– The RETMSGTOKEN on the IXCMSGC Save Message service
– The IXCMSGC Query Message service (specify MSGOUT for DATATYPE)
– The MNPLMSGOTOKEN token from the message notification parameter

list (MNPL), if the routine has not finished processing the message.

Note that the system invalidates these tokens when the user routine gives up
control.

Cancelling a Message-Out Request: IXCMSGC can be used to discard an
incomplete message-out request before the message completes, thus having the
effect of cancelling the message-out request. For a broadcast message to multiple
targets, any remaining messages will not be sent. The system discards any
responses that have been collected for the cancelled message as well as any
responses that subsequently arrive for the cancelled message.

It might be necessary to cancel a message-out request to recover from a situation
in which a target member (who has not failed nor left the group) fails to send the
necessary response. XCF does not expect a response from a member who has
terminated or left the group.

Letting the System Discard a Message: If a message is not explicitly saved by a
user routine nor received by invoking the IXCMSGI service, XCF discards the
message when the user routine gives up control. This automatic discard is
preferable to a user-specified discard in an exit routine because it incurs less
system overhead.

Timing Considerations: If a message is discarded while an user routine is
processing that same message, the system rejects subsequent attempts by the
user routine to process the message with a return and reason code indicating that
the message has been discarded. Depending on the timing, the current operation

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-51

being performed by the user routine might be allowed to complete before the
message is discarded. The system returns from the IXCMSGC Discard Message
service with the discard of the message left pending.

Requesting Information about Messages
IXCMSGC allows a user to query information about incomplete message-out
requests, about completed message-out requests that are pending notification, or
about messages that have been saved using the IXCMSGC Save Message service.

The IXCMSGC Query Message service allows the user to request the following
type of information:

� Summary information about messages sent by the member using the Message
Out service

� Summary information about messages sent by the member using the Message
In service

� Detail information about a particular message.

The system returns the information requested in a storage area that the requestor
provides. The storage area, specified by the ANSAREA parameter, must either be
in the caller's primary address space, or in an address or data space that is
addressable through a public entry on the caller's dispatchable unit access list
(DU-AL), or in a common area data space. The contents of the answer area are
mapped by the IXCYMQAA macro.

Requesting Message-out Information: To obtain information about messages
sent by the member with the IXCMSGO service, specify DATATYPE=MSGOUT.
You can request information about messages that are incomplete, completed, or
saved. Only one option can be specified.

� An incomplete message-out request is one for which a send or a response is
still pending (MQAMOSSENDPENDING or MQAMOSRESPPENDING bit is
set).

� A completed message-out request is one for which XCF is no longer trying to
initiate a send and is no longer waiting for a response (MQAMOSCOMPLETED
bit is set). Such a message is eligible for processing by a message notify user
routine.

� A saved message-out request is one that was presented to, and saved by, a
message notify user routine (MQAMOSSAVED bit is set).

The system returns data for each of the member's message-out requests that is in
the specified state. The data for each message includes a token that identifies the
message, user data associated with the message, and the status of the message,

| including whether XCF had to access user storage asynchronously to the
| IXCMSGO request. This data is mapped by the MQAMSGOUTSUMMARY record in

IXCYMQAA.

Requesting Message-in Information: To obtain information about messages
saved by the message user routine or responses saved by the message notify user
routine, specify DATATYPE=MSGIN. You can request information about messages
from a particular member (by specifying the member's token on the SOURCE
parameter) or from all members.

2-52 OS/390 V2R8.0 MVS Sysplex Services Guide

The system returns data for each message that includes a token that identifies the
message, user data associated with the message, and the member token of the
member that sent the message. This data is mapped by the
MQAMSGINSUMMARY record in IXCYMQAA.

Requesting Detail Information about a Specific Message: To obtain detailed
information about a particular message, specify DATATYPE=DETAIL and include
the token that identifies the message. The data that the system returns depends on
the type of message.

� For a message/response entity, the data includes a token that identifies the
message, user data associated with the message, the number of targets for the
message, and a table of target/response data with an entry for each possible
target. This table describes the result of the send and the associated response
collection (if applicable). This data is mapped by the MQAMSGOUTDETAIL
record in IXCYMQAA.

� For a message saved by a message user routine or for a response saved by a
message notify user routine, the data includes a token that identifies the
message, user data associated with the message, the member token of the
member that sent the message, message length, and message control
information from the sender. This data is mapped by the MQAMSGINDETAIL
record in IXCYMQAA.

Retrieving Information from the Answer Area: The information returned in the
user-provided answer area is mapped by the IXCYMQAA macro. The data consists
of a header record (mapped by MQAHEADER) and zero or more records
appropriate to the type of query. See OS/390 MVS Data Areas, Vol 3 (IVT-RCWK)
for a description of the IXCYMQAA macro.

When retrieving information from the answer area, do not hardcode any length
values for the header or various record types. Use the lengths and offsets that are
included in the MQAA record itself.

Requesting that a Message Be Completed
IXCMSGC allows a user to force the message to be immediately considered
complete. The member invoking the IXCMSGC Completion service must be the
same member that sent the message to be completed. Use the IXCMSGC
Completion service for a message-out request that XCF has accepted for delivery,
but does not consider complete. See “Understanding Message Completion” on
page 2-40 for a description of when a message is considered complete.

When the IXCMSGC Completion service returns to the member, the message is
known to be complete and processing for the message continues just as it would
have had the message completed without IXCMSGC intervention. That processing
includes:

� XCF no longer attempts to send the message to any intended target.

� XCF discards any responses to the message that arrive subsequent to its
completion. (Responses that are not collected are identified with the
MNPLKRESPCODETOOLATE return code in the MNPL for the appropriate
target entry.)

� If XCF was to initiate notification upon completion of the message, the
message notify user routine receives control. If not, the member can invoke the

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-53

IXCMSGC Call Exit service to call a message notify user routine to process the
completed message.

Identifying the Message: The 16-character token that identifies the message for
which completion is requested can be obtained from the IXCMSGO service with the
RETMSGOTOKEN parameter or from the IXCMSGC Query Message service
(specify DATATYPE=MSGOUT).

Replacing the User Data: When using the IXCMSGC Completion service to force
a message to completion, the member can replace the user data currently
associated with the message. If the invocation of IXCMSGC causes the message to
be considered complete, the MNPLMSGOUSERDATA field in the MNPL contains
the new user data.

Requesting that a User Routine Is To Process a Message
IXCMSGC allows a user to specify a user routine to receive control to process a
saved message or a completed message-out request. The user routine receives
control under the same unit of work as the IXCMSGC invoker. The IXCMSGC Call
Exit service can call a message user routine or a message notify user routine,
whichever is appropriate for the message to be processed.

Identifying the Message: Identify the message to be processed by a user routine
with the TOKEN parameter of IXCMSGC. This 16-byte token can be obtained from
one of the following:

� For a message user routine

– The IXCMSGC QUERYMSG service (specify DATATYPE=MSGIN)
– The RETMSGTOKEN parameter on the IXCMSGC SAVEMSG service.

� For a message notify user routine

– The RETMSGOTOKEN parameter on the IXCMSGO service
– The IXCMSGC QUERYMSG service (specify DATATYPE=MSGOUT)
– The RETMSGTOKEN parameter on the IXCMSGC SAVEMSG service.

Identifying the User Routine: The user routine that you identify to be called must
be appropriate for the type of message being processed. If you specify an
inappropriate user routine, IXCMSGC fails with reason code
IXCMSGCRSNINAPPROPEXITROUTINENAME.

Passing Information to the User Routine: You can pass up to 64-bits of
information to the user routine with the EXITPARMS parameter. The contents of
this area are user-defined, and might, for instance, be used to pass the address
and ALET of a storage area containing information that determines how the exit
routine should perform its processing.

� When passed to a message user routine, MEPLUSERPARMS in the message
exit parameter list (MEPL) contains this information.

� When passed to a message notify user routine, MNPLEXITPARMS in the
message notification parameter list (MNPL) contains this information.

2-54 OS/390 V2R8.0 MVS Sysplex Services Guide

Handling Member Termination
A member can become not active unexpectedly as the result of a failure. A member
also can become not active voluntarily by invoking the XCF Leave service
(IXCLEAVE) or the XCF Quiesce service (IXCQUIES). This section describes how
XCF handles messages that might still be associated with the member that is
terminating.

When a member becomes not active, XCF ensures that it deletes any member
message data space. XCF also discards any messages that could not be presented
to the member. The discarded messages include those saved by the member,
those pending delivery to a message user routine, and completed message-out
requests pending presentation to a message notify user routine. Incomplete

| message-out requests are declared to be complete when the sending member
becomes not active, and are then discarded (without notification).

If XCF has initiated a send for a message-out request, XCF continues to attempt
delivery of the message. XCF does not guarantee that the message will be
delivered, even if it has already initiated the send, because a system can be
removed from the sysplex before a message is transferred to its target system.
Despite the potential for non-delivery, a member might want to take steps to ensure
that XCF has initiated the send of its messages before it becomes (voluntarily) not
active.

Coding a Message User Routine
Your message user routine provides a mechanism for receiving messages from
other members of your XCF group. When you join an XCF group, you must specify
the address of a message user routine to be given control when another member
sends you a message. You also can specify a message user routine when invoking
the XCF Message Control service (IXCMSGC REQUEST=CALLEXIT). This section
presents the following information to help you code a message user routine:

� The environment in which it receives control
� The information it receives as input
� The actions it might perform
� Programming considerations to bear in mind

 Environment
The message user routine receives control in the following environment:

Minimum authorization: Supervisor state and PSW key 0
Dispatchable unit mode: SRB
Cross memory mode: PASN=HASN=SASN. The primary address space is equal

to the primary address space of the caller of IXCJOIN, and
can be swappable or non-swappable.

AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-55

 Restrictions
The message user routine cannot issue any macros that issue an SVC or that
require the caller to be in task mode.

| The message user routine can be called by an IXCMSGC REQUEST=CALLEXIT
| invocation. However, no FRRs can be established when making the CALLEXIT
| request in task mode.

 Entry Specifications
XCF passes information to the message user routine in a parameter list and in
registers.

Version 0 of the message exit parameter list (MEPL), mapped by IXCYMEPL,
contains the following information:

MEPLMTOK The message token to be passed to IXCMSGI using the
MSGTOKEN parameter. This field is maintained for version 1
parameter list users to be compatible with version 0 parameter list
users.

MEPLMDAT User-specified data provided by the sending member when it
issued IXCJOIN (MEMDATA parameter).

MEPLMLEN The length (number of bytes) of message data to be received by
IXCMSGI.

MEPLSRCE The member token of the member sending the message. Use this
token to reply to the message.

MEPLCNTL The contents of the field specified by the MSGCNTL parameter on
the IXCMSGO macro when the message was sent, or zeros if the
parameter was omitted. This field could be used to provide
information about the message being sent.

Version 1 of the MEPL contains the following information:

MEPLVERSION Version number of the MEPL.

MEPLFLAGS Flags describing the characteristics of the message
or its delivery.

MEPLTARGETMEMTOKEN Member token of the member to which this message
was sent.

MEPLMSGITOKEN Token to identify the message being delivered. Use
this token when invoking:

� IXCMSGI to receive the text of the message.
� IXMCSGC to save the message for later

processing.

MEPLRESPONSEID Message response identifier. Use this value for the
RESPONSEID parameter when replying to the
message with IXCMSGO SENDTO=ORIGINATOR.

MEPLEXTENSIONADDR Address of additional data provided to the message
user routine.

2-56 OS/390 V2R8.0 MVS Sysplex Services Guide

MEPLSTREAMID Stream identifier for this message, if specified on the
sending IXCMSGO request.

MEPLLEN Length in bytes of the latest version of the MEPL.
Note that this name is maintained for compatibility
with version 0 of the MEPL.

The additional data pointed to by MEPLEXTENSIONADDR contains the following
information:

MEPLEXUSERDATA Data associated with the saved message by the target
member. Contains a copy of the data specified for the
USERDATA parameter when the message was saved with
IXCMSGC. Otherwise, it contains X'0'.

MEPLEXFLAGS Flags describing characteristics of the MEPL extension
record.

MEPLEXEXITPARMS User parameters. Contains a copy of the data specified for
the EXITPARMS parameter when the user routine was
called with IXCMSGC. Otherwise, it contains X'0'.

See OS/390 MVS Data Areas, Vol 3 (IVT-RCWK) for more information about the
IXCYMEPL mapping macro.

Registers at Entry

When the message user routine receives control, the GPRs contain:

Register Contents
0 Used as a work register by the system.
1 Address of the message exit routine parameter list (MEPL).
2-12 Used as work registers by the system.

| 13 Address of a 144-byte work area. The message user routine does not
have to save and restore XCF's registers in this work area. The
message user routine can use this work area in any way it chooses.

14 Return address
15 Entry point address of message user routine.

When the message user routine receives control, the ARs do not contain any
information for use by the message user routine.

 Return Specifications
On return to XCF, the message user routine does not have to set any return codes
or place any information in the GPRs. The message user routine returns control to
the system by branching back to the address in GPR 14.

User Routine Processing
When an active member of an XCF group issues the IXCMSGO macro to send a
message to another active member of the same group, XCF asynchronously
passes control to the message user routine of the target member. The message

| user routine runs in SRB mode in the target member's primary address space (the
| joiner's address space).

You are responsible for writing a message user routine that can:

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-57

� Determine if the member's initialization is complete. A member might issue
IXCJOIN and its message user routine could get control before IXCJOIN
returns to the caller. To determine if the member's initialization is complete, the
message user routine might examine a bit that the member sets on or off. The
member might want its message user routine to ignore or defer any messages
until the routine determines that initialization is complete.

� Check the message control information area (32 bytes of data passed as part
of the parameter list).

� Determine the following from the contents of the message control information
area:

– Whether there is a message to be received. (The message user routine
could also determine this from the parameter list. If the length of the
message is zero (MEPLMLEN=0), then the message buffer does not
contain any data.)

– Whether to receive the message if there is one in the message buffer area.

– Whether to receive the message into a single buffer or into multiple buffers.

– Where to place the data from the message buffer area.

– The type or format of the data in the message buffer area.

� If the message user routine elects to receive the message, it can:

– Check the member data to determine which member the message was
sent to, if more than one member is using the same message user routine.
The member data would have been defined when the member joined the
group (MEMDATA parameter on IXCJOIN). XCF passes that information to
the message user routine as part of the parameter list.

– Obtain enough storage to contain all the data from the message buffer area
or obtain less storage but plan to specify MULTIPART=YES on the
IXCMSGI macro so you can reissue IXCMSGI multiple times to receive the
entire message. If you receive messages very frequently, you might use a
pre-allocated buffer. For less frequent messages, you can obtain storage
using one of the system services.

– Receive the message by invoking the IXCMSGI macro.

– Process the data in the message, or queue the message to a task for
processing and post the task.

– Issue IXCMSGO if the sender requires an acknowledgment, possibly using
the MSGCNTL field to contain the acknowledgment.

If the message user routine elects not to issue IXCMSGI to receive the data, XCF
discards the data as soon as the message user routine returns to XCF, and does
not notify the sender that the message was discarded.

 Programming Considerations
Consider the following when writing your message user routine:

� The message user routine must be a reentrant program. There could be
multiple instances of your message user routine running concurrently.

� The message user routine should return to XCF as soon as possible, because
system resources are held until the message user routine gives up control. To
avoid performance degradation in the XCF signalling service, and the system

2-58 OS/390 V2R8.0 MVS Sysplex Services Guide

as a whole, do not issue the SUSPEND macro within the message user
routine.

� XCF does not provide any acknowledgment that a target member has received
a message. The target member or its message user routine must provide an
acknowledgment if required. However, XCF will either deliver the message, or
provide notification that the target member or the target member's system
failed.

� Because the message user routine runs in SRB mode, it cannot issue any
SVCs. You might want to queue work to one or more tasks for processing and
post the tasks when needed.

User Routine Recovery
XCF does not provide any recovery for the message user routine. Routines that
require recovery must establish their own. XCF does place sufficient information
into the SDWA to identify the message user routine that was in control. The
multi-system application must provide whatever diagnostic data is required for
problem determination for the message user routine.

If XCF cannot access the parameter list generated by the IXCMSGI macro, or the
parameter list is improperly set, the message user routine's recovery routine will get
control provided the message user routine sets up its recovery before invoking
IXCMSGI.

Members that identify a message user routine should allow for SRB-to-task
percolation. (Note: SRB-to-task percolation does not work for address space
associated members. See “Member Association” on page 2-14 for more
information.) If XCF processing fails, and XCF does not retry, XCF abnormally ends
the task that the member is associated with (either the task or the job step task as
specified on IXCJOIN) with a retryable system completion code 00C and one of the
following reason codes:

� Reason code 02070000 means that XCF successfully delivered the message
and the message user returned control to XCF. The task's recovery routine
does not have to take any action.

� Reason code 02070001 means that XCF did not successfully deliver the
message. The task's recovery routine might do one of the following:

– Determine which message, if any, is lost, and notify the sender of the
message to send the message again.

– Back up to some logical point and continue processing from that point.

– Allow the task to abnormally end.

To ensure that the member's recovery can intercept SRB-to-task percolation, the
task that the member is associated with must ensure that its recovery routine
always receives control when a task abnormally ends. To accomplish this, the
associated task should issue the WAIT macro and continue waiting indefinitely
while other tasks perform the member's work.

SRB-to-task percolation does not occur while the task's recovery routine is running.
XCF waits until the task is not in recovery before abnormally ending the task.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-59

 Timing Considerations
You should be aware of the following possible events related to timing:

� XCF does not necessarily deliver messages in the order in which they were
sent.

� Message delivery occurs asynchronously. It is possible for a message to be
received by the target member using IXCMSGI before XCF returns control from
IXCMSGO to the member that sent the signal. If the receiving member provides
an acknowledgement signal back to the sender, it is even possible that the
acknowledgement signal will be received by the sender before the sender
receives control back from issuing the IXCMSGO invocation that sent the
message.

� A target member could become inactive while its message user routine is
executing. In that case, the message user routine completes normally, but XCF
does not deliver any more messages for that member.

� A target member could become inactive after the SRB for its message user
routine is scheduled, but before the message user routine runs. In that case,
XCF discards the message because the member cannot receive it, and does
not deliver any more messages for that member. XCF does not notify the
sender that the message was discarded, but notifies the sender's group user
routine that the target member's state has changed.

� A sending member's system might fail while the member is trying to send a
message, and the target member might not receive the message. In this case,
if the target member has a group user routine, the target member would
receive notification of the system failure. If the target member was expecting a
message, this notification might explain why the message was not received.

� A target member's system might fail before XCF can deliver its message. In
this case, if the sender has a group user routine, the sender would receive
notification of the system failure. If the sender was expecting an
acknowledgment, this notification might explain why no acknowledgment was
received.

� XCF might deliver a message to a target member, but the member, or its
system, might fail before the member can take any action on the message (if
some action was required). If the sender has a group user routine, the sender
would receive notification of member or system failure. If the sender was
expecting some action to take place, this notification might explain why the
action did not occur.

� A loss of signalling connectivity between systems might occur. The operator
might be able to start or restart additional signalling paths and reestablish
connectivity. In this case, XCF delivers messages normally, but with some
delay.

� A new member might send a message that XCF could deliver before the target
member's group user routine receives notification that the new member exists.

� A target member's system might be temporarily non-operational, causing
delivery of messages to be delayed until the system resumes activity.

� A member invoking IXCMSGO might get a return code indicating that the target
of the message was not found. This could occur before the member's group
user routine was notified that the target member (or the target member's
system) is gone.

2-60 OS/390 V2R8.0 MVS Sysplex Services Guide

� When a message user routine runs, the member that sent the message, or the
system on which the sender resides, might no longer be in the sysplex. In that
case, if the receiving member sends a response, XCF indicates that the original
sender (now the target) does not exist.

 Coded Example
In this example of a message user routine, the members (member 1 and member
2) of a group have established a protocol for the use of the message control
information (MSGCNTL parameter on IXCMSGO):

� If member 1 sends a message to member 2 and places zeros in the first byte
of the message control field, member 1 is indicating that the data in the
message buffer area (MSGBUF parameter on IXCMSGO) is an initial message.
Member 2's message user routine then reads in the data contained in the
message buffer.

� If member 1 sends a message with anything other than zeros in the first byte of
the message control field, member 1 is confirming that it received a prior
message. Member 2's message user routine then does not have to read in any
information from the message buffer.

 \\\
 \ \
 \ MESSAGE USER ROUTINE \
 \ \
 \\\
 MEXIT CSECT
 MEXIT AMODE 31
 MEXIT RMODE ANY
 @MAINENT DS ðH
 USING \,R15
 B @PROLOG
 DC AL1(16)

DC C'ME 8936ð MEXIT'
 DROP R15
 \\\
 \ \
 \ ENTRY LINKAGE \
 \ \
 \\\
 @PROLOG STM R14,R12,12(R13)
 LR R12,R15
 @PSTART EQU MEXIT
 \
 \ SET UP BASE REGISTER TO 12
 \
 USING @PSTART,R12
 SLR R15,R15
 IC R15,@SIZDATD
 SLR Rð,Rð
 ICM Rð,7,@SIZDATD+1
 STORAGE OBTAIN,LENGTH=(ð),SP=(15)
 LR R1ð,R1
 USING @DATD,R1ð
 ST R13,4(,R1ð)
 ST R1ð,8(,R13)
 LM R15,R1,16(R13)
 LR R13,R1ð
 \\\
 \ \
 \ MESSAGE USER ROUTINE CODE \
 \ \

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-61

 \ IF THE FIRST BYTE OF MSGCNTL CONTAINS ZEROS, THEN READ \
 \ IN THE MESSAGE; OTHERWISE, DO NOT READ IN THE MESSAGE. \
 \ \
 \\\

LR R6,R1 SAVE THE PARAMETER LIST
USING MEPL,R6 GET ADDRESSABILITY TO MEPL
L R4,MEPLMLEN PLACE THE LENGTH OF MSG IN REG 4
LA R5,MEPLCNTL LOAD ADDRESS OF MSGCNTL TO REG 5
USING CHKTYPE,R5 GET ADDRESSABILITY TO MSGCNTL
CLI MSGTYPE,X'ðð' SEE IF MESSAGE SHOULD BE READ IN
BNE @DONREAD IF NO, BRANCH
STORAGE OBTAIN,LENGTH=(R4),SP=ð IF YES, GET STORAGE FOR MSG
LR R3,R1 SAVE THE ADDRESS IN REG 3

 \
 \ SET UP DYNAMIC AREA AND ISSUE IXCMSGI TO RECEIVE MESSAGE
 \
 L R7,MSGILNTH
 BCTR R7,ð
 EX R7,@SETPARM
 IXCMSGI MSGTOKEN=MEPLMTOK,MSGBUF=(R3), X
 RETCODE=RETURN,RSNCODE=REASON,MF=(E,MSGILSTD)
 \\\
 \ \
\ NOTE: THIS IS A SIMPLIFIED EXAMPLE OF A MESSAGE USER \
\ ROUTINE. NORMALLY, AT THIS POINT, THE MESSAGE WOULD \
 \ BE PLACED ON A WORK QUEUE OR OTHER APPROPRIATE ACTION \
 \ TAKEN WITHIN THE MESSAGE USER ROUTINE, AND \
 \ THE STORAGE WOULD NOT BE RELEASED. \
 \ \
 \\\
 \
 \ RELEASE THE STORAGE AND WRITE TO OPERATOR
 \
 STORAGE RELEASE,LENGTH=(R4),ADDR=(R3),SP=ð

WTO 'READ IN THE MESSAGE',ROUTCDE=11,LINKAGE=BRANCH
 B @FINI
 \
 \ BRANCH HERE WHEN MSGTYPE DOES NOT CONTAIN ZEROS (NO MESSAGE
 \ TO RECEIVE)
 \
 @DONREAD WTO 'MESSAGE CONFIRMATION',ROUTCDE=11,LINKAGE=BRANCH
 \
 \ RELEASE DYNAMIC AREA
 \
@FINI LR R1,R1ð
 L R13,4(,R13)
 SLR R15,R15
 IC R15,@SIZDATD
 SLR Rð,Rð
 ICM Rð,7,@SIZDATD+1
 STORAGE RELEASE,LENGTH=(ð),ADDR=(1),SP=(15)
 LM R14,R12,12(R13)

BR R14 RETURN TO XCF
 DS ðF
 @SETPARM MVC MSGILSTD(ð),MSGILSTS
@PSIZE EQU ((\-MEXIT+99)/1ðð)\5

DC C'PATCH AREA - MEXIT 89.36ð'
 PUSH PRINT
 PRINT ON,GEN,DATA
 @PSPACE DC 25S(\)
 ORG @PSPACE
 DC ((@PSIZE+1)/2)S(\)
 ORG ,
 POP PRINT

2-62 OS/390 V2R8.0 MVS Sysplex Services Guide

 MEXIT CSECT ,
 LTORG
 DS ðD
 @SIZDATD DS ðA
 DC AL1(ð)
 DC AL3(@DYNSIZE)
 Rð EQU ð
 R1 EQU 1
 R2 EQU 2
 R3 EQU 3
 R4 EQU 4
 R5 EQU 5
 R6 EQU 6
 R7 EQU 7
 R8 EQU 8
 R9 EQU 9
 R1ð EQU 1ð
 R11 EQU 11
 R12 EQU 12
 R13 EQU 13
 R14 EQU 14
 R15 EQU 15
 MSGILST1 IXCMSGI MF=(L,MSGILSTS) LIST FORM OF IXCMSGI MACRO
 MSGILNTH DC A(\-MSGILST1)
 @ENDDATA EQU \
@DATA DS ðH
 @DATD DSECT
 DS ðF
 SAVEAREA DS 18F
 RETURN DS 1F RETURN CODE
 REASON DS 1F REASON CODE
 TOKENMSG DS CL4 MESSAGE TOKEN
 MSGILST2 IXCMSGI MF=(L,MSGILSTD) LIST FORM OF IXCMSGI MACRO
 @ENDDATD DS ðX
 @DYNSIZE EQU ((@ENDDATD-@DATD+7)/8)\8
 CHKTYPE DSECT
 MSGTYPE DS X
 RESTCNTL DS XL31
 \\\
 \ \
 \ MAPPING MACROS \
 \ \
 \\\
 IXCYMEPL
 END MEXIT

Coding a Message Notify User Routine
Your message notify user routine provides a mechanism for XCF to notify members
of events related to the use of the XCF signalling service. When you join an XCF
group, you can specify the address of a message notify user routine to be given
control when XCF needs to provide this notification. You can also specify the
address of a message notify user routine when invoking the IXCMSGO service to
send a message or on the IXCMSGC Call Exit service to call a user routine. The
system gives preference to the user routine specified on the invoked IXCMSGO or
IXCMSGC service when a message notify user routine is also specified on
IXCJOIN.

This section presents the following information to help you code a message notify
user routine:

� The environment in which it receives control

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-63

� The information it receives as input
� The actions it might perform
� Programming considerations to bear in mind.

 Environment
The message notify user routine receives control in the following environment:

Minimum authorization: Supervisor state and PSW key 0
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN. The primary address space is equal

to the primary address space of the caller of IXCJOIN, and
can be swappable or non-swappable.

AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held

| Restrictions
| The message notify user routine can be called by an IXCMSGC
| REQUEST=CALLEXIT invocation. However, no FRRs can be established when
| making the CALLEXIT request in task mode.

 Entry Specifications
XCF passes information to the message notify user routine in registers and in a
parameter list.

Registers at Entry

When the message notify user routine receives control, the GPRs contain:

Register Contents
0 Used as a work register by the system.
1 Address of the message notification parameter list (MNPL).
2-12 Used as work registers by the system.
13 Address of a 144-byte work area. The message notify user routine

does not have to save and restore XCF's registers in this work area.
The message notify user routine can use this work area in any way it
chooses.

14 Return address
15 Entry point address of message notify user routine.

When the message notify user routine receives control, the ARs do not contain any
information for use by the message notify user routine.

The message notification parameter list (MNPL), mapped by IXCYMNPL, contains
a header record followed by zero or more data records. Information in the header
record indicates the type of notification data that follows.

The header record contains the following information:

MNPLVERSION The version number of the parameter list.

MNPLTYPE The type of notification that is being presented. Note
that new types of notification might be provided in
future releases. Your message notify user routine

2-64 OS/390 V2R8.0 MVS Sysplex Services Guide

should be written to tolerate any future changes or
additions. In the initial version of the MNPL, the type of
notification is the completion of a message-out request.

MNPLFLAGS Flags to describe characteristics of the notification or its
presentation.

MNPLMEMTOKEN The member token of the member to which this
notification is presented.

MNPLMEMDATA A copy of the contents of the field specified by the
MEMDATA parameter on the IXCJOIN macro when this
member joined the XCF group, or zeros if the
parameter was omitted.

MNPLEXITPARMS User exit parameters. If the member invoked the
IXCMSGC Call Exit service to call the message notify
user routine, this is a copy of the data specified by the
EXITPARMS parameter on the IXCMSGC macro.
Otherwise, it contains zeros.

MNPL#DATARECORDS The number of data records provided.

MNPLDATARECOFFSET Offset from the start of the header record at which the
first data record can be found.

The data record contains the following information:

MNPLRECTYPE The type of data described in this record. In the initial
version of the MNPL, the types of data supported are
MSGOUT data and MEMBER data.

MNPLRECLEN The number of bytes in this data record.

MNPLRECDATA The variable content of the data record. The contents
| are a MSGOUT data record.

For a MSGOUT data record , the record contains the following information:

MNPLMSGOTOKEN Token to identify this message and any associated
responses to XCF services, such as IXCMSGC.

MNPLMSGOUSERDATA User data associated with the message. This is a copy
of the contents of the USERDATA parameter when the
IXCMSGO macro was invoked to send the message or
as modified by the IXCMSGC macro when the message
was saved or completed.

| MNPLMSGOFLAGS Flags to describe characteristics of the message. The
| information includes:

� Whether the sender requested notification of
message completion by an XCF-scheduled
message.

� Whether a broadcast request completed
successfully.

� Whether the message was saved.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-65

� Whether XCF had to access user storage describing
or containing the message even after IXCMSGO
returned to the caller.

MNPLMSGOMLEN Number of bytes of message data for the message-out
request.

MNPLMSGOSOURCE The member token of the sending member.

MNPLMSGOMSGCNTL The message control information from the message-out
request.

MNPLMSGO#TARGETS Number of targets for the message (including skipped
targets).

MNPLMSGOTBLPTR Address of the table containing target/response
information for this message. MNPLMSGOENTTYPE
indicates which type of entries the table contains.

MNPLMSGOENTTYPE Code that identifies which mapping to use for the entries
in the table of target/response data. The entries are
either target only entries or target/response entries. A
target only entry describes the result of a send to one
particular target member. A target/response entry
describes the result of a send to and response from one
member.

MNPLMSGOENTLEN Length in bytes of an individual entry in the table
containing target/response information.

For a MEMBER data record , the record contains the following information:

MNPLMEMBERMNAME The member name.

MNPLMEMBERSYSNAME The member token.

MNPLMEMBERSYSID The name of the system on which the member
resides. The system name is made up of the system
token and the system slot number.

The table of target/response information contains either target only entries or
target/response entries.

A target only entry contains the following information:

MNPLTOTARGET Target member token.

MNPLTOSENDSTATUS Status of the message send request.

MNPLTOSENDRETCODE Return code from the IXCMSGO macro about the
| send message request to this particular target

member.

MNPLTOSENDRSNCODE Failing reason code from the IXCMSGO macro. Only
valid if MNPLTOSENDRETCODE is nonzero.

A target/response entry contains the following information:

MNPLTRTARGET Target member token.

2-66 OS/390 V2R8.0 MVS Sysplex Services Guide

MNPLTRSENDSTATUS Status of the message send request.

MNPLTRSENDRETCODE Return code from the IXCMSGO macro about the send
message request to this particular target member.

MNPLTRSENDRSNCODE Failing reason code from the IXCMSGO macro. Only
valid if MNPLTRSENDRETCODE is nonzero.

MNPLTRRESPSTATUS Status of response message.

MNPLTRRESPCODE Code to explain why XCF believes the response was
not received. Only valid if XCF did not receive a
response.

MNPLTRRESPMLEN Total number of bytes of message data remaining for
delivery with the IXCMSGI macro. The length is
accurate only on entry to the message notify user
routine. It is not updated while the user routine is
running to reflect any partial deliveries performed by
the routine. Only valid if the associated response is still
available, that is, it has been received and has not
been delivered, saved, or discarded.

MNPLTRRESPSRCE Member token of the originator of the response. Only
valid if XCF received a response.

MNPLTRRESPCNTL The contents of the MSGCNTL parameter from the
originator of the response. Only valid when XCF
received a response.

MNPLTRMSGITOKEN Token to identify the response message. Specify this
value for the TOKEN parameter when invoking the
IXCMSGI macro or the IXCMSGC macro to process
this response message. Only valid if the associated
response is available.

MNPLTRRESPONSEID Message response ID. Specify this value for the
RESPONSEID parameter when invoking the
IXCMSGO macro to reply to this response message.
Only valid if the sender requested that XCF manage
the gathering of responses to this message.

See OS/390 MVS Data Areas, Vol 3 (IVT-RCWK) for more information about the
IXCYMNPL mapping macro.

 Return Specifications
On return to XCF, the message notify user routine does not have to set any return
codes or place any information in the GPRs. The message notify user routine
returns control to the system by branching back to the address in GPR 14.

User Routine Processing
The message notify user routine might receive control at the completion of a
message-out request. The information available to the user routine through the
message notification parameter list (MNPL) includes the user data provided on the
IXCMSGO request that sent the original message, information about the send to
each potential target member, and, if relevant, information about the responses to
the message. Note that it is possible for the message notify user routine to receive

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-67

control before the IXCMSGO service that processed the request returns control to
the caller.

The message notify user routine can do one or both of the following:

� Invoke the IXCMSGI service to receive any responses

� Invoke the IXCMSGC Save Message service to save any responses in the
XCF-managed data space.

If a response is neither received nor saved, the system discards the response when
the message notify user routine gives up control.

User Routine Recovery
XCF does not provide any recovery for the message notify user routine. Routines
that require recovery must establish their own. XCF does place sufficient
information into the SDWA to identify the message notify user routine that was in
control. The multi-system application must provide whatever diagnostic data is
required for problem determination for the message notify user routine.

� For a message notify user routine that receives control as a standard
XCF-managed SRB routine, SRB-to-task percolation might occur, just as for a
message user routine.

� For a message notify user routine that receives control as a result of invoking
the IXCMSGC Call Exit service, percolation from any recovery routine
established by the message notify user routine causes XCF's recovery to
percolate to the recovery established by the IXCMSGC invoker.

Note that for notification of message completion, XCF discards all information
related to the message unless the user routine has used the IXCMSGC Save
Message service to save the information.

Requesting XCF Status Monitoring
By identifying a status user routine to XCF, members can request that XCF monitor
their activity. In general, XCF status monitoring works as follows:

� XCF monitors the member's activity by regularly checking a status field that the
member identifies.

� The member also identifies a status-checking interval. When XCF detects that
the member did not update its status field within the status-checking interval,
XCF schedules the member's status user routine.

By scheduling the status user routine, XCF gives the routine the opportunity to:

– Check the member and determine whether the member is operating
normally

– Decide whether to notify other members if the member is not operating
normally.

XCF's actions are limited to checking the status field and scheduling the status user
routine, unless the status user routine requests notification to other members, or
the status user routine does not run.

This section contains information on the following topics related to XCF status
monitoring:

2-68 OS/390 V2R8.0 MVS Sysplex Services Guide

� Using a status user routine
� Updating the status field
� Setting and changing a status-checking interval
� Coding a status user routine.

Using a Status User Routine
This section contains the following information related to using a status user
routine:

� A detailed description of normal status user routine processing, including a
diagram (Figure 2-12 on page 2-72)

� A summary of the important concepts related to normal status user routine
processing

� A discussion of events that can occur other than normal processing.

 Normal Processing
The following is an overview of how the XCF status monitoring service interacts
with the status user routine during normal processing. See Figure 2-12 on
page 2-72 for a summary of the process.

� The member identifies a status user routine, a status field (which must be in
fixed or disabled reference (DREF) common storage), and a status-checking
interval on the IXCJOIN macro (STATEXIT, STATFLD, and INTERVAL
parameters).

� The member is responsible for regularly updating its own status field (see
“Updating the Status Field” on page 2-75 for suggestions on how to do this).

Note: Updating the status field is not mandatory. A member can request
status monitoring and never update its status field. However, this results
in XCF scheduling the status user routine every time the member's
status-checking interval expires, and could consume system resources
unnecessarily.

� XCF starts monitoring the status field. This monitoring might begin before the
IXCJOIN service returns to the caller.

� If the member fails to update the status field within the status-checking interval,
XCF schedules the status user routine as a local SRB to run in the member's
primary address space.

� XCF passes a parameter list (mapped by the IXCYSEPL mapping macro and
pointed to by GPR 1) to the status user routine. The SEPLSTCH field indicates
that XCF is checking for a status update missing (SEPLSTCH=SEUPDMIS,
where SEUPDMIS is a system-defined constant).

Checking for Status Update Missing: The status user routine determines
whether the member is operating normally, and if not, whether it wants XCF to
notify other members, through their group user routines, of a status change. For
XCF to notify the group user routines, the status user routine must set a return
code that matches the value in SEPLSTCH. The status user routine should set the
return codes as follows:

� A return code of SEUPDMIS indicates that the member is not operating
normally. In this case:

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-69

– The return code matches the value in SEPLSTCH, causing XCF to
schedule the group user routines to notify the other members that the
member's status update is missing (event type = GEMSUMSE, where
GEMSUMSE is a system-defined constant). XCF does not issue an event
type of GEMSUMSE to the group user routine of the member whose status
update is missing.

– The status user routine can elect to place user data in GPR 0 to be passed
to the group user routines in the parameter list (GEPLUDAT field mapped
by the IXCYGEPL mapping macro).

– XCF continues to monitor the status field to see if the member resumes
updating, and continues scheduling the status user routine:

- As long as the status user routine runs successfully
- Until the status user routine confirms a status update resumed
- Until the member becomes inactive.

� A return code of SEUPDRES (system-defined constant) indicates that the
member is actually operating normally, even though it might have missed a
status update. In this case:

– The return code does not match the value in SEPLSTCH, so XCF will not
schedule the group user routines. (XCF considers this response to be the
same as a status update, and does not schedule the status user routine
again until another status-checking interval expires with no update to the
status field.)

– The status user routine should not place user data in GPR 0 because XCF
will not be scheduling the group user routines.

– XCF continues to monitor the status field, and continues scheduling the
status user routine:

- As long as the status user routine runs successfully
- Until the status user routine confirms a status update resumed
- Until the member becomes inactive.

� Once the status user routine confirms a status update missing, XCF continues
monitoring the status field and does the following:

– If XCF detects that the status field changed, XCF schedules the status user
routine again. This time, XCF sets the SEPLSTCH field to SEUPDRES to
indicate checking for status update resumed.

– If XCF detects that the status field did not change, XCF waits a period of
time (system-defined, and might be less than the member's status-checking
interval). If the status field still does not change, XCF schedules the status
user routine. Again, XCF sets the SEPLSTCH field to SEUPDRES to
indicate checking for status update resumed.

– Note that in either case , whether XCF detects the status field to be
changed or unchanged, XCF schedules the status user routine to
determine if the member is operating normally.

Checking for Status Update Resumed: Once XCF schedules the status user
routine to check for status update resumed, the routine must again set a return
code to let XCF know whether it wants other members to be notified of a status
change. The status user routine should set the return code as follows:

2-70 OS/390 V2R8.0 MVS Sysplex Services Guide

� A return code of SEUPDRES indicates that the member is operating normally,
even if it did not resume updating its status field. In this case:

– The return code matches the value in SEPLSTCH, causing XCF to
schedule the group user routines to notify the other members that the
member's status update resumed (event type = GEMNOSUM, where
GEMNOSUM is a system-defined constant).

– The status user routine can place user data in GPR 0 to be passed to the
group user routines in the parameter list (GEPLUDAT field mapped by the
IXCYGEPL mapping macro).

– XCF continues to monitor the status field in case the member misses
another update.

� A return code of SEUPDMIS indicates that the member is not operating
normally, even though it might have resumed updating its status field. In this
case:

– The return code does not match the value in SEPLSTCH, so XCF will not
schedule the group user routines.

– The status user routine should not place user data in GPR 0 because XCF
will not be scheduling the group user routines.

– XCF continues to monitor the status field, and continues scheduling the
status user routine:

- As long as the status user routine runs successfully
- Until the status user routine confirms a status update resumed
- Until the member becomes inactive.

Note: XCF reports the status update missing condition to the group user
routines only once per occurrence, rather than continuously
informing the group user routines that the status update is still
missing.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-71

XCF monitors
status field

status field
updated within

interval?

XCF schedules status exit
routine: checking for status
update missing
(SEPLSTCH=SEUPDMIS)

Does status
exit routine agree

that status update is

code=SEUPDRES
(member operating normally)

put user data in GPR 0

Go to

Was

Status exit routine

missing?

Status exit routine cannot

A

Status exit routine sets
return code=SEUPDMIS
(status update missing)

put user data in GPR 0

XCF keeps monitoring
status field

Status exit routine can

that status update is missing
(SEPLSTCH=return code)
(Event type=GEMSUMSE)

YES

NO

A

C

* XCF only notifies the group

YESNO

checks member

* XCF notifies group exits

Status exit routine sets return

XCF does not notify group
exits (status not changed)
(SEPLSTCH=return code)

status-checking

/

exits once that the status
update is missing.

D

Figure 2-12 (Part 1 of 2). XCF Status Monitoring Service Normal Processing

2-72 OS/390 V2R8.0 MVS Sysplex Services Guide

Status exit routine
checks member

Did

status field?

member
resume updating

XCF waits a period of time

Did
member resume
updating status

Status exit routine sets
return code=SEUPDMIS
(status update missing)

XCF does not notify
group exits (status not changed)

Status exit routine can

Go to

Go to

Go to

A

B

NO

NO

B

YES or NO

YES

XCF notifies group exits
that status update resumed
(SEPLSTCH=return code)
(Event type=GEMNOSUM)

Status exit routine sets
return code=SEUPDRES
(member operating normally)

XCF schedules status exit
routine: checking for status
update resumed
(SEPLSTCH=SEUPDRES)

C

YES

Status exit routine cannot
put user data in GPR 0

put user data in GPR 0

Does status
exit routine agree
that status update

resumed?

(SEPLSTCH=return code)/

(system-defined)

field?

D

Figure 2-12 (Part 2 of 2). XCF Status Monitoring Service Normal Processing

Summary of Important Concepts
The preceding section gave an overview of the normal processing that takes place
when a member identifies a status user routine to XCF. The following is a summary
of the most important concepts related to normal status user routine processing:

� XCF schedules the status user routine in two general cases:

– After the member misses an update to its status field (XCF is checking for
status update missing).

– After the member's status user routine confirms a status update missing
(XCF is checking for status update resumed).

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-73

� XCF schedules the group user routines only to notify them of a status
change . A status change is one of the following:

– The member was operating normally (or does not have a status update
missing condition outstanding) and then indicated that it was not operating
normally (status update missing).

– The member had a confirmed or assumed status update missing and then
indicated that it was operating normally (status update resumed).

In both cases:

– The value in SEPLSTCH must match the return code set by the status user
routine.

– XCF does not schedule the group user routine of the affected member.

Note: Many other events cause XCF to schedule group user routines. This
discussion pertains only to events related to status monitoring. See the
section entitled “Events that Cause XCF to Schedule a Group User
Routine” on page 2-86 for a complete discussion.

� Once the status user routine confirms a status update missing, XCF schedules
the status user routine to check for status update resumed. XCF does this
whether or not the member resumes updating the status field, because:

– When XCF detects that the status field changed, the status user routine
can indicate that the member is not operating normally even though the
member updated its status field.

– When XCF detects that the status field did not change, the status user
routine can indicate that the member is operating normally even though the
member still did not update its status field.

� The status user routine does not have to confirm that a member's status update
is missing, even if the member is not operating normally. The status user
routine can elect to post a task to do recovery on behalf of the member and set
a return code to XCF indicating that the member is still operational.

Events Other than Normal Processing
Certain events cause XCF to do the following:

� Assume a status update missing condition for a member, even when one is not
confirmed by the status user routine (event type = GEMSUMDI).

� Stop monitoring a member (event type = GEMONREM).

In both of these cases, XCF notifies the group user routines. In the case where
XCF stops monitoring a member, XCF schedules the group user routine of the
affected member as well as the other members.

Note: To reinstate monitoring after XCF stops monitoring a member, the member
must issue IXCLEAVE or IXCQUIES, and then issue IXCJOIN once again
with the STATEXIT, STATFLD, and INTERVAL parameters.

Figure 2-13 summarizes the events that cause XCF to assume a status update
missing condition for a member, or to stop monitoring the member:

2-74 OS/390 V2R8.0 MVS Sysplex Services Guide

Figure 2-13. Status User Routine Events Other Than Normal Processing

Event

Assume
Status
Update
Missing

Stop
Monitoring

Member

The member's status user routine did not execute
in time (system-defined).

Note: XCF does not schedule the status user
routine if a schedule is already outstanding.
If a status user routine becomes deadlocked
or is in an infinite loop, XCF cannot
schedule it again.

X

The member's status user routine terminated
abnormally for the first time.

X

XCF rescheduled the member's status user routine
and it terminated abnormally for the second time.

X

XCF tried to invoke the member's status user
routine for the first time, but failed (for example, an
error could occur trying to invoke the routine
because of an incorrect address or the routine not
being loaded.)

X

XCF tried to invoke the member's status user
routine a second time, and failed again.

X

The member changed to a quiesced, failed, or
not-defined state.

X

XCF could not access the member's status field. X

Updating the Status Field
The member requesting XCF status monitoring must provide to XCF a way to
identify whether the member is operating normally. The status field serves this
purpose. Whether or not the member chooses to regularly update its status field, a
missing update causes XCF to schedule the member's status user routine. If the
member chooses to regularly update its status field, the member must determine
the method of updating.

Updates to the status field should be done in mainline code that is invoked
whenever work is being done. Examples are:

� Work unit changes (for example, the program updates the field every time it
finishes doing a defined piece of work)

� Inserting messages in a queue

 � Initiating transactions

� Writing to a log

� Accessing a database.

One way to update the status field is to store the clock (STCK instruction), which
provides a unique, ever-increasing value.

If an effective means of updating the status field is not available, but monitoring is
critical, the member can elect not to update the field at all. XCF will keep

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-75

scheduling the status user routine, allowing the routine to check on the member.
However, system performance degradation could occur.

Setting and Changing a Status-Checking Interval
When you identify a status user routine to XCF, you must set a status-checking
interval (INTERVAL parameter on IXCJOIN). If the member will be updating the
status field, you should set the interval such that the member can update its status
field at least once within that interval. The interval is expressed in hundredths of
seconds, but must represent full seconds; that is, the value must be greater than 0
and must be a multiple of 100.

Once the interval is set, an active member can change its own interval by using the
IXCMOD macro. To use IXCMOD, the member must code the TARGET parameter
to provide its own member token, and the INTERVAL parameter to indicate the new
value for the interval. The new value must still be greater than zero and a multiple
of 100.

Examples of when and how you might use the IXCMOD macro to change a
status-checking interval are:

� Synchronizing with the system failure detection interval:

– The operator changes the system failure detection interval through the
SETXCF command. (The system failure detection interval is similar to the
status-checking interval, except at a system level rather than a member
level. See OS/390 MVS Setting Up a Sysplex for further information about
the system failure detection interval.)

– XCF notifies all active members on all systems in the sysplex, through their
group user routines, of the change to the system failure detection interval.

– Active members can then issue IXCMOD to change their interval to be a
multiple or fraction of the system failure detection interval. A member might
do this because the system failure detection interval is an indication of how
frequently the system is updating its own status field. A long interval might
indicate that the system is running slowly, and consequently, the member's
unit of work might also be running slowly.

� Tuning the status-checking interval:

A member might need to tune its status-checking interval based on how
frequently XCF schedules the member's status user routine. If XCF is
scheduling the routine many times, only to find that the member is operating
normally, the member might want to increase the status-checking interval to
lessen system overhead.

Once a member modifies its status-checking interval by invoking IXCMOD, XCF
broadcasts the change to the group user routines of the other active members in
the group. XCF does not schedule the group user routine of the member requesting
the change.

2-76 OS/390 V2R8.0 MVS Sysplex Services Guide

Coding a Status User Routine
When a member wants XCF to monitor its activity, it identifies a status user routine
on the IXCJOIN macro (STATEXIT parameter). The member also identifies a status
field for XCF to monitor (STATFLD parameter, which must be in fixed or disabled
reference (DREF) common storage) and a status-checking interval (INTERVAL
parameter). When the member does not update its status field within the
status-checking interval, or resumes updating after a confirmed failure, XCF
schedules the status user routine. The status user routine determines whether a
problem exists, and takes the appropriate action.

User Routine Environment
The status user receives control in the following environment:

User Routine Recovery: XCF does not provide any recovery for the status user
routine. Routines that require recovery must establish their own. XCF does place
sufficient information into the SDWA to identify the status user routine that was in
control. The multisystem application must provide whatever diagnostic data is
required for problem determination for the status user routine.

XCF will reschedule a status user routine that suffers an error. However, the status
user routine should not rely on this as a means of recovery.

Members that identify a status user routine should allow for SRB-to-task
percolation. (Note: SRB-to-task percolation does not work for address space
associated members. See “Member Association” on page 2-14 for more
information.) If XCF processing fails, and XCF does not retry, XCF abnormally ends
the task that the member is associated with (either the task or the job step task as
specified on IXCJOIN) with a retryable system completion code 00C and reason
code 05070000. However, the task's recovery routine does not have to take any
action, because the status user routine completed its function before giving up
control.

To ensure that the member's recovery can intercept SRB-to-task percolation, the
task that the member is associated with must ensure that its recovery routine
always receives control when a task abnormally ends. To accomplish this, the
associated task should issue the WAIT macro and continue waiting indefinitely
while other tasks perform the member's work.

SRB-to-task percolation does not occur while the task's recovery routine is running.
XCF waits until the task is not in recovery before abnormally ending the task.

Authorization: Supervisor state and PSW key 0
Dispatchable unit mode: SRB
Cross memory mode: PASN = HASN = SASN. The primary address space equals

the primary address space of the caller of IXCJOIN, and
can be swappable or non-swappable.

Amode: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-77

User Routine Processing
XCF invokes a member's status user routine by scheduling a local SRB to the
member's primary address space. You are responsible for writing the status user
routine, which can do the following:

� Determine if the member's initialization is complete. A member might issue
IXCJOIN and its status user routine could get control before IXCJOIN returns to
the caller. To determine if the member's initialization is complete, the status
user routine might examine a bit that the member sets on or off. The member
might want its status user routine to automatically set a return code indicating
that the member is operating normally, until the routine determines that
initialization is complete.

� Determine whether XCF was checking for a status update missing (first call to
the status user routine) or a status update resumed (subsequent call to the
status user routine). The status user routine determines this by checking the
SEPLSTCH field in IXCYSEPL. SEPLSTCH=SEUPDMIS means checking for
status update missing; SEPLSTCH=SEUPDRES means checking for status
update resumed.

� If this is the first call, determine if the member is no longer operating normally
and whether XCF should broadcast a status change to the other members of
the group. If this was not the first call, determine if the member is now
operating normally. The status user routine might do one of the following to
make this determination:

– Access the member data value provided through IXCJOIN (SEPLMDAT in
IXCYSEPL). The member data might contain addresses of control
structures. The status user routine could check the control structures to
determine if they are damaged. The control structures might also contain
an indication of the member state or user state value for the member.

– Examine a work queue to determine if the member missed its status update
because there was no work to do.

� Take an appropriate action, such as:

– Keep a count of how many times XCF invokes the status user routine
within a particular time interval (for example, within one hour). From this,
determine whether the member's status-checking interval should be
modified.

– If the status user routine determines that the member is not operating
normally, it can post a task to do recovery for the member.

– If the status user routine determines that the member is not operating
normally, it can issue the SYMREC macro to create a symptom record with
diagnostic data.

– If recovery is not possible, the status user routine might insure that the
member is stopped in the event other members are resuming the member's
work.

– Issue IXCMSGO to provide another member with recovery data.

� Set the appropriate return code. The following summarizes what effect each
return code has:

– A return code of SEUPDRES indicates that the member is operating
normally.

2-78 OS/390 V2R8.0 MVS Sysplex Services Guide

– A return code of SEUPDMIS indicates that the member missed its status
update.

– A return code that matches the value in SEPLSTCH causes XCF to
schedule the group user routines and notify them of a status change for
that member (either a status update missing or a status update resumed).

See “Using a Status User Routine” on page 2-69 and Figure 2-12 on page 2-72
for a complete explanation of how XCF interacts with the status user routine.

 Programming Considerations
Consider the following when writing your status user routine:

� To cause XCF to schedule the group user routines of the other active
members, the status user routine must set a return code equal to the value in
SEPLSTCH.

� Because the status user routine runs in SRB mode, it cannot issue any SVCs.
You might want to queue work to one or more tasks for processing and post
the tasks when needed.

� The member can pass data to its status user routine in the member data field
(MEMDATA parameter on IXCJOIN). This data might be a pointer to some type
of communication area, such as a control structure or an ECB. XCF passes
member data to the status user routine as part of the parameter list
(SEPLMDAT field).

� When XCF is checking for status update missing, XCF will infer the status
update missing condition if the status user routine does not complete in time.
For example, if the status user routine tries to do recovery for the member, the
routine might take too long trying to repair control structures or take a dump.
For this reason, you should limit processing in the status user routine. (When
XCF is checking for status update resumed, XCF does not make this
assumption, so the status user routine can take longer.)

Restrictions: The status user routine cannot issue any macros that issue an SVC
or that require the caller to be in task mode.

Timing: You should be aware of the following possible events related to timing:

� XCF does not guarantee that it will notify other members of the status update
missing condition within a specific time period. The time elapsed depends on
the dispatching priority of the address space in which each group user routine
is to run.

� XCF maintains information about the member's status changes (status update
missing or resumed) and this information is available to other members through
IXCQUERY. XCF does not synchronize updates through IXCQUERY with
scheduling of the group user routines. However, XCF does provide a timestamp
with the information obtained through IXCQUERY.

� The status user routine might receive control after the member issues an
IXCLEAVE or IXCQUIES macro, but before the leave or quiesce service
completes processing and returns to the caller. In this case, XCF discards any
group user routine invocations.

� A member that was reported as having its status update missing might resume
execution and begin sending signals to the other active members before the
other members receive notification of the status update resumed.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-79

 Entry Specifications
XCF passes information to the status user routine in a parameter list and in
registers.

Registers at Entry: On entry to the status user routine, the registers contain the
following information:

Parameter List Contents: The parameter list that XCF passes to the status user
routine is mapped by the IXCYSEPL mapping macro and pointed to by GPR 1. The
parameter list is addressable from the primary address space in which the status
user routine runs, and includes the following information:

� Member data value provided by the IXCJOIN macro (MEMDATA parameter).

� Address of the member's status field.

� Whether XCF was checking for status update missing or status update
resumed.

� The member's token.

See SEPL in OS/390 MVS Data Areas, Vol 4 (RD-SRRA) for complete field names
and lengths, offsets, and descriptions of the fields mapped by the IXCYSEPL
mapping macro.

Register Contents

GPR 0 Used as a work register by the system

GPR 1 Address of the status user routine parameter list (SEPL)
mapped by the IXCYSEPL macro.

GPRs 2 - 12 Used as work registers by the system.

GPR 13 Address of a 72-byte work area for use by the status user
routine. The user routine does not have to save and restore
XCF's registers in this work area. The user routine can use this
work area in any way it chooses.

GPR 14 Return address (the status user routine must return control to
XCF through a BR 14 or a BSM 0,14.)

GPR 15 Entry point address of the status user routine.

ARs 0 - 15 Used as work registers by the system.

 Return Specifications
On return to XCF, the status user routine sets return codes and puts information in
registers.

Registers on Exit

2-80 OS/390 V2R8.0 MVS Sysplex Services Guide

 Return Codes

Register Contents

GPR 0 Can contain application-specified data to be provided to the
group user routines if the return code in GPR 15 matches the
value in SEPLSTCH. Otherwise, no requirement. See the
description of the GEPLUDAT field in the GEPL for information
about how register 0 is used to pass application-specified data.

GPR 1 - 13 No requirement.

GPR 14 Unchanged.

GPR 15 Return code.

ARs 0 - 15 No requirement.

Hexadecimal Return
Code Meaning

0 (SEUPDRES) The member is operating normally.

8 (SEUPDMIS) The member's status update is missing.

 Coded Example
For this example, assume that the member updates its status field each time it
completes an item of work on its work queue. The status user routine uses the
work queue to determine if the member is operating normally. An empty queue
means that the member missed its status update because it had no further work to
do.

The status user routine first determines if XCF is checking for status updating
missing or status update resumed.

Checking for status update missing: If XCF is checking for status update
missing, the routine checks the member's work queue:

� If the work queue is empty, the routine sets a return code of SEUPDRES to
indicate the member is operating normally.

� If the work queue is not empty, the routine sets a return code of SEUPDMIS,
and places user data (UDATACD) in register 0 to be passed to the group user
routines of the other active members of the group.

Checking for status update resumed: If XCF is checking for status update
resumed, the routine checks a bit that the member turns on when it resumes
updating its status field:

� If the bit is on, the status user routine sets a return code of SEUPDRES and
issues the WTO macro to alert the operator that the member's status update
has resumed.

� If the bit is off, the routine sets a return code of SEUPDMIS to alert XCF that
the member still has not resumed updating its status field.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-81

 \\\
 \ \
 \ STATUS USER ROUTINE \
 \ \
 \\\
 SEXIT3 CSECT
 SEXIT3 AMODE 31
 SEXIT3 RMODE ANY
 @MAINENT DS ðH
 USING \,R15
 B @PROLOG
 DC AL1(16)

DC C'SE 9ððð6 SEXIT'
 DROP R15
 \\\
 \ \
 \ ENTRY LINKAGE \
 \ \
 \\\
 @PROLOG STM R14,R12,12(R13)
 LR R12,R15
 @PSTART EQU SEXIT3
 \
 \ SET UP BASE REGISTER TO 12
 \
 USING @PSTART,R12
 SLR R15,R15
 IC R15,@SIZDATD
 SLR Rð,Rð
 ICM Rð,7,@SIZDATD+1
 STORAGE OBTAIN,LENGTH=(ð),SP=(15)
 LR R1ð,R1
 USING @DATD,R1ð
 ST R13,4(,R1ð)
 ST R1ð,8(,R13)
 LM R15,R1,16(R13)
 LR R13,R1ð
 \\\
 \ \
 \ STATUS USER CODE \
 \ \
 \\\
 \
 \ GET ADDRESSABILITY TO THE PARAMETER LIST
 \
 USING SEPL,R1
 \
 \ IS XCF CHECKING FOR STATUS UPDATE MISSING? IF SO, BRANCH
 \
 CLI SEPLSTCH,SEUPDMIS
 BZ @MISSING
 \
 \ XCF IS CHECKING FOR STATUS UPDATE RESUMED
 \ GET ADDRESSABILITY TO THE MEMBER DATA, WHICH CONTAINS
 \ THE ADDRESS OF MDATASTR. MDATASTR CONTAINS THE BYTE
 \ (RESUMEB) THAT THE MEMBER TURNS ON IF IT RESUMED
 \ UPDATING ITS STATUS FIELD.
 \
 @FOUND L R2,SEPLMDAT
 USING MDATASTR,R2

CLI RESUMEB,X'ð1' IS THE RESUME VALID?
BNZ @NOGOOD IF NOT, BRANCH

 \
 \ LOAD INDICATOR FOR STATUS UPDATE RESUMED INTO REGISTER 7. THIS

2-82 OS/390 V2R8.0 MVS Sysplex Services Guide

 \ WILL BE TRANSFERRED TO REGISTER 15 DURING EXIT LINKAGE.
 \ THEN CLEAR REGISTER 8 TO INDICATE NO USER DATA BEING PASSED.
 \ REGISTER 8 GETS TRANSFERRED TO REGISTER ð DURING EXIT LINKAGE.
 \

LA R7,SEUPDRES IF VALID, SET RETURN CODES
 SR R8,R8

WTO 'STATUS UPDATE HAS BEEN RESUMED',ROUTCDE=11, X
 LINKAGE=BRANCH,MF=(E,WTOLST1)
 B @OVER
 \
 \ STATUS UPDATE IS MISSING SO CHECK QUEUE. TO DO SO,
 \ GET ADDRESSABILITY TO THE MEMBER DATA, WHICH CONTAINS
 \ THE ADDRESS OF MDATASTR. MDATASTR CONTAINS THE WORK QUEUE
 \ ADDRESS (WRKQADDR) AND THE ADDRESS OF THE NEXT ITEM OF
 \ WORK (NXTWRKAD).
 \
 @MISSING L R2,SEPLMDAT
 \
 \ IF WORK ADDRESS IS ZERO, THE QUEUE IS EMPTY.
 \

CLC WRKQADDR(4),ZERO IS THE QUEUE EMPTY?
BE @NOWORK IF YES, BRANCH

 \
 \ LOAD INDICATOR FOR STATUS UPDATE MISSING INTO REGISTER 7
 \
 LA R7,SEUPDMIS
 \
 \ LOAD USER DATA INTO REGISTER 8
 \
 L R8,UDATACD
 DROP R2
 B @OVER
 \
 \ BRANCH HERE WHEN THE QUEUE IS EMPTY
 \
 \
 \ LOAD INDICATOR FOR STATUS UPDATE RESUMED INTO REGISTER 7
 \
 @NOWORK LA R7,SEUPDRES SET RETURN CODE
 B @OVER
 \
 \ BRANCH HERE WHEN STATUS UPDATE DID NOT RESUME
 \
 \
 \ LOAD INDICATOR FOR STATUS UPDATE MISSING INTO REGISTER 7
 \
 @NOGOOD LA R7,SEUPDMIS SET RETURN CODE
 \
 \ RELEASE DYNAMIC AREA
 \
@OVER LR R1,R1ð
 L R13,4(,R13)
 SLR R15,R15
 IC R15,@SIZDATD
 SLR Rð,Rð
 ICM Rð,7,@SIZDATD+1
 STORAGE RELEASE,LENGTH=(ð),ADDR=(1),SP=(15)
 \\\
 \ \
 \ EXIT LINKAGE \
 \ \
 \\\
 \
 \ LOAD REGISTER 15 WITH THE RETURN CODE AND REGISTER ð WITH

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-83

 \ THE USER DATA TO BE PASSED TO THE GROUP USER ROUTINES
 \
 LR R15,R7
 LR Rð,R8
 L R14,12(R13)
 LM R1,R12,24(R13)
 BR R14
 DS ðH
 DS ðH
@PSIZE EQU ((\-SEXIT3+99)/1ðð)\5

DC C'PATCH AREA - SEXIT3 9ð.ðð6'
 PUSH PRINT
 PRINT ON,GEN,DATA
 @PSPACE DC 25S(\)
 ORG @PSPACE
 DC ((@PSIZE+1)/2)S(\)
 ORG ,
 POP PRINT
@DATA DS ðH
 @DATD DSECT
 DS ðF
 SAVEAREA DS 18F
 @ENDDATD DS ðX
 @DYNSIZE EQU ((@ENDDATD-@DATD+7)/8)\8
 SEXIT3 CSECT ,
 LTORG
 DS ðD
 UDATACD DC F'16'
 ZERO DC F'ð'
 WTOLST1 WTO 'STATUS UPDATE HAS BEEN RESUMED',ROUTCDE=11,MF=L
 WTOLNTH DC A(\-WTOLST1)
 @SIZDATD DS ðA
 DC AL1(ð)
 DC AL3(@DYNSIZE)
 Rð EQU ð
 R1 EQU 1
 R2 EQU 2
 R3 EQU 3
 R4 EQU 4
 R5 EQU 5
 R6 EQU 6
 R7 EQU 7
 R8 EQU 8
 R9 EQU 9
 R1ð EQU 1ð
 R11 EQU 11
 R12 EQU 12
 R13 EQU 13
 R14 EQU 14
 R15 EQU 15
 @ENDDATA EQU \
 \\\
 \ \
 \ MAPPING OF THE DATA STRUCTURE (MDATASTR) POINTED TO BY \
 \ MEMDATA (SEPLMDAT FIELD IN PARAMETER LIST) \
 \ \
 \ THIS SAME DATA STRUCTURE IS USED BY THE GROUP USER \
\ ROUTINE. SOME FIELDS ARE NOT USED BY THE STATUS USER \
 \ ROUTINE, BUT ARE USED ONLY BY THE GROUP USER ROUTINE. \
 \ \
 \ TBLADDR ADDRESS OF TABLE MAINTAINED BY \
 \ GROUP USER ROUTINE \
 \ NEXTITEM ADDRESS OF NEXT AVAILABLE SLOT IN \
 \ TABLE \

2-84 OS/390 V2R8.0 MVS Sysplex Services Guide

 \ WRKQADDR ADDRESS OF MEMBER'S WORK QUEUE \
 \ NXTWRKAD ADDRESS OF NEXT AVAILABLE SLOT IN \
 \ MEMBER'S WORK QUEUE \
 \ TASKECB ADDRESS OF THE ATTACHED TASK'S ECB \
 \ (THIS TASK IS ATTACHED BY THE MAIN \
 \ ROUTINE. THIS FIELD IS USED BY \
 \ THE GROUP USER ROUTINE.) \
 \ MAINECB ADDRESS OF ECB USED FOR SYNCHRONIZING \
 \ (THE MAIN ROUTINE WAITS ON THIS ECB, \
 \ WHICH THE ATTACHED TASK POSTS WHEN \
 \ IT COMPLETES ITS WORK.) \
 \ FUNCTON GROUP USER ROUTINE TURNS THIS SWITCH ON \
 \ WHEN CALLED FOR THE FIRST TIME FOR A \
 \ STATUS UPDATE MISSING. \
 \ RESUMEB MAIN ROUTINE TURNS THIS SWITCH ON \
 \ WHEN IT RESUMES UPDATING ITS STATUS \
 \ FIELD. \
 \ \
 \\\
 MDATASTR DSECT
 TBLADDR DS 1F
 NEXTITEM DS 1F
 WRKQADDR DS 1F
 NXTWRKAD DS 1F
 TASKECB DS 1F
 MAINECB DS 1F
 FUNCTON DS X
 RESUMEB DS X
 \\\
 \ \
 \ MAPPING MACROS \
 \ \
 \\\
 IXCYSEPL
 END SEXIT3

Notifying Members of Changes
A member requests XCF to notify it of changes to other members in the group or to
systems in the sysplex by identifying a group user routine to XCF on the IXCJOIN
macro. A member or a multisystem application can also request information about
changes to systems in the sysplex by identifying an ENF event code routine. ENF
code 35 provides function codes to notify listeners when a system has joined a
sysplex or has been removed from a sysplex.

This section contains information on the following topics related to the group user
routine:

� How XCF works together with the group user routine
� Events that cause XCF to schedule a group user routine
� How to code a group user routine.

For information about using an ENF event code routine, see “Using ENF Event
Code 35” on page 5-48.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-85

How XCF Works Together with the Group User Routine
XCF works together with the group user routine in the following manner:

� XCF schedules the group user routines of active members of the group when
specific events occur (such as a member changing state or a missing status
update). For an event that affects multiple members, XCF provides a separate
notification regarding each affected member.

� XCF passes information to the group user routine through a parameter list
(mapped by the IXCYGEPL mapping macro and pointed to by GPR 1).

� The group user routine takes action based on the information in the parameter
list.

Events that Cause XCF to Schedule a Group User Routine
The events that cause XCF to schedule an active member's group user routine fall
into these categories:

� Events about which the member expects to be notified and must act upon.
Examples of such events are:

– If a member joins the group, XCF notifies the group user routines of the
other active members in the group. If a notified member is keeping a table
of all the members in the group, the notified member would update its
table. Also, the notified members might need to include the new member
in any group dialogue.

– If the operator changes the system failure detection interval, a member that
wants its status-checking interval synchronized with the system failure
detection interval would issue IXCMOD to modify its interval.

Note: The group user routine itself cannot issue IXCMOD, but can post a
task to do so.

� Events about which the member expects to be notified, but is not concerned.
For example:

– If the operator changes the system failure detection interval, XCF notifies
the group user routines of all active members on all systems in the sysplex.
If the member is not concerned about keeping its status-checking interval
synchronized with the system failure detection interval, the member might
ignore this notification.

� Events about which the member does not expect to be notified. Examples of
such events are:

– If no members in the group are using the user state field, the member
would not expect notification of a user state value change.

– If no members in the group are using the XCF status monitoring service,
the member would not expect notification of member status changes. (The
member would, however, expect to receive notification of system status
changes.)

� Events from which the member must infer that other events have occurred.
XCF insures that members are notified of only the most current events by
skipping the notification of events that have been superseded by later events.
To fully understand this concept, consider these examples:

2-86 OS/390 V2R8.0 MVS Sysplex Services Guide

– If a member issued three changes to its user state value in a short time, it
is possible that XCF will notify the group user routines of only the latest
change. This is because XCF might not have had the chance to deliver the
first two notifications before the third change occurred. The group user
routines might then need to infer that the other two changes occurred,
depending on how the user state field is being used.

– If a member changes to an active state from some other state, XCF might
not be able to notify the group user routines of the member state change
before some other event (such as a user state change) occurs indicating
the member is active. In that case, XCF does not issue the member state
change notification, and the group user routines have to infer that it
occurred.

See “Skipping of Events” on page 2-91 for more information, including:

– A table (Figure 2-15 on page 2-91) you can use to determine, based on
the event type presented to the group user routine, what events XCF might
have skipped.

– A discussion of how the skipping of events relates to designing the user
state field.

� Unknown events, which the member can ignore. By ignoring unknown events,
rather than allowing them to abnormally terminate your program, you make your
program independent of future MVS releases that might introduce additional
event codes.

Thinking of the events in terms of the categories just described will help you design
and code the group user routine. See “Coding a Group User Routine” on
page 2-95 for further details.

Figure 2-14 summarizes the events (GEPLTYPE field in the parameter list) that
cause XCF to schedule the group user routines of active members, along with the
corresponding event type (IXCYGEPL constant), and which group user routines are
scheduled. The Member- or System-Related column indicates whether the
notification is about a member or a system. In some cases, an event occurs that
affects the system a member is running on, consequently affecting the member.
The notification actually pertains to the member affected by the system event (see
GESYSSUM, GESYSSUR, GESYSDM, and GESYSGO). Following this figure is a
detailed description of each event type.

Figure 2-14 (Page 1 of 2). Events that Cause XCF to Schedule a Group User Routine

Event
Event Type
(IXCYGEPL Constant)

Member- or
System-Related

XCF schedules the group
user routines for the
following members:

Member state
changed

GEMSTATE Member Other active members of the
group.

User state value
changed

GEUSTATE Member All active members of the
group, including the affected
member.

Member status
update missing

GEMSUMSE Member Other active members of the
group.

GEMSUMDI

Member status
update resumed

GEMNOSUM Member Other active members of the
group.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-87

Figure 2-14 (Page 2 of 2). Events that Cause XCF to Schedule a Group User Routine

Event
Event Type
(IXCYGEPL Constant)

Member- or
System-Related

XCF schedules the group
user routines for the
following members:

System reported
active

GESYSACT System All active members of all
groups in the sysplex.

System status
update missing

GESYSSUM Member Other active members of the
group on other systems.

System status
update resumed

GESYSSUR Member Other active members of the
group on other systems.

System reported
going

GESYSGO Member Other active members of the
group on other systems.

System reported
gone

GESYSGON System All active members in the
sysplex, regardless of whether
they have group members on
the removed system.(1)

System detected
missing

GESYSDM Member The active member whose
system stopped and then
resumed; XCF might have
issued a GESYSSUM and
GESYSSUR.

System detected
gone

GESYSDG System All active members in the
sysplex, regardless of whether
they have group members on
the removed system.(1)

System failure
detection interval
changed

GESYSFDI System All active members of all
groups on all systems in the
sysplex.

Member
status-checking
interval changed

GESUBFDI Member Other active members of the
group.

System being
removed from the
sysplex

GESYSPRT System All active members on the
system that is about to be
removed from the sysplex.

Member status
monitoring
removed

GEMONREM Member All active members of the
group, including the affected
member.

Note:

1. Those members that have group members on the removed system also receive notification of member state
changes for the affected members (from active to not-defined, failed, or quiesced).

The following is an explanation of each event type that causes XCF to schedule the
group user routines of active members:

GEMSTATE
Any member state change, other than a change from quiesced or failed to
not-defined, could have occurred through IXCCREAT, IXCJOIN, IXCQUIES,
IXCLEAVE, or IXCDELET.

For members that terminate without issuing IXCQUIES or IXCLEAVE to
explicitly disassociate from XCF, the following could have occurred:

2-88 OS/390 V2R8.0 MVS Sysplex Services Guide

� An active member with permanent status recording became failed.
� An active member without permanent status recording became not-defined.

Note: The member's termination could be either normal or abnormal. If
abnormal, the member's termination could have been caused by task,
address space, or system failure.

GEUSTATE
A member's user state value changed through the IXCSETUS macro. The
member could have changed its own user state value, or it could have been
changed by another member.

GEMSUMSE
A member's status user routine reported that the member's status update was
missing.

GEMSUMDI
The XCF status monitoring service assumed a status update missing for the
member. Either of the following could have occurred:

� The status user routine did not execute in time.
� The status user routine terminated abnormally.

GEMNOSUM
A member's status user routine reported that the member's status update
resumed after a confirmed or assumed status update missing.

GESYSACT
A system joined the sysplex.

GESYSSUM
A member's system missed updating its system status field, causing XCF to
consider the member as missing. XCF reports the GESYSSUM event type
when a system does not update its status field within:

� The member's status-checking interval (INTERVAL parameter defined on
IXCJOIN or modified on IXCMOD), if the member requested XCF status
monitoring service

� The system failure detection interval, if the member did not request the
XCF status monitoring service.

XCF on each system in the sysplex monitors every other system in the sysplex.
However, this monitoring is not synchronized between systems, so every
system in the sysplex might not be simultaneously aware when a particular
system misses a status update. Also, a problem on one system in the sysplex
might prevent that system from detecting a missing status update on another
system. The following example illustrates which group user routines XCF
notifies for a system status update missing (GESYSSUM) and a system status
update resumed (GESYSSUR):

� System 1, system 2, system 3, and system 4 all reside in the same
sysplex.

� System 1 misses a status update.

� System 2 detects that system 1 missed its status update, causing XCF on
system 2 to consider the members on system 1 as missing. XCF on system

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-89

2 issues the GESYSSUM event to the group user routines of the active
members on system 2.

� Then system 1 resumes updating its status field.

� System 2 detects that system 1 resumed updating its status field, causing
XCF on system 2 to consider the members on system 1 as no longer
missing. XCF on system 2 issues the GESYSSUR event to the group user
routines of the active members on system 2.

� System 1 resumed updating its status field before system 3 detected that
the update was missing. To system 3, it appears as though system 1 never
missed its status update. XCF on system 3 does not issue the GESYSSUM
or GESYSSUR events to the group user routines of the active members on
system 3.

� System 4 is spinning to obtain a lock, and so does not detect that system 1
missed its status update and later on resumed. XCF on system 4 does not
issue the GESYSSUM or GESYSSUR events to the group user routines of
the active members on system 4.

GESYSSUR
A member's system resumed updating its status field following a system status
update missing condition, causing XCF to consider the member no longer
missing. See GESYSSUM for an explanation of the circumstances under which
XCF issues a system status update missing condition, and for an explanation of
which group user routines XCF notifies for the GESYSSUM and GESYSSUR
events.

GESYSGO
A member on another system is about to be terminated because its system is
about to be removed from the sysplex. Other members can begin recovery for
the member. (The member may still have access to multisystem resources.)
XCF will also issue a member state change relative to the member's final state
(a change from active to not-defined, failed, or quiesced).

GESYSGON
A system was removed from the sysplex and XCF already issued an event type
of GESYSGO.

If the SYSCLEANUPMEM parameter was coded on the IXCJOIN macro, then
the IXCSYSCL macro must be issued by this routine when cleanup for the
removed system has completed or if no cleanup is required.

GESYSDM
A member's system stopped updating its status field and then resumed. XCF
issues the GESYSDM event type to notify the resuming member's group
user routine that other members might have taken some action on the
member's behalf while it was stopped.

GESYSDG
A system was removed from the sysplex before XCF could issue an event type
of GESYSGO.

If the SYSCLEANUPMEM parameter was coded on the IXCJOIN macro, then
the IXCSYSCL macro must be issued by this routine when cleanup for the
removed system has completed or if no cleanup is required.

2-90 OS/390 V2R8.0 MVS Sysplex Services Guide

GESYSFDI
The system failure detection interval changed.

GESUBFDI
A member issued the IXCMOD macro to change its status-checking interval
(INTERVAL parameter on IXCJOIN).

GESYSPRT
A member's system is about to be removed from the sysplex. Members
receiving this notification should clean up any resources they are using, and
issue IXCLEAVE or IXCQUIES as soon as possible.

GEMONREM
XCF stopped monitoring a member for one of the following reasons:

� XCF could not access the member's status field.

� The member's status user routine terminated abnormally two consecutive
times.

� XCF tried to issue the member's status user routine two consecutive times
and failed.

Note: When XCF stops monitoring a member, this does not cause the
member to change states. To reinstate monitoring after XCF stops
monitoring a member, the member must issue IXCLEAVE or
IXCQUIES, and then issue IXCJOIN once again with the STATEXIT,
STATFLD, and INTERVAL parameters.

Skipping of Events
It is possible for XCF to skip notification of certain events when they are
superseded by later events. This allows XCF to present only the latest information
to the group user routines. For example, a member might join a group and then
change its user state value (through IXCSETUS) within a very short time. XCF
might not be able to notify the group user routines of the member state change
before the user state change occurs. In that case, XCF skips the member state
change notification and presents the user state change notification. The group user
routine can then infer, if it needs to, that the member state change occurred. (Only
active members can issue IXCSETUS to change their user state field, so the group
user routine can infer that the member became active.)

This section includes the following information related to skipping of events:

� What events XCF might skip
� How to determine when events are skipped
� How the skipping of events relates to designing a user state field.

Events That XCF Might Skip
Figure 2-15 lists the events that XCF might present to a group user routine and the
corresponding events that XCF might have skipped. Events are listed by their
IXCYGEPL constant and decimal equivalent. You can use this table to help you
design your group user routine. One technique for using this table is to ignore those
columns that pertain to events your routine does not expect to receive, or expects
to receive but is not concerned about. Most group user routines will need to provide
code for only a small subset of this table.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-91

Figure 2-15. Skipping of Events Presented to Group User Routines

Event
Presented

Events XCF Might Have Skipped

1 2 7 8 9 11 12 13 14 15 16 17 18 21 22 23

GEMSTATE
(1)

X X X X X X X

GEUSTATE
(2)

X X X X X X X

GEMSUMSE
(7)

X X X X X X X

GEMSUMDI
(8)

X X X X X X X

GEMNOSUM
(9)

X X X X X X X

GESYSACT
(11)

GESYSSUM
(12)

X X X X X X X X

GESYSSUR
(13)

X X X X X X X X

GESYSGO
(14)

X X X X X X X X

GESYSGON
(15)

GESYSDM
(16)

X*

GESYSDG
(17)

GESYSFDI
(18)

GESUBFDI
(21)

X X X X X X X

GESYSPRT
(22)

GEMONREM
(23)

X X X X X X X

* When XCF presents the GESYSDM event to a member's group user routine, XCF might have skipped the
GEUSTATE event only if it was a notification of a change in the member's own user state. XCF will not skip
GEUSTATE events about other members of the group due to the GESYSDM.

Notes:

1. Event types 3, 4, 5, 6, 10, 19 and 20 are not used.

2. XCF skips events on a member basis. For example, XCF does not skip notification about an event that
happened to member A based on an event that happened to member B.

2-92 OS/390 V2R8.0 MVS Sysplex Services Guide

Determining When Events Are Skipped
The following explains how a group user routine can determine if XCF skipped
notification of the indicated event:

GEMSTATE (member state change)
Compare the current value of GEPLOLDS with the previous value. To do this
comparison, the routine had to save the value of GEPLOLDS on a previous
invocation. For example, if the last invocation of the group user routine
indicated a GEPLOLDS of created, and now its value is quiesced, then XCF
must have skipped a GEMSTATE with a GEPLOLDS of active. See “The Five
Member States” on page 2-7, which illustrates the transition of XCF members
from one state to another, for help in determining if a state was skipped.

The routine might not be able to determine if XCF skipped some member state
transitions. For example, if this is the first invocation of the group user routine
and the current value of GEPLOLDS is active, the routine might not be able to
determine which GEMSTATE events were skipped. A member can become
active from a not-defined, created, quiesced, or failed state. The routine can
look at the GEPLHSTY for additional information. (See “Parameter List
Contents” on page 2-99.)

GEUSTATE (user state value change)
Compare the currently presented user state value with the previously presented
user state value. However, a difference in the user state values does not
necessarily indicate a skipped GEUSTATE event. Another service (such as the
IXCQUIES macro), rather than the IXCSETUS macro, might have changed the
user state.

The routine might detect a difference in the user state values, and
subsequently receive the GEUSTATE notification. For example, a member
might change its status-checking interval, and then change its user state value
before XCF delivers the notification of the changed interval. When XCF
presents the changed interval, the parameter list passed to the group user
routine contains the new user state value. So the group user routine could
detect the new user state value before XCF presents the GEUSTATE event.

GEMSUMSE (member status update reported missing)
Check the GEPLMISR bit in the parameter list. The GEPLMISR bit is on when
a member's status user routine confirms that the member's status update is
missing. The GEPLMISR bit is off when a member's status update was never
reported missing, or after a member's status user routine confirms that the
member's status update resumed. This bit indicates the current monitored state
and does not necessarily indicate that the event was skipped.

If XCF presents a GEMNOSUM event without having first presented a
GEMSUMSE, the routine can assume that XCF skipped the GEMSUMSE.

The routine might not be able to determine that XCF skipped a GEMSUMSE
event, because XCF might skip both the GEMSUMSE and GEMNOSUM
events.

GEMSUMDI (member status update assumed missing)
Check the GEPLMISD bit in the parameter list. The GEPLMISD bit is on when
XCF assumes that a member's status update is missing. The GEPLMISD bit is
off if the member's status update was never assumed missing, or after the
member's status user routine confirms that the member's status update

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-93

resumed. This bit indicates the current monitored state and does not
necessarily indicate that the event was skipped.

If XCF presents a GEMNOSUM event without having first presented a
GEMSUMDI, the routine can assume that XCF skipped the GEMSUMDI.

The routine might not be able to determine that XCF skipped GNAMMSUMDI
event, because XCF might skip both the GEMSUMDI and GEMNOSUM events.

GEMNOSUM (member status update resumed)
Check whether XCF failed to present a GEMNOSUM event after it presented a
GEMSUMDI or GEMSUMSE event and one of the following is true:

� A GEMSUMSE event occurred and the GEPLMISR bit in the parameter list
is off. The GEPLMISR bit is off if the member's status update was never
reported missing, or after a member's status user routine confirms that the
member's status update resumed.

� A GEMSUMDI event occurred and the GEPLMISD bit in the parameter list
is off. The GEPLMISD bit is off if the member's status update was never
assumed missing, or after the member's status user routine confirms that
the member's status update resumed.

The GEPLMISR and GEPLMISD bits indicate the current monitored state. They
do not by themselves indicate that an event was skipped.

The routine might not be able to determine that XCF skipped a GEMNOSUM
event, because XCF might skip both the GEMSUMSE (or GEMSUMDI) and
GEMNOSUM events.

GESYSACT (system reported active)
GESYSACT events are not skipped.

GESYSSUM (system status update missing)
If XCF presents a GESYSSUR event without having presented a GESYSSUM,
assume XCF skipped the GESYSSUM.

GESYSSUR (system status update resumed)
If XCF presents two GESYSSUM events without an intervening GESYSSUR,
assume the GESYSSUR event was skipped.

GESYSGO (system reported going)
GESYSGON (system reported gone)
GESYSDM (system detected missing)
GESYSDG (system detected gone)

XCF does not skip these events.

GESYSFDI (system failure detection interval changed)
XCF does not skip GESYSFDI events. However, XCF always presents the
most current value of the system failure detection interval. Thus, two or more
GESYSFDI events might present the same system failure detection interval
even though the interval was changed two or more times. This situation is
similar to that described under GEUSTATE.

GESUBFDI (member status-checking interval changed)
Compare the current value of GEPLINTV to the previously received value for
which the member was active. However, the routine might detect that these two
values are different, and subsequently be presented with the GESUBFDI event.
This situation is similar to that described under GEUSTATE.

2-94 OS/390 V2R8.0 MVS Sysplex Services Guide

GESYSPRT (system being removed from the sysplex)
XCF does not skip GESYSPRT events.

GEMONREM (member status monitoring removed)
Check the GEPLMONR bit in the parameter list. The GEPLMONR bit is on if
XCF removed monitoring for the member. However, this bit indicates that the
event occurred and does not necessarily indicate that the event was skipped.

User State Field Design Considerations
The fact that XCF skips certain events is an important consideration in designing
the user state field. In general, members should not use the user state field to
communicate critical information to other members of the group, because the
possibility exists that XCF might not present every user state change.

To communicate critical information to other members of the group, a member
should use the XCF signalling service. XCF will either deliver messages, or provide
notification that the target member or the target member's system failed. However,
XCF might not deliver messages in the sequence in which they were sent. If the
sequence of the messages is important, members can save the timestamp, or a
sequence number, associated with each message.

The following examples illustrate how the skipping of events relates to the user
state field:

� If you use the user state field to contain a data set name, and the current data
set name is all your program needs, it is of no consequence if a user state
change is skipped.

� If you use the user state field to record events with corresponding data, and
your program needs only the latest event, the skipping of events does not
cause a problem. If your program is tracking every event in a table, then the
skipping of events will result in an incomplete table.

Coding a Group User Routine
When a member wants to be notified of changes to other members in the group, or
of changes to systems in the sysplex, the member identifies a group user routine
on the IXCJOIN macro (GRPEXIT parameter). When an event occurs that causes
XCF to schedule a group user routine, the routine should take the appropriate
action based on the event.

User Routine Environment
The group user routine receives control in the following environment:

User Routine Recovery: XCF does not provide any recovery for the group user
routine. Routines that require recovery must establish their own. XCF does place
sufficient information into the SDWA to identify the group user routine that was in

Authorization: Supervisor state and PSW key 0
Dispatchable unit mode: SRB
Cross memory mode: PASN = HASN = SASN. The primary address space equals

the primary address space of the caller of IXCJOIN, and
can be swappable or non-swappable.

Amode: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-95

control. The multisystem application must provide whatever diagnostic data is
required for problem determination for the group user routine.

A member's group user routine is given two chances to complete event notification
processing of a particular event. The first time the group user routine terminates
abnormally while handling an event, XCF returns an abend code of X'00C' with a
reason code X'060B0000' to the recovery routine of the task that the member is
associated with (either the task or the job step task as specified on IXCJOIN.

Note: SRB-to-task recovery cannot be provided for members that are address
space associated. See “Member Association” on page 2-14 for more
information. The member's group user routine might or might not have
completed event notification processing before terminating abnormally. The
task's recovery routine does not have to take any action.

XCF will give the member's group user routine control again and set the
GEPLSECC bit in the group user routine parameter list to show that this is the
second time the member's group user routine is being given control for this event.
(See “Parameter List Contents” on page 2-99 for an explanation of the fields in the
group user routine parameter list.) Members that cannot handle processing the
same event twice should check the GEPLSECC bit on entry to the group user
routine. If the bit is on, the group user routine should determine if the event had
already been processed before the routine terminated abnormally.

If the member's group user routine terminates abnormally a second time or if XCF
cannot give the member's group user routine control again, XCF abnormally
terminates the task (that the member is associated with) with a retryable abend
code of X'00C' and a reason code of X'060B0001'. This abend code and reason
code combination indicates that the member's group user routine could not finish
processing the event notification information so at least some of the information
may have been lost. The task's recovery routine can do one of the following:

� Issue the IXCQUERY macro to determine any lost information.
� Back up to some logical point and continue processing from that point.
� Allow the task to abnormally end.

To ensure that the member's recovery can intercept SRB-to-task percolation, the
task the member is associated with must ensure that its recovery routine always
receives control when a task abnormally ends. To accomplish this, the associated
task should issue the WAIT macro and continue waiting indefinitely while other
tasks perform the member's work.

SRB-to-task percolation does not occur while the task's recovery routine is running.
XCF waits until the task is not in recovery before abnormally ending the task.

User Routine Processing
When an event occurs, such as a member state change or a status change, XCF
invokes the group user routines of active members. Each group user routine is
scheduled as a local SRB to the owning member's home address space. You are
responsible for writing the group user routine. You can design the routine to:

� Determine if the member's initialization is complete. A member might issue
IXCJOIN and its group user routine could get control before IXCJOIN returns to
the caller. To determine if the member's initialization is complete, the group
user routine might examine a bit that the member sets on or off. The member

2-96 OS/390 V2R8.0 MVS Sysplex Services Guide

might want its group user routine to ignore all events until the routine
determines that initialization is complete.

� Categorize the events as described in “Events that Cause XCF to Schedule a
Group User Routine” on page 2-86. With these categories in mind, the group
user routine should:

– Determine what events occurred. The group user routine must consider
both the event for which XCF is providing notification, and the events that
XCF might have skipped. See Figure 2-14 on page 2-87 and Figure 2-15
on page 2-91 for more information.

– Take the appropriate action.

To determine what event occurred, the group user routine can check the
GEPLTYPE field in the parameter list. Here are some examples of what the group
user routine might do based on what it finds in GEPLTYPE:

� If the GEPLTYPE field indicates a member state change
(GEPLTYPE=GEMSTATE), the routine can then check the GEPLOLDS and
GEPLNEWS fields to determine the member state before the event occurred
and the member state after the event occurred. For example, if the member
went from active to failed , the group user routine might do recovery for the
failed member, cleaning up any resources the member was using. Then the
group user routine could post a task to issue IXCDELET to disassociate the
member from XCF.

Note: XCF schedules a group user routine for only one event at a time. If you
perform recovery in the group user routine rather than posting a task,
you could delay XCF's notification of other events and XCF might skip
those notifications.

� If the GEPLTYPE field indicates a user state field change
(GEPLTYPE=GEUSTATE), the group user routine might then check the user
state field, which is passed as part of the parameter list, and take the
appropriate action based on the contents of the field.

� If the GEPLTYPE field indicates that the member's status update is missing,
the group user routine might:

– Post a task to change the member's user state field to indicate that another
member took over the member's activities.

– Post a task to do the takeover for the member.

 Programming Considerations
Consider the following when writing your group user routine:

� Because the group user routine runs in SRB mode, it cannot issue any SVCs.
You might want to queue work to one or more tasks for processing and post
the tasks when needed.

� A member might consider having a group user routine, even if the member is
the only member of a group that is running on a single-system sysplex. With a
group user routine, the member can be notified of system events.

� If you plan to have your group user routine maintain a table of systems, groups,
and members in the sysplex, you should consider serializing the use of this
table with other units of work that require access to it.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-97

� XCF schedules the group user routine for only one event at a time. By having
other units of work available to process actions that are time consuming, you
can avoid missing events.

� You should design your group user routine to ignore unknown event codes
rather than allowing an unknown event code to abnormally terminate your
program. This makes your program independent of future MVS releases that
might introduce additional event codes.

Restrictions: The group user routine cannot issue any macros that issue an SVC
or that require the caller to be in task mode.

Timing: You should be aware of the following possible events related to timing:

� XCF does not notify the group user routines about every event. XCF skips
some events, and the group user routines must be able to infer events if
necessary. Examples appear in “Events that Cause XCF to Schedule a Group
User Routine” on page 2-86 and more detail is provided in Figure 2-15 on
page 2-91.

� Once a member issues IXCLEAVE or IXCQUIES, XCF no longer schedules the
member's group user routine (XCF schedules the group user routines of active
members only). If the group user routine is in control when IXCLEAVE or
IXCQUIES is issued, the routine completes normally before the leave or
quiesce service returns control.

� When a member's group user routine receives notification that the member's
system is about to be removed from the sysplex (event type GESYSPRT), the
member should clean up any resources it is using, and issue IXCLEAVE or
IXCQUIES as soon as possible.

 Entry Specifications
XCF passes information to the group user routine in a parameter list and in
registers.

Registers at Entry: On entry to the group user routine, the registers contain the
following information:

Register Contents

GPR 0 Used as a work register by the system.

GPR 1 Address of the group user routine parameter list (GEPL),
mapped by the IXCYGEPL macro.

GPRs 2 - 12 Used as work registers by the system.

GPR 13 Address of a 72-byte work area for use by the group user
routine. The user routine does not have to save and restore
XCF's registers in this work area. The user routine can use this
work area in any way it chooses.

GPR 14 Return address (the group user routine must return control to
XCF through a BR 14 or a BSM 0,14.)

GPR 15 Entry point address of the group user routine.

ARs 0 - 15 Used as work registers by the system.

2-98 OS/390 V2R8.0 MVS Sysplex Services Guide

Parameter List Contents: The parameter list that XCF passes to the group user
routine is mapped by the IXCYGEPL mapping macro and pointed to by GPR 1. The
parameter list is addressable from the primary address space in which the group
user routine runs. The group user routine interprets the information in the
parameter list according to the type of event that caused XCF to schedule the
routine, and according to the contents of the user state field. Note that XCF does
not always provide the contents of all IXLYGEPL fields in the parameter list. For
example, some information in IXLLYGEPL might not be provided for events related
to a system. Events that are related to a system are:

� A system left or joined thesysplex (event type=GESYSGON, GESYSDG,
GESYSPRT, or GESYSACT.

� A system changed its failure detection interval (event type=GESYSFDI).

The following describes each field in the parameter list, and how to interpret the
field depending on the event:

GEPLTYPE (event type)
Contains the event type. XCF provides this information for all events.

GEPLETIM (event time)
Contains the clock time (in Greenwich mean time) at which the event occurred.
XCF provides this information for all events.

GEPLMDAT (member data)
Contains member data that the member owning the group user routine
specified on IXCJOIN (MEMDATA parameter). You might use this field to
contain pointers to control structures, or other information that the group user
routine needs. XCF provides this information for all events.

GEPLGNAM (group name)
Contains the group name of the affected member's group. XCF provides this
information for all events except those related to a system.

GEPLMNAM (member name)
Contains the member name of the affected member. XCF provides this
information for all events except those related to a system.

If XCF is unable to determine the member name, this field contains blanks. In
that case, check the GEPLMTOK field for the member's token.

GEPLMTOK (member token)
Contains the member token of the affected member. XCF provides this
information for all events except those related to a system.

Note: XCF issues a new member token when a created, quiesced, or failed
member issues IXCJOIN to become active.

GEPLOLDS (old member state)
Contains the member state of the affected member before the event occurred.
XCF provides this information for all events except those related to a system.

GEPLNEWS (new member state)
Contains the member state of the affected member after the event occurred.
XCF provides this information for all events except those related to a system.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-99

GEPLSYS (system name)
For all events related to a member, this field contains the system name of the
affected member's system (except for created members, which are not
associated with a system).

For events related to a system, this field contains the system name of the
affected system.

GEPLSID (system token)
For all events related to a member, this field contains the system token of the
affected member's system.

For events related to a system, this field contains the system token of the
affected system.

GEPLUSOF (user state offset)
For all events related to a member, this field contains the offset from GEPL of
the 32-byte user state field containing the affected member's current user state
value. Regardless of the length the member specified for the user state field,
the group user routines receive all 32 bytes.

When XCF places a terminated member in the not-defined state, and XCF
could not determine the user state value, the user state field contains 32 bytes
of X'FF'.

GEPLHSTY (history)
Contains a list of the last eight events that affected the member, including
event time and expected duration, in LIFO order. If fewer than eight events
occurred for the member, the unused fields contain zeros. XCF provides this
information for all events except those related to a system.

GEPLUDAT (user data)
When the affected member's status user routine indicates that the member's
status update is missing or has resumed (event types GEMSUMSE and
GEMNOSUM), this field contains the data that the affected member's status
user routine placed in GPR 0. GEPLUDAT contains valid data when
GEPLMONR and GEPLMISD are both off and the user data value in
GEPLUDAT is not zero. This assumes that the affected member's status user
routine does not pass a data value of zero, which would be make it impossible
to determine whether a value was passed in GEPLUDAT.

GEPLINTV (interval)
When a system updates its failure detection interval (event type = GESYSFDI),
this field contains the new system failure detection interval.

GEPLMEME (member-related event)
This bit is on when XCF presents a member-related event, and off when XCF
presents a system-related event.

GEPLMONR (monitoring removed)
This bit is on when XCF removes monitoring for the member.

GEPLMISR (member status update reported missing)
This bit is on after the member's status user routine confirms that the member's
status update is missing. This bit is off if the member's status update was never
reported missing, or after the member's status user routine confirms that the
member's status update resumed.

2-100 OS/390 V2R8.0 MVS Sysplex Services Guide

GEPLMISD (member status update assumed missing)
This bit is on after XCF assumes a status update missing for the member. This
bit is off if the member's status update was never assumed missing, or after the
member's status user routine confirms that the member's status update
resumed.

GEPLSECC (member group user routine called a second time for the event)
This bit is on after the member's group user routine percolates to XCF's
recovery routine, and XCF calls the group user routine a second time for the
same event. This bit is off when XCF calls a member's group user routine the
first time for a particular event.

See GEPL in OS/390 MVS Data Areas, Vol 2 (DCCB-ITTCTE) for complete field
names and lengths, offsets, and descriptions of the fields mapped by the
IXCYGEPL mapping macro.

 Return Specifications
On return to XCF, the group user routine does not have to set any return codes or
place any information in the GPRs. GPR 14 should still contain the return address,
because the group user routine must return control to XCF through a BR 14 or a
BSM 0,14.

 Coded Example
In this example of a group user routine, the routine has two functions to perform:

� Maintain a table containing the member names and member tokens of
members in the group. When a member becomes active, the group user
routine adds the member to the table.

� Initiate a takeover if the primary member in the group fails. This routine runs in
a group where one member is the primary member and another member is the
backup member.

To accomplish these functions, the group user routine is concerned with two types
of events:

� Member state changes (GEPLTYPE=GEMSTATE).
� Member status update missing. To test for this event, the routine uses a

test-under-mask operation, with a mask of X'30'. This covers the following
conditions:

– GEPLFLG2 = X'20', indicating that the GEPLMISR bit is on (the member's
status user routine reported a status update missing for the member)

– GEPLFLG2 = X'10', indicating that the GEPLMISD bit is on (XCF assumed
a status update missing for the member).

The group user routine also has to be concerned with skipping of events. The logic
of the routine covers the possibility that either a status update missing or a member
state change event might have been skipped.

The following describes the group user routine logic (see Figure 2-16 on
page 2-103 for a summary).

� The routine first checks to see if the event is member-related. If not, the routine
takes no action.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-101

� If the event is member-related, the routine then checks to see if one of the
status update missing flags (GEPLMISR or GEPLMISD) is on.

If the GEPLMISR and GEPLMISD flags are both off: The routine checks to see
if the table needs to be updated by doing the following:

� Checks to see if the member is currently active. If so, the routine loops through
the table. If the member is already in the table, the routine updates the member
token. If the member is not already in the table, the routine adds the member.
This covers the case where a member might have become active, but the
GEPLTYPE=GEMSTATE event was skipped.

� If the member is not currently active, the routine checks to see if it is being
called for a member state change.

– If this is not a member state change, the routine takes no action.
– If this is a member state change, the routine checks the previous member

state to see if the member was active. (This covers another case where a
GEPLTYPE=GEMSTATE event might have been skipped.) If the member
was active at one time, the routine checks to see if the member is in the
table, and adds the member or updates the member as appropriate.
Otherwise, the routine takes no action.

� If the member is currently active, the routine checks to see if the member is in
the table, and adds the member or updates the member as appropriate.

If either the GEPLMISR flag or the GEPLMISD flag is on: This indicates a
status update missing for the member. When the member's status update is
missing, the routine has to initiate a takeover so that another member can assume
the member's work. However, once either of these flags is turned on, XCF does not
turn it off until the member resumes updating its status field. The group user routine
might be called several times, and this flag might continuously be on. So, the
routine has a switch (FUNCTON) that it turns on the first time it is called for a
status update missing.

The routine does the following when first called with either the GEPLMISR flag or
the GEPLMISD flag on:

� The routine turns on its own switch (FUNCTON).

� The routine posts a task whose job is to change user state values so that the
backup member becomes the primary member. The main routine attached this
task with an ECB, and passed a parameter list containing the address of the
member's data structure. The data structure contains the information the task
needs to do the takeover.

� The routine then checks to see if the member must be added to the table.

If this is not the first time the routine is called with either the GEPLMISR flag or the
GEPLMISD flag on, the routine knows that no takeover work needs to be done.
The routine then checks to see if the member must be added to the table.

2-102 OS/390 V2R8.0 MVS Sysplex Services Guide

GEXIT3

IS
EVENT

MEMBER
RELATED?

IS
THIS THE

FIRST
TIME?

POST TASK
TO DO

TAKEOVER

GO TO
NEXTCHK

GO TO
NEXTCHK

GO TO
NEXTCHK

END

NO

NO

NO

YES

YES

YES

IS
GEPLMISR

OR GEPLMISD
FLAG ON?

TURN ON
FUNCTON
SWITCH

Figure 2-16 (Part 1 of 3). Summary of Group User Routine Logic

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-103

NEXTCHK

IS
MEMBER

CURRENTLY
ACTIVE?

WAS
PRIOR
STATE

ACTIVE?

GO TO
CREATBL

GO TO
CREATBL

RETURN

NO

NO

NO

YES

YES

YES

IS
THIS A

MEMBER
STATE

CHANGE?

Figure 2-16 (Part 2 of 3). Summary of Group User Routine Logic

2-104 OS/390 V2R8.0 MVS Sysplex Services Guide

CREATBL

LOOP
THROUGH

TABLE

IS
MEMBER

IN
TABLE?

STORE
MEMBER

INFORMATION
INTO TABLE

UPDATE
MEMBER’S

TOKEN

RETURN

NO YES

Figure 2-16 (Part 3 of 3). Summary of Group User Routine Logic

 \\\
 \ \
 \ GROUP USER ROUTINE \
 \ \
 \\\
 GEXIT3 CSECT
 GEXIT3 AMODE 31
 GEXIT3 RMODE ANY
 @MAINENT DS ðH
 USING \,R15
 B @ENTRY
 DC AL1(16)

DC C'GR 9ðð1ð GEXIT3'
 DROP R15
 \\\
 \ \
 \ ENTRY LINKAGE \
 \ \
 \\\
@ENTRY STM R14,R12,12(R13)
 LR R12,R15
 @PSTART EQU GEXIT3
 \
 \ SET UP BASE REGISTER TO 12
 \

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-105

 USING @PSTART,R12
 \
 \ SET UP DYNAMIC AREA
 \
 SLR R15,R15
 IC R15,@SIZDATD
 SLR Rð,Rð
 ICM Rð,7,@SIZDATD+1
 STORAGE OBTAIN,LENGTH=(ð),SP=(15)
 LR R1ð,R1
 USING @DATD,R1ð
 ST R13,4(,R1ð)
 ST R1ð,8(,R13)
 LM R15,R1,16(R13)
 LR R13,R1ð
 \\\
 \ \
 \ GROUP USER CODE \
 \ \
 \\\
 \
 \ GET ADDRESSABILITY TO THE PARAMETER LIST
 \
 LR R8,R1
 USING GEPL,R8
 \
 \ CHECK THE GEPLFLG2 FIELD FOR MEMBER-RELATED EVENT
 \ (GEPLMEME BIT). IF NOT MEMBER-RELATED, BRANCH BECAUSE
 \ NO ACTION REQUIRED.
 \
 TM GEPLFLG2,X'8ð'
 BNO @FINI
 \
 \ CHECK THE GEPLFLG2 FIELD FOR STATUS UPDATE MISSING
 \ (GEPLMISR or GEPLMISD BITS). IF NEITHER BIT IS ON,
 \ BRANCH TO CHECK FOR TABLE UPDATES.
 \
 TM GEPLFLG2,X'3ð'
 BZ @NEXTCHK
 \
 \ GET ADDRESSABILITY TO THE MEMBER DATA, WHICH CONTAINS
 \ THE ADDRESS OF MDATASTR. MDATASTR CONTAINS THE BYTE THAT
 \ THE GROUP USER ROUTINE TURNS ON IF THIS IS THE FIRST TIME
 \ CALLED FOR STATUS UPDATE MISSING. IF THE BYTE IS ON ALREADY,
 \ BRANCH TO CHECK FOR TABLE UPDATES. IF THE BYTE IS NOT ON,
 \ TURN IT ON.
 \
 L R5,GEPLMDAT
 USING MDATASTR,R5
 CLI FUNCTON,X'ðð'
 BNE @NEXTCHK
 MVC FUNCTON(1),HEX11
 \
 \ GET THE ADDRESS OF THE TASK'S ECB AND POST THE TASK.
 \ THE TASK WAS ATTACHED BY THE MAIN ROUTINE. THE MAIN ROUTINE
 \ PASSED THE ADDRESS OF THE MDATASTR IN THE PARAMETER LIST
 \ ON THE ATTACH MACRO. THE TASK'S JOB IS TO SWITCH THE
 \ PRIMARY AND BACKUP MEMBERS.
 \

L R7,POSTLNTH MOVE LENGTH OF STATIC AREA TO R7
 BCTR R7,ð
 EX R7,@SETPARM
 L R9,TASKECB
 POST (R9),LINKAGE=SYSTEM,MF=(E,POSTLSTD)

2-106 OS/390 V2R8.0 MVS Sysplex Services Guide

 \
 \ BRANCH HERE TO CHECK FOR TABLE UPDATES. ONLY MEMBERS WHO
 \ ARE CURRENTLY ACTIVE OR HAVE BEEN ACTIVE SHOULD BE IN
 \ THE TABLE. IF THE MEMBER'S CURRENT STATE IS ACTIVE,
 \ BRANCH SO THE TABLE CAN BE UPDATED IF NECESSARY.
 \
 @NEXTCHK CLI GEPLNEWS,GEACTIVE
 BE @CREATBL
 \
 \ CHECK TO SEE IF THE MEMBER WAS PREVIOUSLY ACTIVE. IF NOT
 \ PREVIOUSLY ACTIVE, BRANCH TO THE END OF THE PROGRAM.
 \
 CLI GEPLOLDS,GEACTIVE
 BNE @FINI
 \
 \ BRANCH HERE TO SEE IF A MEMBER IS CURRENTLY IN THE TABLE.
 \ IF SO, UPDATE THE MEMBER'S TOKEN. IF NOT, ADD THE MEMBER.
 \
 \ GET ADDRESSABILITY TO THE MEMBER DATA, WHICH CONTAINS
 \ THE ADDRESS OF MDATASTR. MDATASTR CONTAINS THE ADDRESS OF
 \ THE TABLE. LOOP THROUGH THE TABLE TO SEE IF THE MEMBER
 \ IS THERE. IF THE MEMBER IS THERE, BRANCH OUT OF THE
 \ TABLE TO UPDATE THE MEMBER. IF THE LOOP COMPLETES WITHOUT
 \ FINDING THE MEMBER, BRANCH OUT OF THE LOOP TO ADD THE MEMBER.
 \
 @CREATBL L R5,GEPLMDAT
 @CHKTBL L R6,TBLADDR START OF THE TABLE

L R7,NEXTITEM NEXT AVAILABLE SLOT IN TABLE
 @TBLLOOP CR R6,R7 IS THIS THE END OF THE TABLE?
 BE @STORTBL YES
 USING ITEM,R6

CLC NAME(16),GEPLMNAM MEMBER ALREADY IN THE TABLE?
BE @FOUND IF YES, BRANCH
A R6,INCREM MOVE TO NEXT MEMBER IN THE TABLE

 B @TBLLOOP
 \
 \ BRANCH HERE WHEN THE MEMBER IS ALREADY IN THE TABLE
 \
@FOUND MVC TOKEN(8),GEPLMTOK UPDATE THE CURRENT TOKEN
 B @FINI
 \
 \ BRANCH HERE WHEN THE MEMBER IS TO BE ADDED TO THE TABLE
 \
 @STORTBL L R7,NEXTITEM PLACE THE NEXT SLOT AVAILABLE IN R7

USING ITEM,R7 USE MAPPING OF TABLE CONTENTS
MVC NAME(16),GEPLMNAM STORE THE MEMBER NAME
MVC TOKEN(8),GEPLMTOK STORE THE MEMBER TOKEN
A R7,INCREM INCREMENT THE POINTER
ST R7,NEXTITEM STORE THE POINTER

 DROP R7
 B @FINI
 \
 \ RELEASE DYNAMIC AREA
 \
@FINI LR R1,R1ð
 L R13,4(,R13)
 SLR R15,R15
 IC R15,@SIZDATD
 SLR Rð,Rð
 ICM Rð,7,@SIZDATD+1
 STORAGE RELEASE,LENGTH=(ð),ADDR=(1),SP=(15)
 \\\
 \ \
 \ EXIT LINKAGE \

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-107

 \ \
 \\\
 LM R14,R12,12(R13)
 BR R14
 @SETPARM MVC POSTLSTD(ð),POSTLST1 SET UP DYNAMIC AREA FOR POST
 GEXIT3 CSECT ,
 LTORG
 DS ðD
 INCREM DC F'24'
HEX11 DC X'11'
 POSTLST1 POST MF=L
 POSTLNTH DC A(\-POSTLST1)
 @SIZDATD DS ðA
 DC AL1(ð)
 DC AL3(@DYNSIZE)
 Rð EQU ð
 R1 EQU 1
 R2 EQU 2
 R3 EQU 3
 R4 EQU 4
 R5 EQU 5
 R6 EQU 6
 R7 EQU 7
 R8 EQU 8
 R9 EQU 9
 R1ð EQU 1ð
 R11 EQU 11
 R12 EQU 12
 R13 EQU 13
 R14 EQU 14
 R15 EQU 15
 @ENDDATA EQU \
@DATA DS ðH
 @DATD DSECT
 DS ðF
 SAVEAREA DS 18F
 POSTLSTD POST MF=L
 @ENDDATD DS ðX
 @DYNSIZE EQU ((@ENDDATD-@DATD+7)/8)\8
 \\\
 \ \
 \ MAPPING OF THE DATA STRUCTURE (MDATASTR) POINTED TO BY \
 \ MEMDATA (GEPLMDAT FIELD IN PARAMETER LIST) \
 \ \
 \ THIS SAME DATA STRUCTURE IS USED BY THE STATUS USER \
\ ROUTINE. SOME FIELDS ARE NOT USED BY THE GROUP USER \
 \ ROUTINE, BUT ARE USED ONLY BY THE STATUS USER ROUTINE. \
 \ \
 \ TBLADDR ADDRESS OF TABLE MAINTAINED BY \
 \ GROUP USER ROUTINE \
 \ NEXTITEM ADDRESS OF NEXT AVAILABLE SLOT IN \
 \ TABLE \
 \ WRKQADDR ADDRESS OF MEMBER'S WORK QUEUE \
 \ (USED BY STATUS USER ROUTINE) \
 \ NXTWRKAD ADDRESS OF NEXT AVAILABLE SLOT IN \
 \ MEMBER'S WORK QUEUE \
 \ (USED BY STATUS USER ROUTINE) \
 \ TASKECB ADDRESS OF THE ATTACHED TASK'S ECB \
 \ (THIS TASK IS ATTACHED BY THE MAIN \
 \ ROUTINE.) \
 \ MAINECB ADDRESS OF ECB USED FOR SYNCHRONIZING \
 \ (THE MAIN ROUTINE WAITS ON THIS ECB, \
 \ WHICH THE ATTACHED TASK POSTS WHEN \
 \ IT COMPLETES ITS WORK.) \

2-108 OS/390 V2R8.0 MVS Sysplex Services Guide

 \ FUNCTON GROUP USER ROUTINE TURNS THIS SWITCH \
 \ ON WHEN CALLED FOR THE FIRST TIME \
 \ FOR A STATUS UPDATE MISSING. \
 \ RESUMEB MAIN ROUTINE TURNS THIS SWITCH ON \
 \ WHEN IT RESUMES UPDATING ITS STATUS \
 \ FIELD. \
 \ \
 \\\
 MDATASTR DSECT
 TBLADDR DS 1F
 NEXTITEM DS 1F
 WRKQADDR DS 1F
 NXTWRKAD DS 1F
 TASKECB DS 1F
 MAINECB DS 1F
 FUNCTON DS X
 RESUMEB DS X
 ITEM DSECT MAPPING OF ELEMENT IN THE TABLE
 NAME DS CL16 MEMBER NAME
TOKEN DS XL8 CURRENT TOKEN OF MEMBER
 \\\
 \ \
 \ MAPPING MACROS \
 \ \
 \\\
 IXCYGEPL
 END GEXIT3

Obtaining XCF Information
You can obtain information related to XCF from any authorized routine. The routine
can be, but does not have to be, a member of an XCF group. This section tells you
why you might need, and how to obtain, the following types of information:

� Sysplex, group, and member information (available through the IXCQUERY
macro)

� Tuning and capacity planning information (available through the IXCMG macro,
and intended for system programmers).

Obtaining Sysplex, Group, and Member Information
A member of an XCF group, or any authorized routine, might need information
about members, groups, and systems in an XCF sysplex under these
circumstances:

� A member of an XCF group might need to know which other members of the
group are currently defined to XCF and what their member states are.

� A member of an XCF group might need to request services (such as invoking
IXCTERM or IXCSETUS) on behalf of another member of the group. The
member must provide the target member's token to invoke these services.

� A member of an XCF group might need to send a message to another member
in the group. The sender must provide the target member's token to issue the
IXCMSGO macro.

� A member of an XCF group did not identify a group user routine to be notified
of changes to other members in the group. Occasionally, the member might
need to know the status of the other members in the group.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-109

� An authorized routine that maintains or displays XCF data might need
information about the systems, groups, and members in the sysplex.

� An authorized routine might need to delete a member of an XCF group (place
the member in a not-defined state). The routine must supply the target
member's token to issue the IXCDELET macro.

� At initialization, a multisystem application might need to know if the system it is
started on is part of a multisystem sysplex, and the maximum number of
systems supported in that sysplex.

The above are just a few examples of the many reasons why XCF group members
and other authorized routines might request information about the systems, groups,
and members in the XCF sysplex by invoking the IXCQUERY macro. The
information provided by the IXCQUERY macro is mapped by the IXCYQUAA
mapping macro.

Using the IXCQUERY Macro
When you code the IXCQUERY macro, you specify what type of information you
want (REQINFO parameter) and where you want the information placed (the output
area identified on the ANSAREA parameter). When you code the ANSAREA
parameter, you must also code the ANSLEN parameter to tell XCF the size of the
output area. You can determine the size by consulting the data structures mapped
by IXCYQUAA. If you do not allow enough space, XCF:

� Fills up the space you provided
� Lets you know how many records could not be included
� Lets you know how much space you should have provided
� Sets the QUAARSNRECORDSREMAIN reason code.

Handling the QUAARSNRECORDSREMAIN Reason Code

The QUAARSNRECORDSREMAIN reason code indicates that the ANSAREA
you provided is too small to contain all the requested data. You can reissue the
IXCQUERY macro using the value returned in QUAHTLEN (total length of
answer area needed to contain all the requested information) as the length of
your answer area. However, be aware that the IXCQUERY information returned
is a snapshot of the current environment — which might change between one
invocation of IXCQUERY and the next. (For example, additional systems might
have joined or left the sysplex, thus changing the number of system records in
the answer area.)

You must provide code to handle the QUAARSNRECORDSREMAIN reason
code in case the length of the record(s) you are requesting ever changes.

Retrieving Information from the Answer Area

The answer area mapped by IXCYQUAA can contain one or more instances of
many different types of records depending on your IXCQUERY request. To
help you reference each of the record types, the answer area contains fields
indicating the length of each record type. You must use these length fields to
index through the answer area in case the length of the record(s) you are
requesting ever changes. Using the DSECT length of a particular record type is
not recommended because the length might have been changed since your
program was assembled.

2-110 OS/390 V2R8.0 MVS Sysplex Services Guide

Specifying the Information Level
The Query Answer Area supports several levels of information that IXCQUERY
returns. Certain coupling facility and structure requests might provide data that was
not returned when the IXCQUERY service was first made available. For these
request types, you can specify the level of information you want with the
QUAALEVEL parameter on IXCQUERY. The QUAALEVEL parameter is available
with version 2 of the IXCQUERY macro. The system returns base QUAA
information when you specify QUAALEVEL=0 on your request; the system returns
level-1 QUAA information when you specify QUAALEVEL=1 on your request. You
should be aware of the type of output that you are requesting and be able to
process it correctly. IBM recommends that you use the level-1 level of IXCYQUAA
in case additional new data is returned by the IXCQUERY service. Note that the
level-1 IXCYQUAA records are larger than the level-0 IXCYQUAA records.

Figure 2-17 on page 2-112 lists the IXCYQUAA structures that support the level-1
level of IXCYQUAA information. See the IXCYQUAA macro in OS/390 MVS Data
Areas, Vol 3 (IVT-RCWK) for a description of the information returned.

Specifying the Type of Information
Depending on how you code the IXCQUERY macro, you can obtain information
about:

� The name of the sysplex.

� Every system in the sysplex

� Every group in the sysplex

� Every member in a specific group

� A specific member in a specific group

� Every application in the sysplex that is using automatic restart management

� Every application on a certain system that is using automatic restart
management

� Every application in a certain restart group (a group of applications that the
automatic restart manager is to restart together on a certain system)

� A particular application using automatic restart management

� Whether the sysplex is in XCF-local mode.

� The maximum number of systems allowed in the sysplex for this XCF release
level.

� The current maximum number of systems allowed in the sysplex as defined by
the installation in the couple data sets.

� Software features available on a system in the sysplex.

� Every coupling facility in the sysplex.

� A specific coupling facility.

� Every coupling facility structure in the sysplex.

� Every coupling facility structure in a specific coupling facility.

� A specific coupling facility structure in a specific coupling facility.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-111

Figure 2-17 on page 2-112 summarizes the parameters you code on the
IXCQUERY macro to obtain the required information.

Figure 2-17 (Page 1 of 3). Summary of IXCQUERY Macro Parameters

Parameter on IXCQUERY Information Returned
Structure in
IXCYQUAA

REQINFO=SYSPLEX Header record QUAHDR

One record for each
system in the sysplex

QUASYS

REQINFO=GROUP (the default) Header record QUAHDR

One record for each group
in the sysplex

QUAGRP

REQINFO=GROUP,
GRPNAME=grpname

Header record QUAHDR

One record for each
member of the specified
group

QUAMEM

REQINFO=GROUP,
GRPNAME=grpname,
MEMNAME=memname

Header record QUAHDR

One record for the
specified member

QUAMEM

REQINFO=COUPLE,
LOCAL=local

Whether the sysplex is in
XCF-local mode

N/A

REQINFO=COUPLE,
MAXSYS=maxsys

The maximum number of
systems allowed in the
sysplex as specified by the
XCF release level

REQINFO=COUPLE,
CURRMAXSYS=currmaxsys

The current maximum
number of systems allowed
in the sysplex as specified
in the sysplex couple data
set

REQINFO=COUPLE,
SYSPLEXID=sysplexid

The unique sysplex
identifier for the sysplex

REQINFO=COUPLE,
PLEXNAME=plexname

The name of the sysplex

REQINFO=COUPLE,
CFLEVEL=cflevel

The maximum CFLEVEL
supported by the OS/390
release level

REQINFO=COUPLE, ND=nd The node descriptor of the
OS/390 system

REQINFO=FEATURES XCF and XES software
features available on this
system.

QUREQFEATURES

REQINFO=CF Header record QUAHDR

One record for each
coupling facility in the
sysplex.

QUACF
QUACF1

2-112 OS/390 V2R8.0 MVS Sysplex Services Guide

Figure 2-17 (Page 2 of 3). Summary of IXCQUERY Macro Parameters

Parameter on IXCQUERY Information Returned
Structure in
IXCYQUAA

REQINFO=CF,
CFNAME=cfname

Header record QUAHDR

One record for the
specified coupling facility.

QUACF
QUACF1

System connectivity to the
coupling facility.

QUACFSC
QUACFSC1

Coupling facility structures
assigned resources in the
coupling facility.

QUACFSTR
QUACFSTR1

REQINFO=CF_ALLDATA Header record QUAHDR

One record for each
coupling facility in the
sysplex.

QUACF
QUACF1

One record for each
coupling facility in the
sysplex for system
connectivity information.

QUACFSC
QUACFSC1

One record for each
coupling facility in the
sysplex for information
about structures assigned
resources in the coupling
facility.

QUACFSTR
QUACFSTR1

REQINFO=STR Header record QUAHDR

One record for each
coupling facility structure in
the sysplex.

QUASTR
QUASTR1

REQINFO=STR,
STRNAME=strname

Header record QUAHDR

One record for the
specified coupling facility
structure.

QUASTR
QUASTR1

Names of coupling facilities
in the structure's preference
list.

QUASTRPL
QUASTRPL1

Names of structures in the
structure's exclusion list.

QUASTRXL
QUASTRXL1

Names of the coupling
facilities where the
structure is allocated.

QUASTRCF
QUASTRCF1

Connectors to the coupling
facility structure.

QUASTRUSER
QUASTRUSER1

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-113

You can also specify, on IXCQUERY REQINFO=GROUP, whether you want the
status that XCF has readily available (REQTYPE=IMMEDIATE parameter), or
whether you want XCF to suspend your work unit while it obtains the most current
data available (the default, REQTYPE=DEFER parameter). If you specify
REQTYPE=DEFER, XCF serializes updates to the requested group data and
retrieves the most current data. However, XCF cannot guarantee that updates will
not occur before the requestor uses the data. For example, when the IXCQUERY
service returns to the caller, the caller could then be swapped out. By the time the
caller is swapped back in, updates could have been made, and the data that was
returned by IXCQUERY is no longer the latest data.

Figure 2-17 (Page 3 of 3). Summary of IXCQUERY Macro Parameters

Parameter on IXCQUERY Information Returned
Structure in
IXCYQUAA

REQINFO=STR_ALLDATA Header record QUAHDR

One record for each
coupling facility structure in
the sysplex.

QUASTR
QUASTR1

Names of coupling facilities
in each structure's
preference list.

QUASTRPL
QUASTRPL1

Names of structures in
each structure's exclusion
list.

QUASTRXL
QUASTRXL1

Names of the coupling
facilities where each
structure is allocated.

QUASTRCF
QUASTRCF1

Connectors to each
coupling facility structure

QUASTRUSER
QUASTRUSER1

REQINFO=ARMSTATUS Header record QUAHDR

One record for each
application specified that is
using automatic restart
managment

QUAARMS

REQINFO=ARMS_ALLDATA Header record QUAHDR

One record for each
application in the sysplex
that is using automatic
restart management

QUAARMS

 Programming Considerations
Depending on the type of information requested, IXCQUERY might reference the
CFRM active policy. Multiple IXCQUERY requests could result in a large amount of
I/O to the CFRM couple data set, which in turn, could generate a noticeable loss of
system performance. When designing an application such as a sysplex monitoring
tool that uses the IXCQUERY macro, be aware of the performance effect of
multiple macro invocations.

2-114 OS/390 V2R8.0 MVS Sysplex Services Guide

Information Mapped by the IXCYQUAA Mapping Macro
Most of the information that IXCQUERY provides is mapped by the IXCYQUAA
macro. IXCYQUAA provides information related to:

� Header record that describes the data records returned (QUAHDR section).
� Sysplex data (QUASYS section)
� Group data (QUAGRP section)
� Member data (QUAMEM section)
� Coupling facility data (QUACF, QUACF1, QUACFSC, QUACFSC1,

QUACFSTR, and QUACFSTR1 sections)
� Coupling facility structure data (QUASTR, QUASTR1, QUASTRPL,

QUASTRPL1, QUASTRXL, QUASTRXL1, QUASTRCF, QUASTRCF1,
QUASTRUSER, and QUASTRUSER1 sections)

� Automatic restart management data (QUAARMS)
� Software features installed on a system (QUREQREATURES section).

The information about record contents provided here is only partial. See
IXCYQUAA in OS/390 MVS Data Areas, Vol 3 (IVT-RCWK) for complete
information on field names and lengths, offsets and descriptions of the fields
mapped by the IXCYQUAA macro.

Header Record
When you request the information mapped by IXCYQUAA, the IXCQUERY
macro also provides a header record. This record (QUAHDR section) includes
the following information:

� Number of system, group, member, coupling facility, or structure records
that will follow

� Number of system, group, member, coupling facility, or structure records
not returned because of insufficient space

� Total length of the answer area needed to contain all the requested
information (including the area for the records that were successfully
returned on this call).

Sysplex Data
When you request information about the systems in the sysplex, the information
returned includes the following for each system:

 � System name

� Failure detection interval and operator notification interval specified at IPL
time (See OS/390 MVS Setting Up a Sysplex for more information.)

 � System status

 � System token.

Group Data
When you request information about the groups in the sysplex, the information
returned includes the following for each group:

 � Group name
� Number of members in the group.

Member Data
When you request information about all members in a specific group, or a
specific member in a specific group, the information returned includes the
following for each member:

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-115

 � Member name

 � Member token

 � Member state

� Additional status information (for example, system status update missing,
member status update missing, etc.)

� System name for the system on which the member is currently active or
was last active

� System token for the system on which the member is currently active or
was last active

� JOB, STC, MOUNT, or LOGON name from the primary ASID current when
IXCJOIN was issued

� Timestamp (in Greenwich mean time) of the last event that affected the
member

� Length of the member's user state field (specified on IXCCREAT or
IXCJOIN)

� The member's status-checking interval (specified on IXCJOIN or changed
on IXCMOD)

� User data returned by the member's status user routine in GPR 0

� The member's space token (STOKEN) for the primary address space at the
time IXCJOIN was issued.

| � Protocols that are supported for the member. Protocols include whether the
| member can receive message, participate in XCF-managed response
| collection, and support large message (up to 128M bytes) delivery.

Coupling Facility Data
When you request information about all coupling facilities in a sysplex, the
information returned includes the following for each coupling facility:

� Coupling facility name

� Node descriptor (mapped by the IXLYNDE macro)

� Size of the dump space (in multiples of 4K)

 � Status indicators

� Number of coupling facility structures in this facility that cannot be added to
the policy

� Number of systems connected to the coupling facility

� Number of coupling facility structures in the coupling facility

� Information about the active policy in effect for this coupling facility,
including policy name, the times the policy was last updated and activated,
and storage limitations.

When you request information about a specific coupling facility in a sysplex, the
following information is returned in addition to that listed above:

� Names of the systems connected to the specified coupling facility

� Names of the structures in the specified coupling facility

2-116 OS/390 V2R8.0 MVS Sysplex Services Guide

� Allocation status of each structure.

Coupling Facility Structure Data
When you request information about structures in a sysplex, the information
returned includes the following for each structure:

� Name of the structure

� Size of the structure (as specified in the CFRM active policy)

� Pending size of the structure (if specified in a pending CFRM policy)

 � Status indicators

� Number of associated preference list records

� Number of associated coupling facility exclusion list records

� Number of coupling facilities containing the structure

� Number of connectors to the structure

� Active policy data, including the policy name

� Information on structure rebuild

| – Type of processing (rebuild or duplexing rebuild)
| – Method of processing (user-managed or system-managed)
| – Phase

� Information on structure alter

� User-defined event information.

When you request information about a specific coupling facility structure in a
sysplex, the following information is returned in addition to that listed above:

� Name of coupling facilities in the preference list for the structure

� Name of coupling facility structures in the exclusion list for the structure

� Name and node descriptor of the coupling facility in which the structure is
allocated

| � Structure version numbers (physical and logical)

� Allocation status of the structure

� Connection data about each connector to the structure:

 – Connection version
 – Connect data
 – Connect name
 – Connect token
 – System name
 – System token

– Job name or started task name
– State of the connection (for example, active, failed persistent,

terminating, or keep disposition)
 – Connection identifier

– Level of information returned for the connection
 – Failure/isolation information.

When you request a level-1 IXCYQUAA record mapping about a structure in a
sysplex, the following information is returned in addition to that listed above:

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-117

� Percent loss of connectivity when structure is undergoing an MVS-initiated
rebuild based on the value of REBUILDPERCENT

� Additional USYNC-related completion code information

� Group name associated with the structure, if the structure is being used as
a serialized structure

| � Name of coupling facility for which the structure is a populate candidate

| � Auto version (applicable only to system-managed processes)

� The structure user's current disconnect/failed confirm string (for unserialized
stuctures only)

| � System-specific information when process is system-managed, including
| system identification and phase of system-managed process.

Automatic Restart Management Data
When you request information about automatic restart manager elements and
restart groups, the information returned includes the following for each element:

 � Element name

� Name of the system where the element originally registered

� Name of the system where the element is running (or last ran if the
element has failed and has not yet been restarted)

� Replication ID of the system where the element originally registered

� Job or started task name

� STOKEN for the element's address space

� ASID of the element's address space

� Level number associated with this element

� Name of the JES XCF group in which this element must run

� Date and time of initial registration

� Date and time of the first automatic restart manager restart

� Date and time of the most recent automatic restart manager restart

� Element type (or blank)

 � Flags indicating:

– Whether restarts by the automatic restart manager are enabled in the
sysplex

– Whether all systems capable of automatic restarts have connectivity to
the ARM couple data set

– Whether the current ARM policy prohibits a restart by the automatic
restart manager for this element

– The state of the element (for example: available, restarting, and so on)

– Whether the element is a batch job or started task

– Whether the element has override JCL or command text

– Whether the element is associated with another element.

� Name of the element's event exit routine

2-118 OS/390 V2R8.0 MVS Sysplex Services Guide

� The number of restarts by automatic restart manager that have occurred
since the element initially registered

� The number of restarts by the automatic restart manager that have
occurred in the most recent restart interval for this element

� The number of restart attempts allowed for this element and the interval

� Name of the element to which this element is associated (or blank if no
associations)

� An indication of whether the associated element is the element being
backed up or is the back up for this element

� The total number of elements currently registered with the automatic restart
manager

� The maximum number of elements that are able to be registered with the
automatic restart manager.

Information Returned Inline to IXCQUERY
IXCQUERY returns inline information for both REQINFO=COUPLE and
REQINFO=FEATURES.

The information that IXCQUERY returns when you specify REQINFO=COUPLE is
placed in a storage area that you provide.

LOCAL
Whether the sysplex is in XCF-local mode. In XCF-local mode, XCF does not
provide signalling services between MVS systems in a multisystem
environment. (Members residing on a system in XCF-local mode can exchange
messages with one another, but cannot exchange messages with members on
other systems.) XCF does not support permanent status recording for a system
in XCF-local mode. See OS/390 MVS Setting Up a Sysplex for further
information.

MAXSYS
The maximum number of systems allowed in the sysplex based on the MVS
release level and the sysplex configuration. If the sysplex is in XCF-local mode
or monoplex mode, then the value of MAXSYS is 1.

The MAXSYS value remains constant throughout the life of the IPL. Use this
information to allow your program to be independent of future MVS releases
that might increase the maximum number of systems allowed in the sysplex.
For example, your program might need to obtain enough storage for a table
with one entry per system in the sysplex.

CURRMAXSYS
The current maximum number of systems allowed in the sysplex (specified
when the sysplex couple data set was formatted). The CURRMAXSYS value
might change during the life of an IPL if you switch to a new sysplex couple
data set formatted for a different number of systems. Use this information to
minimize storage when your program needs to maintain information about the
systems in a sysplex. For example, your program might need to obtain enough
storage for a table with one entry per system in the sysplex. If the maximum
allowable number of systems in the sysplex is 32, but you have chosen to
maintain a sysplex of only 10 systems, the amount of storage that you need to
allocate for your table is significantly less if you use that required for only 10
systems.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-119

SYSPLEXID
The sysplex identifier token for the sysplex. XCF creates the token when the
first system in the sysplex IPLs. The token remains in existence for the life of
the sysplex.

PLEXNAME
The name of the sysplex in which this system is participating. The sysplex
name is specified in the COUPLExx parmlib member and in the couple data
sets that support the sysplex.

CFLEVEL
The maximum coupling facility operational level supported by the OS/390
operating system where the IXCQUERY was issued.

ND
The node descriptor of the OS/390 system where the IXCQUERY macro was
issued.

The information that IXCQUERY returns when you specify REQINFO=FEATURES
is placed in a storage area that you specify with the FEATAREA parameter. The
information is mapped by QUREQFEATURES in IXCYQUAA and includes the
following:

QUREQRFPROXYRESPONSE
The ProxyResponse feature is available for:

 IXLUSYNC
 IXLEERSP EVENT=REBLDSTOP
 IXLEERSP EVENT=REBLDCLEANUP

QUREQRFUSYNCCOMPCODE
The IXLUSYNC COMPCODE function is available on this system.

QUREQRFREBUILDPCTLOSSCONN
Percent lossconn is available for rebuild events on this system.

QUREQRFREBUILDDUPLEX
Support for user-managed duplexing is available on this system.

QUREQRFIXLMGHWSTATCF
HWSTATISTICS=CF for IXLMG is supported on this system.

QUREQRFIXLRTRDATATYPE
IXLRT RDATATYPE function is available on this system.

Obtaining Tuning and Capacity Planning Information
Note: The information in this section is intended for use by system programmers

in tuning and planning a sysplex. The programmer designing a multisystem
application does not need this information.

Installations running multisystem applications that use the XCF signalling services
need data for tuning the sysplex, and data for planning the capacity of the sysplex.
XCF accumulates information during sysplex processing, and maintains that
information. The Resource Measurement Facility (RMF) collects, and produces
reports based on, this data. For more information on the reports that RMF produces
for tuning a sysplex, see OS/390 MVS Setting Up a Sysplex and RMF User's
Guide.

2-120 OS/390 V2R8.0 MVS Sysplex Services Guide

Authorized routines can also obtain tuning and capacity planning information by
issuing the IXCMG macro. The information provided by the IXCMG macro is
mapped by the IXCYAMDA mapping macro.

When you code the IXCMG macro, you specify what type of information you want
(TYPE parameter) and where you want the information placed (DATAAREA
parameter). When you code the DATAAREA parameter, you must also code the
DATALEN parameter to tell XCF the size of the area that you provided. If you do
not allow enough space, XCF does the following:

� Fills up the space you did provide
� Lets you know how much space you should have provided
� Sets a reason code of X'4'.

Handling the X‘4’ Reason Code
The X'4' reason code indicates that the ANSAREA you provided is too small to
contain all the requested data. You can reissue the IXCMG macro using the value
returned in AMDATLEN (total length of answer area needed to contain all the
requested information) as the length of your answer area. However, be aware that
the IXCMG information returned is a snapshot of the current environment — which
might change between one invocation of IXCMG and the next. (For example,
additional systems might have joined or left the sysplex, thus changing the number
of system records in the answer area.) You must provide code to handle the X'4'
reason code in case the length of the record(s) you are requesting ever changes.

Retrieving Information from the Answer Area
The answer area mapped by IXCYAMDA can contain one or more instances of
many different types of records depending on your IXCMG request. To help you
reference each of the record types, the answer area contains fields indicating the
length of each record type. For each record type, AMDAREA contains the number
of entries in IXCYAMDA, the length of each entry, and the offset to the first entry of
the record type. You must use these length fields to index through the answer area
in case the length of the record(s) you are requesting ever changes. Using the
DSECT length of a particular record type is not recommended because the length
might have been changed since your program was assembled.

Specifying the Type of Information
Depending on how you code the IXCMG macro, you can obtain information about:

� Outbound and inbound XCF signalling paths (TYPE=PATH parameter)
� Pending message requests (TYPE=MSGPEND parameter)
� System usage information (TYPE=SYSTEM parameter)
� Members sending and receiving messages (TYPE=SRCDST parameter)
� All of the above (the default, TYPE=ALL parameter).

The information that IXCMG provides is mapped by the IXCYAMDA mapping
macro. IXCYAMDA provides five major structures, related to:

� Signalling paths (AMDPATH structure)
� Pending message requests (AMDMPEND structure)
� System usage (AMDSYS structure)
� Members sending and receiving messages (AMDSD structure)
� Header record that describes the data records returned (AMDAREA structure).

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-121

See IXCYAMDA in OS/390 MVS Data Areas, Vol 3 (IVT-RCWK) for complete
information on field names and lengths, offsets and descriptions of the fields
mapped by the IXCYAMDA mapping macro.

Signalling Paths
When you request information about signalling paths, the information returned
includes:

� For each outbound XCF path:

– The total number of times XCF selected the path for message transfer
while the path was not busy. This count includes re-sent signals.

– The total number of times XCF selected the path for message transfer
while the path was busy. This count includes re-sent signals.

– The current number of signals pending for data transfer over the path.

� For each inbound path, the total number of times the path could not
replenish a message buffer because there was not enough message buffer
space available.

� For each XCF path, the count of restarts performed against the path (XCF
restarts a path when the path fails)

Pending Message Requests
When you request information about pending message requests, the
information returned includes the following for each outbound message queued
for delivery:

� The message requestor's member token, primary ASID, and home ASID
� The length of the message
� The transport class XCF selected for transferring the message.

System Usage
When you request information about system usage, XCF returns records that
describe the message traffic associated with the system on which you issue
IXCMG (called the local system). XCF describes this message traffic in terms
of the messages sent and received by the local system. To describe the
messages sent by the local system, XCF returns one or more records for each
possible target system (the system receiving the messages.) The local system
is also a target system. The number of records XCF returns per target system
equals the number of transport classes defined to the local system.

To describe the messages received by the local system, XCF returns one
record for each possible source system (the system sending messages to the
local system). The local system is not considered a source system for this
purpose.

For example, if system 1, system 2, and system 3 are systems in a sysplex,
system 1 has transport classes A, B, and C, and an authorized routine on
system 1 issues IXCMG, XCF returns the following data:

� For messages sent from system 1 to itself, one record for each of system
1's transport classes (A, B, and C)

� For messages sent from system 1 to system 2, one record for each of
system 1's transport classes (A, B, and C)

� For messages sent from system 1 to system 3, one record for each of
system 1's transport classes (A, B, and C)

2-122 OS/390 V2R8.0 MVS Sysplex Services Guide

� For messages sent from system 2 to system 1, one record

� For messages sent from system 3 to system 1, one record.

The information returned to describe messages sent by the local system
includes:

� The total number of times message requests in each transport class were
refused because of inadequate message buffer space

� The total number of times message requests in each transport class were
migrated to an alternate transport class because no signalling paths were
available in that transport class

� The total number of times message requests in each transport class
exceeded the message length defined for that class.

The information returned to describe messages received by the local system
includes:

� The total number of messages received from a source system.

Members Sending and Receiving Messages
When you request information about members sending and receiving
messages, the information returned includes:

� For each active member on the system on which IXCMG is called:
– The approximate number of messages sent by the member
– The number of messages received by the member.

� For each active member on a remote system:

– The number of messages the member sent that were received by the
system on which IXCMG is called

– The approximate number of message requests sent to the member by
the system on which IXCMG is called.

Consider the following example illustrating what counts are incremented when
one member sends a message to another member:

� When member 1 on system 1 sends a message to member 2 on system 2,
XCF increments the following counts on system 1:

– The number of messages sent by member 1

– The number of messages sent to member 2

– The number of times the XCF path was selected while busy or while
not busy, whichever is appropriate

– The number of signals queued for delivery on that XCF path.

� When member 2 on system 2 receives the message sent by member 1 on
system 1, XCF increments the following counts on system 2:

– The number of messages received from member 1
– The number of messages received by member 2 .

Header Record
When you request the information mapped by the AMDPATH, AMDMPEND,
AMDSYS, or AMDSD structures, the IXCMG macro also provides a header
record. This record (AMDAREA structure) includes:

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-123

� The total length of the output data area needed to contain all the requested
information (including the area for the records that were successfully
returned on this call).

� For path, pending message, system, and member entries:

– Number of entries
– Length of data
– Offset to entries.

The following table summarizes the parameters you code on the IXCMG macro and
the resulting information that XCF provides.

Parameter on IXCMG Information Returned
Structure in
IXCYAMDA

TYPE=PATH Header record AMDAREA

One record for each XCF
signalling path

AMDPATH

TYPE=MSGPEND Header record AMDAREA

One record for each message
pending

AMDMPEND

TYPE=SYSTEM Header record AMDAREA

Records describing the message
traffic associated with the system
on which you issue IXCMG.

AMDSYS

TYPE=SRCDST Header record AMDAREA

One record for each active
member

AMDSD

TYPE=ALL Header record AMDAREA

All of the above. AMDPATH,
AMDMPEND,
AMDSYS, and
AMDSD

Disassociating Members from XCF
Similar to defining members to XCF, disassociating members from XCF is a
process that requires some planning. Once a member is defined to XCF and is in a
created or active state, there are a number of ways that it can become
disassociated from XCF. For each member, you have the following choices:

� Do a controlled stop by placing an active member in the quiesced state through
IXCQUIES, and then, at a later time, in the not-defined state through
IXCDELET. (A member must have permanent status recording to choose this
option.) Placing the member in a quiesced state disassociates the member
from XCF services (cannot send and receive messages, cannot be monitored,
etc.) but the member is still known to XCF. Placing the member in the
not-defined state then disassociates the member completely from XCF.

� Immediately place an active member in the not-defined state through the
IXCLEAVE macro. (Permanent status recording is not required for this option.)

� Place a created member in the not-defined state through the IXCDELET macro.

2-124 OS/390 V2R8.0 MVS Sysplex Services Guide

� Allow an active member with permanent status recording to terminate without
explicitly disassociating from XCF, causing the member to be placed in the
failed state. Then disassociate the member from XCF through the IXCDELET
macro. Any event causing termination, either normal or abnormal, will cause an
active member with permanent status recording to be placed in the failed state.

� Force an active member to stop using XCF services by issuing the IXCTERM
macro. The member's recovery routine then gets control and decides the
member's final state. You can use IXCTERM for a member with or without
permanent status recording.

The section entitled “The Five Member States” on page 2-7 provided information
you need regarding the quiesced, failed, and not-defined member states to
determine how you should disassociate each member from XCF. The information in
this section tells you how to use the IXCQUIES, IXCLEAVE, IXCDELET, and
IXCTERM macros to achieve the desired results. Also included in this section is
information on providing recovery when a member does not explicitly disassociate
from XCF.

Using the IXCQUIES Macro
A member must be active with permanent status recording to use the IXCQUIES
macro to become quiesced . The member must supply its member token
(MEMTOKEN parameter). This token was provided by the IXCJOIN macro.

Optionally, the member can change its user state value by coding the USTATE and
USLEN parameters on IXCQUIES. Changing the user state value on IXCQUIES
does not cause XCF to notify the group user routines of the other active members
that the user state value is changed. XCF schedules the group user routines
because of the member state change ; the user state field is included as part of
the parameter list passed to the routines.

Using the IXCLEAVE Macro
A member must be active , with or without permanent status recording, to use the
IXCLEAVE macro to become not-defined . The member must supply its member
token (MEMTOKEN parameter). This token was provided by the IXCJOIN macro.

Optionally, the member can change its user state value by coding the USTATE and
USLEN parameters on IXCLEAVE. Changing the user state value on IXCLEAVE
does not cause XCF to notify the group user routines of the other active members
that the user state value is changed. XCF schedules the group user routines
because of the member state change , but the user state field is included as part
of the parameter list passed to the routines.

Using the IXCDELET Macro
Issue IXCDELET to completely disassociate a created, quiesced, or failed member
from XCF. This service allows multisystem applications and installation-provided
routines to remove all information about a particular member from the data that
XCF maintains.

Any authorized routine can issue the IXCDELET macro to place a created,
quiesced, or failed member in the not-defined state. The authorized routine calling
IXCDELET does not have to be a member of any XCF group. The routine must
supply the target member's token (TARGET parameter).

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-125

Using the IXCTERM Macro
An active member of an XCF group can issue IXCTERM to force another active
member of the same group to terminate. The caller of IXCTERM must be running in
the primary address space of the caller of the IXCJOIN that defined the calling
member to the group. The target of IXCTERM can be an active member anywhere
in the sysplex. The target member must not be associated with an address space;
if it is, IXCTERM will not work.

Invoking IXCTERM does not :

� Result in an immediate member state change for the target member
� Immediately cause XCF to schedule the group user routines of other active

members of the group.

Invoking IXCTERM does :

� Abnormally end the target member's associated task or job step task
(whichever association was designated on IXCJOIN) with system completion
code 00C and reason code 4.

You should be aware when invoking IXCTERM that XCF terminates every
member associated with the target member's tasks and its subtasks.

� Pass control to the target member's recovery routine. The recovery routine
determines the final state of the member, and this decision determines what
notification the group user routines receive. The recovery routine is not
allowed to retry , because the object of invoking IXCTERM is to terminate the
member.

The caller of IXCTERM should be aware that the terminate service runs
asynchronously; the target member might still be associated with XCF when the
issuing member regains control.

 Member Termination
A member is terminated (put in a failed or not-defined state) when the task, job
step task, address space, or system that the member is associated with terminates.
If the member does not explicitly disassociate from XCF, the resulting member
state depends on whether the member has permanent status recording. The
member with permanent status recording becomes failed. The member without
permanent status recording becomes not-defined. In either case, XCF notifies the
group user routines of the other active members of the group about the member
state change. Another member of the group or authorized routine can then provide
recovery (cleanup of resources) for the member.

XCF considers the member as terminated under any of the following conditions:

� The member is task associated and the task, the active job step task, address
space, or system terminates

� The member is job step task associated and the job step task, address space,
or system terminates.

� The member is only address space associated (not task or job step task) and
its address space or system terminates.

Note: See “Member Association” on page 2-14 for more information on member
association as it relates to member termination.

2-126 OS/390 V2R8.0 MVS Sysplex Services Guide

For abnormal task termination, members can use MVS recovery services (ESTAEs,
FRRs, ARRs, etc.) to retry or perform cleanup of resources. For normal or
abnormal task or address space termination, members can also provide resource
manager routines to get control. Resource manager routines cannot retry, but can
perform cleanup of resources. See OS/390 MVS Programming: Authorized
Assembler Services Guide for information about using resource managers.

 Task Termination
When a member's associated task (or associated job step task) terminates, the
system passes control to whatever end-of-task recovery routines or resource
manager routines the member provided. These routines can:

� Clean up any multisystem resources the member was using, as necessary.
MVS end-of-task resource managers might not provide sufficient cleanup if the
terminated member was accessing shared data under work units other than the
terminated task. The member's recovery or resource manager routine should
consider:

– Sysplex serialization requests
– Outstanding operator communication
– Shared DASD access.

� Depending on the environment, initiate other task or address space
terminations as required to ensure the integrity of shared data resources.

� Optionally issue SDUMPX SDATA=(COUPLE) to include group and member
relationships in a dump.

� Determine the final state of the member. For a member with permanent status
recording, the routine has the following choices:

– Issue IXCQUIES to place the member in a quiesced state.

– Issue IXCLEAVE to place the member in a not-defined state.

– Allow the member to terminate without explicitly disassociating from XCF.
The member then becomes failed .

For a member without permanent status recording, the recovery routine can
issue IXCLEAVE or allow the member to terminate without explicitly
disassociating from XCF. In either case, the resulting member state is
not-defined .

� Determine whether the member's XCF request was completed before the task
abnormally terminated. You can obtain this information by issuing the
IXCQUERY macro with REQINFO=GROUP,REQTYPE=DEFER and specifying
the appropriate group and member names. XCF might or might not have
finished processing the member's XCF request before the member's task was
terminated.

XCF ensures that all connections to XCF services are broken by checking all
members that became active under the terminating task. For those that did not
explicitly disassociate, XCF does the following:

� For members with permanent status recording, places the member in a failed
state.

� For members without permanent status recording, places the member in a
not-defined state.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-127

� For normal termination, generates a symptom record to identify the members
that did not explicitly disassociate from XCF. In addition to the required fields in
the symptom record, XCF records the group name and member name in the
variable recording area. The symptom record in LOGREC alerts the installation
of a programming error in the terminating multisystem application.

XCF generates one symptom record for up to 16 members associated with a
terminating task, rather than generating one record for each member.

Members that are accessing multisystem resources should not depend on XCF to
provide sufficient cleanup.

Address Space Termination
In some memory termination environments, such as DAT errors, a task's recovery
routines and end-of-task resource managers do not get control. The system gives
control only to end-of-memory resource managers. To protect against these
situations, a member can have an end-of-memory resource manager routine that
runs in the master scheduler address space. This routine can do cleanup for the
member, and issue IXCQUIES, IXCLEAVE, and IXCMSGO for the member.

If the member did not provide an end-of-memory resource manager routine, XCF
ensures that the member is disassociated.

If the member is address space associated, I/O for the member is cleaned up
before XCF terminates the member.

Removing Systems from the Sysplex
When the system that a member is running on is removed from the sysplex, XCF
notifies the group user routines of the other active members of the group on other
systems so that they can take recovery action for the member.

XCF reports to the group user routines the following event types that relate to
systems being removed from the sysplex. See “Events that Cause XCF to
Schedule a Group User Routine” on page 2-86 for a complete description of each
event type.

� GESYSGO (system reported going)
� GESYSPRT (system being removed from the sysplex)
� GESYSGON (system reported gone)
� GESYSDG (system detected gone).

Example of Designing and Implementing a Multisystem Application
Note: This example illustrates only mainline paths, and does not cover error

conditions, serialization, or synchronization. The intent of this example is to
illustrate, at a high level, the way members of a group interact, the way the
members use the XCF macros, and the way the various user routines
interact. Examples of macro invocations are provided where appropriate.
See OS/390 MVS Programming: Sysplex Services Reference for an
explanation of the parameters used on each macro.

In this example, an installation has three MVS systems in an XCF sysplex. Users
on each of the three systems can obtain phone numbers from a database, and can
add, change, and delete phone numbers.

2-128 OS/390 V2R8.0 MVS Sysplex Services Guide

The multisystem application that handles maintaining the database, and providing
information to users, consists of a group (called PHONBOOK) with one member on
each of the MVS systems. The members consist of identical routines. All three
members have identical message, status, and group user routines.

All three group members can accept requests for work, but only the member
designated as PRIMARY can perform the work. When the PRIMARY member fails,
the BACKUP member takes over the work. This is an example of using XCF to
achieve high availability.

Figure 2-18 on page 2-130 illustrates the relationship between the members of the
group. Member 1 and member 2 have access to the DASD device that contains the
PHONBOOK database. Member 3 does not have access to the database.

In the figure, member 1 is shown as the PRIMARY member and member 2 is
shown as the BACKUP member. It is also possible for member 2 to be the
PRIMARY member and for member 1 to be the BACKUP member.

Member 3 is shown as NO-BACKUP because member 3 cannot access the
database. Member 3 cannot be PRIMARY or BACKUP.

The PRIMARY, BACKUP, and NO-BACKUP designations are made by the operator
when the tasks are started. The designations are maintained in the member's user
state field. These designations can change dynamically if something happens to the
PRIMARY member, causing the BACKUP member to take over. See “What is
Another Method for Designating Members?” on page 2-142 for an alternate way to
designate the members.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-129

MVS SYSTEM1
MEMBER1 of PHONBOOK

MVS SYSTEM2
MEMBER2 of PHONBOOK

MVS SYSTEM3
MEMBER3 of PHONBOOK

TCB

IXCJOIN
IXCQUERY

WAIT

IXCLEAVE

SRB SRB SRB
GRPEXIT STATEXIT MSGEXIT

TCB

IXCJOIN
IXCQUERY

ATTACH EP=DBMGR...

WAIT

IXCLEAVE

TCB
DBMGR

SRB SRB SRB
GRPEXIT STATEXIT MSGEXIT

TCB

IXCJOIN
IXCQUERY

ATTACH EP=DBMGR...

WAIT

IXCLEAVE

TCB
DBMGR

SRB SRB SRB
GRPEXIT STATEXIT MSGEXIT

PRIMARY BACKUP NO-BACKUP

Database

*

The BACKUP member attaches the DBMGR
only if BACKUP becomes PRIMARY.

*

Figure 2-18. PHONBOOK Multisystem Application

How Does PHONBOOK Work?
In general, the PHONBOOK routine works in the following manner:

� Each time a user on a particular system submits a request for work, the
member on that system places an element on its work queue.

� The member then sends a message containing the request to the PRIMARY
member.

� The PRIMARY member's message user routine posts an authorized routine
called the database manager (DBMGR) and places the request on the
DBMGR's work queue. The DBMGR's work queue is separate from the
member's work queue.

� DBMGR does the actual updating of, or retrieval of information from, the
database.

� When DBMGR is done, it sends the information requested, or an
acknowledgment that an update has been made, to the requesting member,
and takes the request off its work queue.

� The requesting member then removes that request from its work queue.

2-130 OS/390 V2R8.0 MVS Sysplex Services Guide

� If anything goes wrong with the PRIMARY member, an authorized routine
called the CLEANUP task terminates the PRIMARY member and changes the
BACKUP member to PRIMARY.

The CLEANUP task waits for two different ECBs (TASKECB1, posted by the
message user routine, and TASKECB2, posted by the group user routine.) The
group user routine posts TASKECB2 to alert the CLEANUP task to do the
takeover. The CLEANUP task cannot do the takeover until the message user
routine places needed information into MDATASTR (see “What Data Structures
Does PHONBOOK Use?”). So, the message user routine posts TASKECB1
when this is accomplished.

How Does a Member Update its Status Field?
Members update their status fields by storing the clock (STCK instruction).
Members determine when to store the clock as follows:

� The PRIMARY member updates its status field every time the DBMGR deletes
an element from the DBMGR's work queue (signifying that the work is
completed).

� The BACKUP and NO-BACKUP members update their status fields every time
they delete an element from their member work queues.

When the BACKUP member takes over for the PRIMARY member, the BACKUP
member must change its method of updating its status field.

What Data Structures Does PHONBOOK Use?
Figure 2-19 on page 2-132 illustrates the data structures that the PHONBOOK
routine uses to do its work. When each member joins the group, the member
specifies as member data (MEMDATA parameter on IXCJOIN) the address of the
MDATASTR data structure. MDATASTR contains the following information:

The TABLE data structure contains the following information:

Field name Contents

TBLADDR Address of the table created and maintained by the group user
routine (the TABLE data structure).

NEXTITEM Address of next available slot in the table.

MEMWQHDR Address of the member's work queue.

DBWQHDR Address of the DBMGR's work queue. (This field used only by
the PRIMARY member.)

MAINECB Address of the ECB that the main routine waits for.

TASKECB1 Address of the ECB that the CLEANUP task waits for, and the
message user routine posts.

TASKECB2 Address of the ECB that the CLEANUP task waits for, and the
group user routine posts.

XPRIMBU Indicates a switch from PRIMARY to BACKUP. The group user
routine turns this switch on the first time it is called for a status
update missing.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-131

The member's work queue and the DBMGR's work queue both consist of work
elements (WRKELEMT). Each WRKELEMT contains a pointer to the next element
on the queue, the requesting member, and the work to be done. If the pointer to
the next element is zero, the queue is empty.

Field name Contents

MEMNAME The member's name.

MEMTOKEN The member's token.

MEMSTATE The member's state.

MEMUSTAT The member's user state value.

Requesting
Member

Requesting
Member

@ of Next
Element

@ of Next
Element

Work...

Work...

WRKELEMT

WRKELEMT

IXCJOIN ...MEMDATA=DATA1...STATFLD=FIELD1

DATA1 FIELD1

@ of
MDATASTR

Status
Field

MDATASTR

TABLADDR

NEXTITEM

MEMWQHDR

DBWQHDR

MAINECB

TASKECB1

TASKECB2

XPRIMBU

TABLE

MEMNAME

MEMTOKEN

MEMSTATE

MEMUSTAT

Figure 2-19. Data structures used by PHONBOOK routine

2-132 OS/390 V2R8.0 MVS Sysplex Services Guide

What Do the User Routines Do?
Each member has a message, status, and group user routine. This section explains
what each user routine does.

The Message User Routine
The message user routine for the PRIMARY member receives messages that
contain requests for work to be done. The message user routines for the BACKUP
and NO-BACKUP members receive messages that contain acknowledgments of
work completed or that contain the requested information. The routines determine
what has to be done based on the contents of the message control information.

The members of the group have established the following protocol for the use of
the message control information (MSGCNTL parameter on IXCMSGO):

Based on the contents of the message control information, the message user
routine does the following:

� If the message control information contains REQDATA or REQUPD, the routine
reads in the information from the message buffer, places the request on the
DBMGR's work queue, and posts the DBMGR routine.

� If the message control information contains RETDATA, the routine reads the
information from the message buffer into a pre-established work queue
element, and posts a task (the RETINFO task) to return the data to the caller
and to notify the requesting member to delete that request from its work queue.

� If the message control information contains GOODRC or BADRC, the routine
posts the RETINFO task to inform the caller that the requested update was or
was not successful.

� If the message control information contains WORKXFER, the BACKUP member
knows it will be taking over for the PRIMARY. The routine reads in the work
queue from the message buffer, placing the queue in storage the routine has
obtained. The routine then places the address of the queue into MDATASTR,
and posts TASKECB1.

MSGCNTL
Contents Meaning

REQDATA Request for data.

RETDATA Return with data.

REQUPD Request for update.

GOODRC Confirmation of successful update.

BADRC Requested update failed.

WORKXFER The PRIMARY member's status user routine is transferring the
work queue to the BACKUP member. (This is the case where
the PRIMARY member's status user routine confirms that the
member's status update is missing, and the BACKUP member
is taking over.)

WORKREQ The BACKUP member is now the PRIMARY member, and is
requesting the work queue from the NO-BACKUP member.
(This is the case where XCF assumed a status update missing
for the PRIMARY member, indicating that the member's status
user routine did not run successfully, and so could not transfer
the work queue.)

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-133

� If the message control information contains WORKREQ, it means the following:

– The BACKUP member took over for the PRIMARY member.
– The BACKUP member did not receive the DBMGR's work queue.
– The BACKUP member has to build a new work queue for its DBMGR

routine.

NO-BACKUP's message user routine loops through NO-BACKUP's work queue
and issues IXCMSGO to send each element on the queue to the BACKUP
member.

The Status User Routine
When a member misses updating its status field within its prescribed interval, XCF
schedules the member's status user routine. The routine determines whether the
member is operating normally by checking the following:

� For the PRIMARY member, the DBMGR's work queue
� For the BACKUP and NO-BACKUP members, the member's work queue.

The status user routine's actions depend on whether the member is PRIMARY. The
routine determines this by checking a table that is maintained by the group user
routine. If the member is PRIMARY (MEMUSTAT=PRIMARY), the status user
routine checks the DBMGR's work queue, and does the following:

� If the work queue is empty, the routine sets a return code of SEUPDRES to
indicate the member is operating normally.

� If the work queue is not empty, the routine sets a return code of SEUPDMIS,
indicating that the member's status update is missing. It then issues IXCMSGO,
sending the DBMGR's work queue to the BACKUP member. To send the work
queue, the status user routine places each element into the message buffer so
that all the elements are sent as one block of data. XCF then:

– Schedules the message user routine of the BACKUP member. (This
message user routine reads in the work queue and posts TASKECB1.)

– Schedules the group user routines of the BACKUP and NO-BACKUP
members. (The backup member's group user routine is responsible for
posting TASKECB2 to alert the CLEANUP task to do the takeover.)

If the member is not PRIMARY, the status user routine checks the member's work
queue, and does the following:

� If the work queue is empty, the routine sets a return code of SEUPDRES,
indicating that the member is operating normally.

� If the work queue is not empty, the routine sets a return code of SEUPDMIS,
indicating that the member's status update is missing.

The Group User Routine
A member's group user routine receives control under a variety of circumstances.
In this example, the group user routines have two basic functions:

� To create and maintain a table with entries for each member of the group. The
group user routine serializes the use of this resource by obtaining the local
lock.

� To initiate a takeover when the PRIMARY member fails.

2-134 OS/390 V2R8.0 MVS Sysplex Services Guide

To accomplish these functions, the group user routines are concerned about the
following events:

� Member state changes (GEPLTYPE=GEMSTATE)

� Member status updating missing (GEPLMISR flag is on if the member's status
user routine reported the status update missing; GEPLMISD flag is on if XCF
assumed a status update missing for the member.)

When a member state change occurs (GEPLTYPE=GEMSTATE), the group user
routine loops through its table and does one of the following:

� Adds the member to the table if no entry for that member exists
� Updates the member's entry.

When a status update missing event occurs, the group user routine's actions
depend on the following:

� The member whose status update is missing (PRIMARY, BACKUP, or
NO-BACKUP)

� The member whose group user routine is being scheduled (PRIMARY,
BACKUP, or NO-BACKUP)

� Whether the member's status user routine reported the status update missing
condition, or whether XCF assumed that condition for the member.

Figure 2-20 summarizes the possible combinations of the member whose group
user routine is scheduled and the member whose status update is missing (either
reported to or assumed by XCF):

Note: Remember the following:

� When a member misses its status update, its own status user routine runs.
� When a member's status user reports the member's status update missing (or

XCF assumes a missing status update for the member), the group user
routines of the other active members of the group run.

The following explains the actions of the group user routine for each of the
combinations specified above. For all combinations except combination 1, the group
user routine takes the same action whether the member's status user routine
reported the status update missing condition or XCF assumed that condition for the
member.

Figure 2-20. Group User Routine Scheduled vs. Status Update Missing

Combination
Number

Whose group user routine
is scheduled?

Whose status update is
missing?

1 BACKUP PRIMARY

2 BACKUP NO-BACKUP

3 NO-BACKUP PRIMARY

4 NO-BACKUP BACKUP

5 PRIMARY BACKUP

6 PRIMARY NO-BACKUP

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-135

Combination 1
When the BACKUP member's group user routine gets control because the
PRIMARY member's status update is missing, the routine:

� Posts a task (the CLEANUP task) that:

– Waits for both TASKECB1 (to be posted by the message user routine)
and TASKECB2 (to be posted by the group user routine).

– Terminates the PRIMARY member by issuing IXCTERM. (The
PRIMARY member's recovery routine then gets control and can
disassociate the member from XCF through the IXCLEAVE macro.)

 IXCTERM MEMTOKEN=MEM2TKN,TARGET=MEM1TKN,RETCODE=RETURN, X
 RSNCODE=REASON,MF=S

 IXCLEAVE MEMTOKEN=MEM1TKN,RETCODE=RETURN, X
 RSNCODE=REASON,MF=S

– Change the BACKUP member's user state value from BACKUP to
PRIMARY through the IXCSETUS macro.

 IXCSETUS MEMTOKEN=MEM2TKN,NEWUS=PRIMARY,TARGET=MEM2TKN, X
 RETCODE=RETURN,RSNCODE=REASON,MF=S

� Turns on the XPRIMBU switch in MDATASTR.

When XCF assumes a status update missing for the PRIMARY member, the
primary member's status user routine might never have sent the DBMGR's
work queue. The group user routine still posts the CLEANUP task to terminate
the PRIMARY member and change the user state values. However, the
CLEANUP task does not wait for TASKECB1 to be posted by the message
user routine. Additionally, the group user routine issues IXCMSGO to the
NO-BACKUP member, with the message control information containing
WORKREQ. This signals the NO-BACKUP member to send its work queue to
the BACKUP member for processing.

Combination 2
When the BACKUP member's group user routine gets control because the
NO-BACKUP member's status update is missing, the routine checks
NO-BACKUP's member state in the table. If NO-BACKUP is still active, the
routine takes no action, assuming that the member missed its status update for
a valid reason. If NO-BACKUP is not-defined, the routine posts the CLEANUP
task to delete the member from the table.

Combination 3
When the NO-BACKUP member's group user routine gets control because the
PRIMARY member's status update is missing, the routine takes no action
because the BACKUP member will do the work.

Combination 4
When the NO-BACKUP member's group user routine gets control because the
BACKUP member's status update is missing, the routine takes no action
because the PRIMARY member will do the work.

Combination 5
When the PRIMARY member's group user routine gets control because the
BACKUP member's status update is missing, the routine checks BACKUP's
member state in the table. If BACKUP is still active, the routine takes no action,
assuming that the member missed its status update for a valid reason. If

2-136 OS/390 V2R8.0 MVS Sysplex Services Guide

BACKUP is not-defined, the routine posts the CLEANUP task to delete the
member from the table.

Combination 6
When the PRIMARY member's group user routine gets control because the
NO-BACKUP member's status update is missing, the routine takes no action
because the BACKUP member will do the work.

How Does the Installation Set Up PHONBOOK on Each System?
This section describes what happens as each of the three systems are set up to
take work requests. The steps are described sequentially. However, you should
realize that these events do not necessarily happen sequentially. Once a member
issues IXCJOIN, any of its user routines can get control in any order, and can even
get control prior to completion of the IXCJOIN service. The example shows the
operator starting the tasks on system 1, then system 2, then system 3. However, it
is possible, for example, that member 2 might finish initialization prior to member 1
and be the first member in the table. This is one reason why each member issues
IXCQUERY to determine which other members are already active.

Setting Up on System 1
The following explains what happens when the operator starts the PHONBOOK
routine on system 1:

� The routine prompts the operator, through a WTOR, to designate PRIMARY,
BACKUP, or NOBACKUP.

� The operator replies PRIMARY.

� The task on system 1 issues IXCJOIN as follows:

SYSTEM1 IXCJOIN GRPNAME=PHONBOOK,ANSAREA=(R2),ANSLEN=AREALEN, X
 LASTING=NO,MEMNAME=MEMBER1,GRPEXIT=(R4), X
 STATEXIT=(R5),MSGEXIT=(R6),USTATE=USTATEP, X
 STATFLD=(R7),INTERVAL=INTER1,MEMDATA=(R3), X
 USLEN=LEN,RETCODE=RETURN,RSNCODE=REASON,MF=S

Member 1 is now established as the PRIMARY member.

� Member 1 issues IXCQUERY to determine if any other members have joined
the group yet. At this point, no other members are initialized.

 IXCQUERY REQINFO=GROUP,GRPNAME=PHONBOOK,ANSAREA=(R2), X
 ANSLEN=AREALEN,REQTYPE=DEFER,MF=S

� Member 1 adds itself to member 1's copy of the table.

� When member 1 becomes active, XCF schedules the group user routines of
any other active members in the group. However, at this point, member 2 and
member 3 are not started, so their group user routines are not scheduled.

� Member 1 attaches DBMGR as a subtask and waits for work.

Setting Up on System 2
The following explains what happens when the operator starts the PHONBOOK
routine on system 2:

� The routine prompts the operator, through a WTOR, to designate PRIMARY,
BACKUP, or NOBACKUP.

� The operator replies BACKUP.

� The task on system 2 issues IXCJOIN as follows:

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-137

SYSTEM2 IXCJOIN GRPNAME=PHONBOOK,ANSAREA=(R2),ANSLEN=AREALEN, X
 LASTING=NO,MEMNAME=MEMBER2,GRPEXIT=(R4), X
 STATEXIT=(R5),MSGEXIT=(R6),USTATE=USTATEB, X
 STATFLD=(R7),INTERVAL=INTER1,MEMDATA=(R3), X
 USLEN=LEN,RETCODE=RETURN,RSNCODE=REASON,MF=S

Member 2 is now established as the BACKUP member.

� Member 2 issues IXCQUERY to determine if any other members have joined
the group yet. At this point, member 1 is active.

� Member 2 adds itself and member 1 to member 2's copy of the table.

� XCF schedules the group user routine of member 1, notifying member 1 that
member 2 is now active. (Member 3 is not active yet, so member 3's group
user routine is not scheduled.)

� Member 1's group user routine now updates member 1's table (adds member
2).

� Member 2 does not attach the DBMGR task because member 2 is not
PRIMARY.

� Member 2 waits for work.

Setting Up on System 3
The following explains what happens when the operator starts the PHONBOOK
routine on system 3:

� The routine prompts the operator, through a WTOR, to designate PRIMARY,
BACKUP, or NOBACKUP.

� The operator replies NOBACKUP.

� The task on system 3 issues IXCJOIN as follows:

SYSTEM3 IXCJOIN GRPNAME=PHONBOOK,ANSAREA=(R2),ANSLEN=AREALEN, X
 LASTING=NO,MEMNAME=MEMBER3,GRPEXIT=(R4), X
 STATEXIT=(R5),MSGEXIT=(R6),USTATE=USTATEN, X
 STATFLD=(R7),INTERVAL=INTER1,MEMDATA=(R3), X
 USLEN=LEN,RETCODE=RETURN,RSNCODE=REASON,MF=S

Member 3 is now established as the NO-BACKUP member.

� Member 3 issues IXCQUERY to determine if any other members have joined
the group yet. At this point, members 1 and 2 are active.

� Member 3 adds itself and members 1 and 2 to member 3's copy of the table.

� XCF schedules the group user routines of members 1 and 2, notifying them
that member 3 is now active.

� The group user routines of member 1 and member 2 update their copies of the
table (add member 3).

� Member 3 does not attach the DBMGR task because member 3 is not
PRIMARY.

� Member 3 waits for work.

2-138 OS/390 V2R8.0 MVS Sysplex Services Guide

How Does PHONBOOK Handle Different Types of Work Requests?
This section describes scenarios that illustrate how different types of work requests
enter each system and are handled by the PHONBOOK routine. An additional
scenario describes what happens when the PRIMARY member misses its status
update.

Updating the Database - Requestor is the PRIMARY Member
In this scenario, a user on system 1 wants to add a name to the database, causing
the following events to occur:

� Member 1 checks the user states in the table to determine which member is
PRIMARY.

� Member 1 determines that it is the PRIMARY member.

� Member 1 creates a work element, places it on its own work queue, and issues
IXCMSGO to send the work element to the PRIMARY member (in this case,
itself).

 IXCMSGO MEMTOKEN=MEM1TKN,MSGBUF=RECORD1,MSGLEN=LENMSG X
 MSGCNTL=REQUPD,TARGET=MEM1TKN,RETCODE=RETURN, X
 RSNCODE=REASON,MF=(E,MSGOLSTD)

� The message user routine for member 1 gets control. The routine checks the
message control information and determines that this is a request to update the
database.

� Member 1's message user routine creates a work element to prepare to receive
the message.

� Member 1's message user routine issues IXCMSGI to read in the message.

 IXCMSGI MSGTOKEN=TOKENMSG,MSGBUF=(R3),RETCODE=RETURN, X
 RSNCODE=REASON,MF=(E,MSGILSTD)

� Member 1's message user routine places the work element on the DBMGR's
work queue, and posts the DBMGR.

� When the DBMGR is done with the work, it issues IXCMSGO to the requesting
member (member 1 in this case) stating that the work is completed, deletes the
request from DBMGR's work queue, and updates member 1's status field.

 IXCMSGO MEMTOKEN=MEM1TKN,MSGBUF=RECORD1,MSGLEN=LENMSG X
 MSGCNTL=GOODRC,TARGET=MEM1TKN,RETCODE=RETURN, X
 RSNCODE=REASON,MF=(E,MSGOLSTD)

� When member 1's message user routine again gets control, the routine
determines that the message control information contains GOODRC, indicating
a successful update.

� Member 1 returns the results of the operation to the caller.

� Member 1 deletes that request from its own work queue.

Updating the Database - Requestor is the NO-BACKUP Member
In this scenario, a user on system 3 wants to change a name in the database,
causing the following events to occur:

� Member 3 checks the user states in the table to determine which member is
PRIMARY.

� Member 3 determines that member 1 is the PRIMARY member.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-139

� Member 3 creates a work element, places the work element on its own work
queue, and issues IXCMSGO to send the work element to the PRIMARY
member (member 1).

 IXCMSGO MEMTOKEN=MEM3TKN,MSGBUF=RECORD1,MSGLEN=LENMSG X
 MSGCNTL=REQUPD,TARGET=MEM1TKN,RETCODE=RETURN, X
 RSNCODE=REASON,MF=(E,MSGOLSTD)

� The message user routine for member 1 gets control. The routine checks the
message control information and determines that this is a request to update the
database.

� Member 1's message user routine creates a work element to prepare to receive
the message.

� Member 1's message user routine issues IXCMSGI to read in the message.

 IXCMSGI MSGTOKEN=TOKENMSG,MSGBUF=(R3),RETCODE=RETURN, X
 RSNCODE=REASON,MF=(E,MSGILSTD)

� Member 1's message user routine places the work element on the DBMGR's
work queue, and posts the DBMGR.

� When the DBMGR is done with the work, it issues IXCMSGO to the requesting
member stating that the work is completed, deletes the request from DBMGR's
work queue, and updates member 1's status field.

 IXCMSGO MEMTOKEN=MEM1TKN,MSGBUF=RECORD1,MSGLEN=LENMSG X
 MSGCNTL=GOODRC,TARGET=MEM3TKN,RETCODE=RETURN, X
 RSNCODE=REASON,MF=(E,MSGOLSTD)

� When member 3's message user routine gets control, the routine determines
that the message control information contains GOODRC, indicating a
successful update.

� Member 3 returns the results of the operation to the caller.

� Member 3 deletes that request from its work queue, and updates member 3's
status field.

Finding a Name in the Database - Requestor is the BACKUP
Member
In this scenario, a user on system 2 wants to find a name in the database, causing
the following events to occur:

� Member 2 checks the user states in the table to determine which member is
PRIMARY.

� Member 2 determines that member 1 is the PRIMARY member.

� Member 2 creates a work element, places it on its own work queue, updates its
status field, and issues IXCMSGO to send the work element to the PRIMARY
member (member 1).

 IXCMSGO MEMTOKEN=MEM2TKN,MSGBUF=RECORD1,MSGLEN=LENMSG X
 MSGCNTL=REQDATA,TARGET=MEM1TKN,RETCODE=RETURN, X
 RSNCODE=REASON,MF=(E,MSGOLSTD)

� The message user routine for member 1 gets control. The routine checks the
message control information and determines that this is a request for
information from the database.

� Member 1's message user routine creates a work element to prepare to receive
the message.

2-140 OS/390 V2R8.0 MVS Sysplex Services Guide

� Member 1's message user routine issues IXCMSGI to read in the message.

 IXCMSGI MSGTOKEN=TOKENMSG,MSGBUF=(R3),RETCODE=RETURN, X
 RSNCODE=REASON,MF=(E,MSGILSTD)

� Member 1's message user routine places the work element on the DBMGR's
work queue, and posts the DBMGR.

� When the DBMGR is done with the work, it issues IXCMSGO to the requesting
member sending the requested information, deletes the request from DBMGR's
work queue, and updates member 1's status field.

 IXCMSGO MEMTOKEN=MEM1TKN,MSGBUF=RECORD1,MSGLEN=LENMSG X
 MSGCNTL=RETDATA,TARGET=MEM2TKN,RETCODE=RETURN, X
 RSNCODE=REASON,MF=(E,MSGOLSTD)

� When member 2's message user routine gets control, the routine determines
that the message control information contains RETDATA, indicating that the
requested information is being returned.

� Member 2's message user routine issues IXCMSGI to read in the message.

 IXCMSGI MSGTOKEN=TOKENMSG,MSGBUF=(R3),RETCODE=RETURN, X
 RSNCODE=REASON,MF=(E,MSGILSTD)

� Member 2 returns the data to the requestor.

� Member 2 deletes that request from its work queue, and updates member 2's
status field.

Member 1 (PRIMARY) Misses its Status Update
If a problem occurs on system 1, causing member 1 to miss updating its status
field, the following events occur:

� Member 1's status user routine gets control.

� The status user routine determines that the DBMGR's work queue has work to
be done, so the routine sets a return code of SEUPDMIS, and issues
IXCMSGO to member 2, with the work queue in the message buffer. To send
the work queue, the status user routine places each element into the message
buffer so that all the elements are sent as one block of data.

 IXCMSGO MEMTOKEN=MEM1TKN,MSGBUF=WORKQUE,MSGLEN=LENMSG X
 MSGCNTL=WORKXFER,TARGET=MEM2TKN,RETCODE=RETURN, X
 RSNCODE=REASON,MF=(E,MSGOLSTD)

� XCF schedules the group user routines of both member 2 and member 3, and
the message user routine of member 2. These events can occur in any order.

� When member 3's group user routine receives control, it takes no action
because member 2 is the BACKUP.

� Member 2's CLEANUP task waits for TASKECB1 and TASKECB2 (to be
posted by the message user routine and group user routine respectively). The
CLEANUP task needs the information being passed to the message user
routine.

� Member 2's message user routine checks the message control information and
determines that it contains WORKXFER.

� Member 2's message user routine reads in the work queue from the message
buffer, places the address of the queue into MDATASTR, and posts
TASKECB1.

� Member 2's group user routine now gets control.

 Chapter 2. Using the Cross-System Coupling Facility (XCF) 2-141

� Member 2's group user routine posts TASKECB2 to alert the CLEANUP task to
terminate member 1 and change member 2's user state value from BACKUP to
PRIMARY.

� Work requests coming in will now go to member 2 for processing, because
member 2 is now PRIMARY.

What Happens When all Processing is Complete?
At the end of the day, when all processing is complete, each member issues an
IXCLEAVE to disassociate from XCF.

 IXCLEAVE MEMTOKEN=MEM1TKN,MF=S
 IXCLEAVE MEMTOKEN=MEM2TKN,MF=S
 IXCLEAVE MEMTOKEN=MEM3TKN,MF=S

What is Another Method for Designating Members?
In the example just described, the operator starts each member on a different
system and designates the PRIMARY, BACKUP, and NO-BACKUP members. Here
is another way you can designate these members:

� If, in your installation, member 1, member 2, and member 3 all have access to
the database, any member could be PRIMARY and any member could be
BACKUP.

� When each member issues IXCJOIN, have the member set its user state value
to BACKUP.

� Each member can check the return code from the IXCJOIN macro to determine
if it is the first member to join the group.

� The first member can issue IXCSETUS to change its user state value to
PRIMARY.

� The second and third members will determine that they are not the first to join
the group, so their user state values remain BACKUP.

� Your program would then contain logic to determine which member takes over
when the PRIMARY member fails.

2-142 OS/390 V2R8.0 MVS Sysplex Services Guide

Sysplex Services for Recovery (Automatic Restart
Management)

 Copyright IBM Corp. 1994, 1999

OS/390 V2R8.0 MVS Sysplex Services Guide

Chapter 3. Using the Automatic Restart Management
Function of XCF

In a sysplex environment, a program can enhance its recovery potential by
registering as an element of automatic restart management. Automatic restart
management can reduce the impact of an unexpected error to an element because
MVS can restart it automatically, without operator intervention. In general, MVS
restarts an element when:

� The element itself fails. In this case, MVS restarts the element on the same
system.

� The system on which the element was running unexpectedly fails or leaves the
sysplex. In this case, MVS restarts the element on another system in the
sysplex; this is called a cross-system restart.

In general, your installation may use automatic restart management in two ways:

1. To control the restarts of applications (such as CICS) that already use
automatic restart management as part of their recovery.

2. To write or modify installation applications to use automatic restart management
as part of recovery.

To provide program recovery through automatic restart management, your
installation has to activate a policy through the SETXCF START command. This
can be an installation-written policy or the IBM-supplied policy defaults. Because
an installation-written policy may have an effect on your program, you need to
understand how your installation uses automatic restart managment for recovery in
a sysplex, and code the program with these factors in mind.

Understanding How Your Installation Uses Automatic Restart
Management

Your installation can use automatic restart management to provide improved
availability for certain programs, and can customize automatic restart management
for the sysplex in a variety of ways. Briefly, your installation can:

� Set up one or more automatic restart management policies, which can use
default values for restarts or values tailored for the installation's workload.

� Enable automatic restart management restarts by issuing the SETXCF
command to activate one policy. (The installation also can use SETXCF to
disable automatic restart management restarts or activate a different policy.)

� Code a workload-restart installation exit to prepare a system for cross-system
restarts.

� Code an element-restart installation exit to modify a restart for a particular
element.

To use the functions of automatic restart management, your installation needs only
to define a couple data set and start a policy. Customizing automatic restart
management is optional. For more information about automatic restart management
functions, see the following:

 Copyright IBM Corp. 1994, 1999 3-1

� OS/390 MVS Setting Up a Sysplex for information about policies, and
requirements for using automatic restart management.

� OS/390 MVS System Commands for information about the SETXCF command.

� OS/390 MVS Installation Exits for information about the workload-restart and
element-restart installation exits.

Requesting Automatic Restart Management Services
You can design any batch job or started task to request automatic restart
management functions. These batch jobs or started tasks do not have to be
members of an XCF group to use automatic restart management, but they can be.
Any information about automatic restart management specifically for XCF group
members is noted in the appropriate sections of Chapter 2, “Using the
Cross-System Coupling Facility (XCF)” on page 2-1.

Through the IXCARM macro, a job or task can:

� Register as an element of automatic restart management and, optionally,
specify restart parameters and an event exit (REGISTER parameter).

After the job or task has issued the IXCARM macro with the REGISTER
parameter, MVS can automatically restart the program when an unexpected
failure occurs. You can specify restart parameters on the REGISTER request;
however, restart parameters in an installation-written policy override parameter
values specified on the IXCARM macro.

� Indicate when it is ready to receive work (READY parameter).

� Deregister from automatic restart management when the job or task no longer
needs to be restarted (DEREGISTER parameter). If a program fails after it
deregisters, MVS will not restart the program.

A job or task also can issue the IXCARM macro to:

� Indicate that MVS should delay the restart for this program until MVS
completes the restart of a related program, which is called a predecessor
element (WAITPRED parameter)

� Identify itself as the backup program for another element of the automatic
restart manager. This identification tells MVS that the other element should not
be restarted unless this backup program is deregistered (ASSOCIATE
parameter).

An unauthorized application can request all functions of IXCARM. However, there
are restrictions.

A program can issue the IXCARM macro even if the installation has not enabled, or
has disabled, automatic restart management restarts. MVS successfully processes
the requests, and includes the program as part of the current information about
automatic restart management, but will not attempt to restart the program until
automatic restart management restarts are enabled.

MVS also will not attempt to restart (and will deregister) an element under any of
these conditions:

� The element is cancelled through a CANCEL or FORCE command without the
ARMRESTART parameter specified

3-2 OS/390 V2R8.0 MVS Sysplex Services Guide

� JES is down or has indicated that the element should not be restarted

� The element has reached the restart attempts threshold specified in the policy

� The policy indicates that this element should not to be restarted

� The event exit indicates that this element should not be restarted

� An element-restart exit indicates that this element should not be restarted

� Another registered element is associated with this one

� Access to the ARM couple data set was lost

� The override JCL dataset cannot be accessed or is bad.

Understanding How MVS Handles Restart Processing
When an element unexpectedly fails, automatic restart management is given
control during end-of-job and end-of-memory termination after all other recovery
has taken place. If the job or task terminating is an element of the automatic restart
manager and should be restarted, then MVS:

1. Gives control to the element-restart exit

2. Gives control to the event exit

3. Restarts the element

4. Issues an ENF signal when the element re-registers with the automatic restart
manager.

When a system unexpectedly fails, automatic restart management determines if
any elements were running on the system that failed. If those elements can be
restarted on another system, and cross-system restarts are allowed, MVS does the
following for each system on which the elements will be restarted:

1. Gives control to the workload restart exit
2. For each element that will be restarted:

a. Gives control to the element restart exit
b. Gives control to the event exit
c. Restarts the element
d. Issues an ENF signal when the element re-registers with the automatic

restart manager.

Establishing Security for Restarted Jobs
When restarting an element, automatic restart management either can use the JCL
that previously started the element (persistent JCL) or can override that JCL by
specifying the installation-supplied name of a data set that contains the JCL for
restarting the element. The following security considerations apply when restarting
elements with either persistent or override JCL:

� When restarting an element with persistent JCL, automatic restart management
establishes the same security environment as existed when the element last
ran.

� When restarting an element with override JCL, automatic restart management
establishes the same security environment as existed when the element most
recently registered with automatic restart management. Within this security
environment, automatic restart management both opens the data set containing
the override JCL and submits the job.

 Chapter 3. Using the Automatic Restart Management Function of XCF 3-3

In most cases this has the effect of propagating the original element's job
security information to the restarted element. However, there are a few special
cases that you should consider:

1. If the override JCL specifies a different user ID (with the USER= parameter
on the JOB statement), then MVS does not propagate the most recent user
ID to the new element and instead uses the new user ID specified. The
override JCL also must specify the new user's password, unless the most
recent user has the appropriate RACF SURROGAT authority to specify the
new user ID.

2. If the override JCL does not specify a different user ID, then MVS
propagates the most recent user ID to the new element. However, MVS
does not propagate the most recent group ID to the new element. Instead,
MVS uses the most recent user's default group as the new element's group
ID unless the GROUP= parameter on the JOB statement specifies a
different group ID.

The fact that MVS does not use the most recent group ID should not
normally cause any security problems for the new element. However, there
are cases where access might be denied. The following examples might
experience this effect:

– When using RACF, you run with SETROPTS NOGRPLIST (disabling
list-of-groups processing) specified.

– When using RACF, you use &RACGPID (affecting the user's current
connect group) in some members of the GLOBAL class.

3. When using override JCL, the input source (port of entry, POE) for the new
element will be INTRDR. This might differ from the input source of the
original element, but should not normally cause any security problems.
However, access might be denied in some cases, such as when using
RACF and the element requires conditional access list entries that specify
WHEN(JESINPUT(xxx)) where xxx is the input source of the original
element.

Note: When using override JCL, submission of the new element will fail if the
following conditions exist:

– You use RACF
– The JOB statement does not specify a new user ID
– The most recent execution user is protected by RACF's PROPCNTL class.

This applies particularly to the restart of CICS regions, where many customer
installations disallow propagation of the CICS region's user ID to a submitted
job using the PROPCNTL option. However, this would only pose a problem if
you use override JCL during the restart.

Designing Your Application to Use Automatic Restart Management
Services

The IXCARM macro may be used in several ways. The simplest way is to register
a job or task with the automatic restart manager during program initialization, let
automatic restart management know when the job or task is ready to perform its
work, and deregister when the program does its cleanup (REGISTER, READY, and
DEREGISTER parameters).

3-4 OS/390 V2R8.0 MVS Sysplex Services Guide

A more complex use of the IXCARM macro involves controlling the sequence in
which elements become ready during a restart (WAITPRED parameter — see
“Waiting for Other Work to be Restarted (IXCARM REQUEST=WAITPRED)” on
page 3-7). Another use of the IXCARM macro involves designating a backup for an
element (ASSOCIATE parameter — see “Associating One Element with Another
(IXCARM REQUEST=ASSOCIATE)” on page 3-8).

When automatic restart management restarts an element, it restarts the element
from the very beginning of its code. Automatic restart management does not
perform any kind of cleanup processing or recovery for elements. The event exit
(see “Designing an Event Exit” on page 3-8), the element restart installation exit,
and the workload restart installation exit have been provided to allow the element's
environment to be cleaned up, recovered, and prepared for restart processing. The
element can also perform some cleanup before or after it re-registers.

When an element has been restarted, it will receive a return code X'4' with a
reason code of X'104' or X'108' when it re-registers with automatic restart
management. This indicates that the element has been restarted and the program
can do cleanup processing before continuing. Types of cleanup can be:

� To purge any partial output (depending on the type of output data set used).

� To determine the effect of using replication symbols in any dynamic allocations
that may be done. Started tasks use the symbols from the system the program
initially registered on before and after the re-registration. Batch jobs use the
symbols from the system the program initially registered on after the
re-registration; the local system's table is used before the re-registration for
batch jobs.

Registering as an Element and Specifying Restart Parameters
(IXCARM REQUEST=REGISTER)

A program must request that it be automatically restarted in the event of an
unexpected failure by issuing the IXCARM macro with the REQUEST=REGISTER
parameter. Keep in mind that:

� If your program is using checkpoint/restart, it cannot register with the automatic
restart manager.

� MVS allows only one registered element per address space.

� All IXCARM requests issued on behalf of an element must be issued from the
same address space as the register request.

� The hierarchy for parameters used during a restart are:

– The element restart exit overrides the installation-written policy
– Installation-written policy parameters override parameters specified on the

IXCARM macro
– Parameters specified on the IXCARM macro override policy defaults.

Note: If the element restart exit or active policy alter the original method of
start, the security environment the job was originally started under will
not be changed.

� An unauthorized application cannot specify an event exit routine or start text
when registering with automatic restart management.

 Chapter 3. Using the Automatic Restart Management Function of XCF 3-5

For the maximum benefit from automatic restart management, register your
program as early in initialization processing as possible to avoid timeouts when the
job is restarted. The only required information for a register request is the element
name. You may also provide:

� The event exit name and parameter list to be passed to the exit, if you design
an event exit to work with this program. Programs that register as elements of
the automatic restart manager should consider providing an event exit to
perform any specialized processing for the restarted element.

See “Designing an Event Exit” on page 3-8 for information about how to code
an event exit.

� START text for restart — for started tasks only, and only when you want to
provide text that differs from the original START command text (referred to as
persistent command text).

� The circumstances (element or system termination) under which the element is
to be restarted. (This information also can be in an installation-written policy.)

� The restart timeout interval; that is, how long MVS waits for a re-registration
request. (This information also can be in an installation-written policy.)

� The answer area (mapped by IXCYARAA) for the system to return information
about itself and the registration request.

Some of the parameters that may be specified follow. For more information about
the parameter for the IXCARM macro, see OS/390 MVS Programming: Sysplex
Services Reference.

RESTARTTIMEOUT parameter
To ensure that the restart of a given element completed successfully, automatic
restart management uses a time limit between the restart of an element and its
re-registration. This limit is called the restart time-out threshold .

If an element could take a long time to restart, code this parameter to keep the
program from being de-registered.

This parameter will be overridden if a RESTART_TIMEOUT value is specified
for this element in an installation-written policy.

ANSAREA parameter
Information about the system and the registration is returned in the answer
area. Mapping macro IXCYARAA contains the layout of the answer area.
Some of the information returned (when the request completes successfully) is:

ARAAREGTYPE
Indicates whether this is the initial registration of this element or the result
of a restart. If this field is 0, the answer area may not be valid.

ARAAFLAGS1
Indicates whether automatic restart management has been enabled to do
restarts. (The command SETXCF START,TYPE=ARM must be issued to
enable the automatic restart management function.)

ARAAHOMECLONE
The replication ID of the system where the element initially registered.

ARAACURCLONE
The replication ID of the system where this registration occurred.

3-6 OS/390 V2R8.0 MVS Sysplex Services Guide

Indicating Readiness for Work (IXCARM REQUEST=READY)
When a program has successfully registered as an element of the automatic restart
manager, the program should issue the IXCARM macro with the
REQUEST=READY parameter as soon as possible after initialization completes, to
avoid a timeout. (When the amount of time between issuing the IXCARM macro
with REQUEST=REGISTER and issuing the IXCARM macro with
REQUEST=READY is greater than the ready timeout threshold, a ready timeout will
occur. This interval can be specified in the automatic restart management policy on
the READY_TIMEOUT parameter.) This is especially important during restart
processing, when other elements might be waiting until an element is ready (or
times-out) before they continue processing.

Note: For a cross-system restart, the element will not complete the READY
process until all the elements in lower policy levels become ready or
time-out. See “Waiting for Other Work to be Restarted (IXCARM
REQUEST=WAITPRED)” for more information on WAITPRED processing.

Deregistering the Element (IXCARM REQUEST=DEREGISTER)
When an element no longer requires automatic restarts as part of its recovery
environment (usually during the program's cleanup processing), the element should
issue the IXCARM macro with the REQUEST=DEREGISTER parameter.

If the element was associated with another element (IXCARM REQUEST=
ASSOCIATE was issued), the system will disassociate the element as part of the
DEREGISTER request. For more information on associating elements, see
“Associating One Element with Another (IXCARM REQUEST=ASSOCIATE)” on
page 3-8.

Programs should be aware that MVS might automatically deregister the element
because of various error conditions. An ENF signal is issued whenever an element
is deregistered, so any unexpected situations could be handled through an ENF
listener user routine (see “Monitoring Restarts through the ENFREQ Macro” on
page 3-11 for more information).

Waiting for Other Work to be Restarted (IXCARM
REQUEST=WAITPRED)

In certain cases, one program might have to wait until other programs are up and
running before it can initialize successfully. During initial startup, an installation can
manage such dependencies by the order in which it starts individual programs;
however, this sequence is equally important when a system leaves the sysplex and
MVS is to perform a cross-system restart.

For elements of the automatic restart manager, the element that must become
ready first is known as a predecessor element. During restart processing, an
installation can manage the sequence of restarting elements and their
predecessors in two ways:

� Through the assignment of elements to a specific level in the automatic restart
management policy.

MVS restarts all of the elements, then allows the elements in lower policy levels
to become ready to do work, before allowing elements in higher levels to
become ready. (For example, all elements in LEVEL 1 should indicate they are
ready before elements in LEVEL 2 complete their ready processing.)

 Chapter 3. Using the Automatic Restart Management Function of XCF 3-7

� Through the WAITPRED request on the IXCARM macro.

By issuing IXCARM with the WAITPRED parameter, an element indicates that
a predecessor element must become ready before this element can initialize
successfully. During restarts, not initial starts, MVS will wait for the predecessor
to issue IXCARM REQUEST=READY before allowing this element to complete
ready processing. Issuing WAITPRED is most useful when an element and its
predecessor are in the same policy level, by specific assignment or by default.
Elements should issue WAITPRED after the register request, but before the
ready request.

If the restarted element is a predecessor of other elements (that is, other
elements wait for this element to become ready before they can become
ready), the element has a limited amount of time to re-register and to indicate
its readiness for work. MVS provides these time limits so the other elements
are not suspended — or waiting — forever, if the predecessor element fails or
is waiting for a resource to become available before issuing the IXCARM macro
with REQUEST=REGISTER or REQUEST=READY parameter.

When a predecessor element exceeds the time limit for re-registering or for
becoming ready, the element waiting for the predecessor receives a return
code X'04' with a reason code of X'204' or X'304' from its ready request.
The element should then determine if it can run without the predecessor and
take whatever action is appropriate.

Associating One Element with Another (IXCARM
REQUEST=ASSOCIATE)

Another way elements can notify MVS of a dependency is through the ASSOCIATE
request of the IXCARM macro. If a transaction processing application maintains a
backup application for recovery purposes (such as with extended recovery facility
(XRF)), the backup element should issue the IXCARM macro with the
REQUEST=ASSOCIATE parameter to indicate that the system should not
automatically restart the primary element. When one element is associated with
another element, a restart will be done only when the backup has deregistered and
the primary element fails, or is on a system that fails. In the event that the backup
element fails, then the automatic restart manager will restart the backup element.

Designing an Event Exit
The event exit is available only through the IXCARM REGISTER request. This exit:

� Gets control any time the element is to be restarted, but only after the workload
restart and element restart installation exits have completed processing

Note: When this exit runs, all resource managers have completed processing
and the address space the element was originally running in is no
longer addressable.

� Has to be able to be loaded by every MVS system in the sysplex that is
connected to the ARM couple data set

� Runs on the system on which the element is to be restarted

� Receives the address and length of a copy of the automatic restart manager
event-exit parameter list, mapped by IXCYEVE. The parameter list contains the
address of the event exit parameter list if EVENTEXITPL was specified on the
IXCARM macro.

3-8 OS/390 V2R8.0 MVS Sysplex Services Guide

� Sets a return code that tells automatic restart management whether to proceed
with the restart.

Exit Routine Environment
The event exit receives control, in the XCF address space, in the following
environment:

Authorization: Supervisor state and PSW key 0
Dispatchable unit mode: Task
Cross-memory mode: PASN = HASN = SASN.
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held

 Exit Recovery
Automatic restart management does not provide any recovery for the event exit
routine. Routines that require recovery must establish their own. The recovery
routine must provide whatever diagnostic data is required for problem determination
for the event exit routine.

If the event exit abends, passes invalid data back to automatic restart management,
or cannot be invoked, the element will not be restarted.

Exit Routine Processing
The system passes control to the event exit prior to restarting the element. This exit
gets control after the workload restart and element restart installation exits.

The system passes information to the event exit routine in a parameter list and in
registers. The routine may release resources, clean up storage, determine if the
element should be restarted, or do whatever processing is necessary to restart the
element.

 Processing Considerations
Consider the following when writing an event exit routine:

� The event exit routine must be a reentrant program

� The event exit should be in LPA or in an authorized LINKLIST or LINKLIB
concatenation on all of the MVS systems in the sysplex that are connected to
the ARM couple data set

� The event exit routine is given control on the system where the restart will
occur

� If this exit is getting control because the element failed, the address space the
element was running in is no longer addressable

� If this is a cross-system restart, make sure all addresses passed in the event
exit parameter list, specified on the REGISTER request, are addressable from
this system.

 Chapter 3. Using the Automatic Restart Management Function of XCF 3-9

Input Register Information
On entry to the event exit routine, the general purpose registers (GPRs) contain:

Register Contents
0 Does not contain any information for use by the event exit
1 Address of the event exit parameter list (mapped by IXCYEVE)
2-12 Do not contain any information for use by the event exit
13 Address of a 144-byte work area for use by the event exit routine. The

exit routine does not have to save and restore XCF's registers in this
work area. The exit routine can use this work area in any way it
chooses.

14 Return address
15 Entry point address

When the event exit receives control, the access registers (ARs) contain no
information for use by the event exit.

Output Register Information
When control returns to the automatic restart manager, the general purpose
registers (GPRs) contain:

Register Contents
0-14 The exit routine does not have to place any information in these

registers, and does not have to restore their contents to what the
contents were when the routine received control.

15 Return code

0 The automatic restart manager should proceed with the restart of
the element.

4 The automatic restart manager should not restart the element.

Parameter List Contents: The parameter list that the system passes to the event
exit routine is mapped by the IXCYEVE mapping macro. The parameter list is
addressable from the primary address space in which the event exit routine runs,
and includes the following:

� The type of termination for which the element is being restarted

� The address of a copy of the exit parameter list specified in the EVENTEXITPL
parameter of the IXCARM macro when this element registered

Note: This parameter list should contain only information that would be
available from every system if this exit could get control for a
cross-system restart.

� The length of the parameter list as specified in the EXITPLLEN parameter of
the IXCARM macro when this element registered

� The job name or address space name that this element had when it last
registered with automatic restart management

� The element name

� The element type

� The name of the system the element was running on when the failure occurred

� The name of the system where the element originally registered

3-10 OS/390 V2R8.0 MVS Sysplex Services Guide

� The name of the system the element will be restarted on (that is, the name of
the system this exit is running on).

Gathering Statistical Data
The SMF type 30 and 90 records contain information about availability for
automatic restart management services. See OS/390 MVS System Management
Facilities (SMF) for the contents of these records.

Monitoring Restarts through the ENFREQ Macro
To monitor automatic restart activity, use the ENFREQ macro to listen for ENF
code 38, which MVS issues for the following events:

� An element was deregistered because of an MVS internal error.
� The restart of an element failed.
� An element issued the register, ready, or deregister request.
� Connectivity to the ARM couple data set is either established or re-established.

For example, using the ENFREQ macro can help you design programs that have
predecessor elements, or help you coordinate automation packages.

See OS/390 MVS Programming: Authorized Assembler Services Guide for more
information about using ENFREQ.

Displaying Information about Automatic Restart Management
To obtain information about elements of the automatic restart manager, you can
issue:

� The IXCQUERY macro
� The D XCF,ARMSTATUS command
� The COUPLE subcommand of IPCS.

The information requested through any of the above methods should be filtered by
using element name, restart group name, and so on. For more information about
the above methods, see:

� OS/390 MVS Programming: Sysplex Services Reference for more information
about the IXCQUERY macro

� OS/390 MVS System Commands for more information about the DISPLAY
command

� OS/390 MVS IPCS Commands for more information about the COUPLE
subcommand.

All of the methods for displaying information about automatic restart management
contain information about the state of the elements. An automatic restart
management element can be in one of the following states, depending on the
IXCARM requests it has issued or how the restart process has progressed: starting,
available, available-to, failed, restarting, recovering. The states are defined as
follows:

Starting
The element has initially registered but has not yet indicated it is ready to
accept work.

 Chapter 3. Using the Automatic Restart Management Function of XCF 3-11

Available
The element has indicated it is ready to accept work by issuing the IXCARM
macro with the REQUEST=READY parameter.

Available-to
The element exceeded the ready timeout threshold before it issued the
IXCARM macro with REQUEST=READY parameter. The system considers this
element ready.

Note: For the IXCQUERY macro, elements in this state will be put with the
elements in the available state. The available-to state is not applicable
to status information available through the IXCQUERY macro.

Failed
The element has terminated and a restart has not been initiated by MVS, yet.
This condition should apply only for a short amount of time if automatic restart
management restarts have been enabled. (This state is not related to the failed
state for an XCF member.)

Restarting
MVS has initiated a restart of this element, but it has not re-registered with the
automatic restart manager yet.

For IXCQUERY requests issued on the system where the restart is occurring,
the following information is also available from IXCYQUAA:

� QUAARMSRSTINGINERE — this bit indicates that the element is in a
restarting state. The element's restart exit is currently in control or has been
processed. It is possible that the restart will be vetoed.

� QUAARMSRSTINGINEVE — this bit indicates that the element is in a
restarting state. The element's event exit is currently in control or has been
processed. It is possible that the restart will be vetoed.

� QUAARMSRSTCOMMITED — this bit indicates that the element is in a
restarting state. ARM has initiated the restart of the element by
implementing the restart method.

Recovering
The element has been restarted and has re-registered with the automatic
restart manager, but has not indicated that it is ready to accept work yet.

The following table summarizes the element state definitions.

3-12 OS/390 V2R8.0 MVS Sysplex Services Guide

Figure 3-1. Automatic Restart Management Element States

Current State Event
IXCARM Command
Issued Resultant State

NOT DEFINED Element successfully registers
as an element

REQUEST
=REGISTER

STARTING

STARTING Element indicates ready to
accept work

REQUEST =READY AVAILABLE

FAILED ARM starts the restart process RESTARTING

RESTARTING Element not yet restarted by
ARM. Policy or exit vetoes the
restart.

 NOT DEFINED

RESTARTING Element restarted, not yet
reregistered

 RESTARTING

RESTARTING Element restarted, exceeds
timeout threshold before
reregistering (issuing
REQUEST=REGISTER)

 NOT DEFINED

NOT DEFINED Element restarted, had
exceeded timeout threshold
before reregistering, and then
registers

REQUEST
=REGISTER

STARTING

RESTARTING Element restarted, successfully
reregisters

REQUEST
=REGISTER

RECOVERING

RECOVERING Element restarted, reregisters,
and needs to wait for
predecessors before being
available.

REQUEST
=WAITPRED

RECOVERING

RECOVERING Exceeds timeout threshold
before issuing
REQUEST=READY

None (timed out) AVAILABLE-TO

RECOVERING Element indicates ready to
accept work

REQUEST =READY AVAILABLE

| IBM-Supplied Automatic Restart Manager Policy Levels
| The following element types are assigned by IBM. The elements will be restarted in
| the specified order unless the order is overridden by the RESTART_ORDER
| specified in the active automatic restart manager policy.

| SYSLVL0 Elements to be restarted in level 0.
| SYSIRLM IRLM related elements to be restarted in level 0.
| SYSLVL1 Elements to be restarted in level 1.
| SYSDB2 DB2 related elements to be restarted in level 1.
| SYSIMS IMS relalted elements to be restarted in level 1.
| SYSTCPIP TCPIP related elements to be restarted in level 1.
| SYSVTAM VTAM related elements to be restarted in level 1.
| SYSLVL2 Elements to be restarted in level 2.
| SYSCICS CICS related elements to be restarted in level 2.
| SYSMQMGR MQ Series queue manager related elements to be restarted in level
| 2.

 Chapter 3. Using the Automatic Restart Management Function of XCF 3-13

| SYSMQCH MQ Series channel initiator related elements to be restarted in level
| 2.

Example of Using the IXCARM Macro
 GBLC &LEVEL;
&LEVEL; SETC '1.ðð'
IXCADEMO TITLE '-- Information and prologue for IXCADEMO v&LEVEL; (ARM +

services sample program)'
IXCADEMO CSECT
IXCADEMO AMODE 31
IXCADEMO RMODE ANY
 SPACE ,
\/\ START OF SPECIFICATIONS \\\
\
\
\ð1\ MODULE-NAME = IXCADEMO
\
\ð2\ DESCRIPTIVE-NAME = Sample program to use ARM services.
\
\ð1\ PROPRIETARY STATEMENT:
\
\ LICENSED MATERIALS - PROPERTY OF IBM
\ THIS MACRO IS "RESTRICTED MATERIALS OF IBM"
\ 5655-ð68 (C) COPYRIGHT IBM CORP. 1994
\ SEE COPYRIGHT INSTRUCTIONS
\
\ STATUS = HBB552ð
\
\ð1\ FUNCTION =
\ Sample program to illustrate use of ARM services: Register,
\ WaitPred, Ready and Deregister.
\
\ð2\ OPERATION =
\
\ 1) Go to supervisor state.
\ 2) Put out informational messages. Wait on WTOR.
\ 3) Issue IXCARM Request=Register. Put out return/reason
\ codes. Wait on WTOR.
\ 4) If a restart, issue IXCARM Request=WaitPred. Put out
\ return/reason codes. Wait on WTOR.
\ 5) Issue IXCARM Request=Ready. Put out return/reason codes.
\ Wait on WTOR.
\ 6) Issue IXCARM Request=Deregister. Put out return/reason
\ codes. Wait on WTOR.
\ 7) Put out informational message.
\ 8) Go to problem state.
\
\ Example is written reentrantly. \
\ \
\\\\ END OF SPECIFICATIONS \\\/
 SPACE ,
\\\
\ \
\ To link-edit this program, use statements like these: \
\ \
\ //LINK EXEC PGM=IEWL, \
\ // PARM='XREF,MAP,LIST,RENT,LET,NCAL' \
\ //SYSLMOD DD DSN=load_library,DISP=SHR \
\ //OBJECT DD DSN=object_library,DISP=SHR \
\ //SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1)) \
\ //SYSPRINT DD SYSOUT=\ \
\ //SYSLIN DD \ \
\ INCLUDE OBJECT(IXCADEMO) object module \
\ ORDER IXCADEMO this csect first, for debugging \
\ PAGE IXCADEMO page align, for debugging \
\ ENTRY IXCADEMO this csect is entry point \
\ MODE AMODE(31),RMODE(ANY) \
\ SETCODE AC(1) \
\ NAME IXCADEMO(R) \

3-14 OS/390 V2R8.0 MVS Sysplex Services Guide

\ \
\ The load library must be an APF library. \
\ \
\\\
 EJECT ,
 USING IXCADEMO,R15

B START branch around constants
 SPACE

DC AL1(ENDCON-\-1) length of constants
 DC C' '
MODLNAME DC C'IXCADEMO' module name

DC C' V&LEVEL ' version
 DC C'&SYSDATE ' date assembled
 DC C'&SYSTIME ' time assembled

DC AL2(CSECTEND-IXCADEMO) length of CSECT
ENDCON DS ðC
 SPACE
START DS ðH

STM R14,R12,12(R13) save caller's registers
LR R12,R15 load entry addr

 DROP R15
 USING IXCADEMO,R12 permanent addressability
 SPACE

STORAGE OBTAIN, get working storage +
 LENGTH=WORKLEN1, +
 BNDRY=PAGE, +
 LOC=(ANY,ANY)
 SPACE

LR R2,R1 save addr of area
LR R14,R1 load addr of work area to be zeroed
L R15,=A(WORKLEN1) load length to be zeroed
SLR R1,R1 set padding byte & count to zero in +

source (Rð won't matter)
MVCL R14,Rð propagate X'ðð' from padding byte

 SPACE
ST R13,4(,R2) save backward pointer to caller
ST R2,8(,R13) save forward pointer to this CSECT
LR R13,R2 point to workarea

 USING WORKAREA,R13 save/work addressability
 SPACE ,
\ Save information useful for ABEND recovery and ABEND debugging
 SPACE ,

MVC WORKID(L'MODLNAME),MODLNAME copy module name
 MVC WORKID+L'MODLNAME(L'SAVECN),SAVECN copy rest

ST R12,BASESAVE save base register
ST R13,SAVESAVE save R13 of this routine
TITLE '-- ARM-related front-end for IXCADEMO'
MODESET MODE=SUP get supervisor state for ARM requests

 SPACE ,
\\\
\ \
\ Build and issue entry message. \
\ \
\\\
 SPACE ,

MVC WTODYN(ENTRYMW),ENTRYM copy static message
 USING PSA,Rð

L R1,PSAAOLD point to ASCB
 USING ASCB,R1

ICM R2,15,ASCBJBNI point to job name, if any
BNZ COPYNAME skip if a non-zero address
L R2,ASCBJBNS point to STC name

COPYNAME DS ðH
MVC SAVNAME(8),ð(R2) copy name
MVC WTODYN+(ENTNAME-ENTRYM)(8),SAVNAME copy name
L R1,PSATOLD point to current task's TCB

 USING TCB,R1
SLR R2,R2 ensure high byte is zero
ICM R2,7,TCBJSCBB get 24-bit JSCB address

 USING IEZJSCB,R2
L R2,JSCBACT point to active JSCB
L R2,JSCBSSIB point to life-of-job SSIB

 Chapter 3. Using the Automatic Restart Management Function of XCF 3-15

 USING SSIB,R2
MVC SAVJESID,SSIBJBID copy JESx id
MVC WTODYN+(ENTJESID-ENTRYM)(8),SAVJESID copy JESx id

 DROP Rð,R1,R2
 SPACE ,
 WTO MF=(E,WTODYN) say starting
 EJECT ,

BAL R14,SAYIT wait for response to a WTOR
 SPACE ,
\\\
\ \
\ Ask to be registered. \
\ \
\\\
 SPACE ,
 IXCARM REQUEST=REGISTER, get registered +
 ELEMENT=ELEMNAME, element name +

EVENTEXIT=EVTEXTNM, event exit name +
EVENTEXITPL=EVTEXTPR, event exit parameter list +
EXITPLLEN=EVTEXTPL, event exit parameter list length +
RESTARTTIMEOUT=NORM, normal timeout interval +

 ANSAREA=LCLANSWR, answer area +
 RETCODE=SAVERC, return code +
 RSNCODE=SAVERSN, reason code +

MF=(E,IXCARML) parameter list area
 SPACE ,
\ Put out return and reason codes.
 MVC SAVESERV,=CL1ð'Register'

BAL R14,SAYRC say RC/RSN codes
 SPACE ,
\ See whether registered, perhaps as a restarted job or STC.

CLC SAVERC,=A(IXCARMRC4) rc=ð or =4?
BNH CHKREG skip if registered or re-registered

\ Something wrong, RC>4.
EX Rð,\ cause ðC3 for dump

 SPACE ,
\ Determine whether this is a new registration or a registration after
\ being restarted, and act accordingly.
CHKREG DS ðH

LA R2,LCLANSWR point to answer area (not actually +
 used)

USING ARAA,R2 map answer area
 SPACE ,

BAL R14,SAYIT wait for response to a WTOR
 SPACE ,
 DROP R2

CLC SAVERC,=A(IXCARMRCð) rc=ð (not restarted)?
BE DOREADY if yes, proceed

 EJECT ,
\ This is a restart.

BAL R14,SAYIT wait for response to a WTOR
 SPACE ,
\\\
\ \
\ Wait for any restarted, predecessor elements. \
\ \
\\\
 SPACE ,

IXCARM REQUEST=WAITPRED, wait for any predecessor elements +
 RETCODE=SAVERC, return code +
 RSNCODE=SAVERSN, reason code +

MF=(E,IXCARML) parameter list area
 SPACE ,
 MVC SAVESERV,=CL1ð'WaitPred'

BAL R14,SAYRC say RC/RSN codes
 SPACE ,

CLC SAVERC,=A(IXCARMRC4) rc=ð or =4?
BNH DOREADY skip if OK

\ Something wrong, RC>4.
EX Rð,\ cause ðC3 for dump

 EJECT ,
DOREADY DS ðH

3-16 OS/390 V2R8.0 MVS Sysplex Services Guide

BAL R14,SAYIT wait for response to a WTOR
 SPACE ,
\\\
\ \
\ Say ready. \
\ \
\\\
 SPACE ,
 IXCARM REQUEST=READY, say ready +
 RETCODE=SAVERC, return code +
 RSNCODE=SAVERSN, reason code +

MF=(E,IXCARML) parameter list area
 SPACE ,
 MVC SAVESERV,=CL1ð'Ready'

BAL R14,SAYRC say RC/RSN codes
 SPACE ,

CLC SAVERC,=A(IXCARMRC4) rc=ð or =4?
BNH MAINLINE skip if OK

\ Something wrong, RC>4.
EX Rð,\ cause ðC3 for dump
TITLE '-- Mainline for IXCADEMO'

\\\
\ \
\ The real reason (whatever it is) why we're here. \
\ \
\ The substantive application code would be here. \
\ \
\\\
 SPACE ,
MAINLINE DS ðH

TITLE '-- ARM-related backend for IXCADEMO'
BAL R14,SAYIT wait for response to a WTOR

 SPACE ,
\\\
\ \
\ Now deregister and terminate. \
\ \
\\\
 SPACE ,

IXCARM REQUEST=DEREGISTER, get deregistered +
 RETCODE=SAVERC, return code +
 RSNCODE=SAVERSN, reason code +

MF=(E,IXCARML) parameter list area
 SPACE ,
 MVC SAVESERV,=CL1ð'Deregister'

BAL R14,SAYRC say RC/RSN codes
 SPACE ,
 CLC SAVERC,=A(IXCARMRCð) rc=ð?

BNH DONE skip if OK
\ Something wrong, RC>ð.

EX Rð,\ cause ðC3 for dump
 EJECT
\\\
\ \
\ Terminate. \
\ \
\\\
 SPACE ,
DONE DS ðH
 SPACE ,
\\\
\ \
\ Build and issue exit message. \
\ \
\\\
 SPACE ,

MVC WTODYN(EXITMW),EXITM copy static message
MVC WTODYN+(EXTNAME-EXITM)(8),SAVNAME copy name
MVC WTODYN+(EXTNAME-EXITM)(8),SAVNAME copy name
MVC WTODYN+(EXTJESID-EXITM)(8),SAVJESID copy JESx id

 SPACE ,
 WTO MF=(E,WTODYN)

 Chapter 3. Using the Automatic Restart Management Function of XCF 3-17

 SPACE ,
MODESET MODE=PROB back to problem state

 SPACE ,
L R2,SAVEAREA+4 save caller's R13
LH R11,RCHALF save return code
LR R1,R13 point to working storage

 SPACE ,
STORAGE RELEASE, free working storage +

ADDR=(R1), address of area to be freed +
 LENGTH=WORKLEN1
 SPACE ,

LR R13,R2 restore caller's R13
XC 8(4,R13),8(R13) clear forward pointer of caller
L R14,12(,R13) restore caller's registers
LR R15,R11 set return code
LM Rð,R12,2ð(R13) restore caller's registers
BR R14 return to caller
TITLE '-- SAYIT, subroutine to wait'

\\\
\ \
\ Subroutine to wait on a WTOR. \
\ \
\\\
 SPACE
SAYIT DS ðH

STM Rð,R15,SAVEREGS save entry registers
 SPACE
 MVC WTODYN(WTORMWT),WTORM
 SPACE
\ Convert R12 to hex-like EBCDIC.
 ST R12,FULLWORK

NC FULLWORK,=X'7FFFFFFF' turn off any AMODE(31) bit
 UNPK DBLWORK(9),FULLWORK(5)
 MVC WTODYN+(WTORR12-WTORM)(8),DBLWORK
 TR WTODYN+(WTORR12-WTORM)(8),TRTTABLE
 SPACE
\ Convert R13 to hex-like EBCDIC.
 ST R13,FULLWORK
 UNPK DBLWORK(9),FULLWORK(5)
 MVC WTODYN+(WTORR13-WTORM)(8),DBLWORK
 TR WTODYN+(WTORR13-WTORM)(8),TRTTABLE
 SPACE
\ Convert PASN to hex-like EBCDIC.
 EPAR R1 get PASN
 ST R1,FULLWORK
 UNPK DBLWORK(5),FULLWORK+2(3)
 MVC WTODYN+(WTORASID-WTORM)(4),DBLWORK
 TR WTODYN+(WTORASID-WTORM)(4),TRTTABLE
 SPACE
\ Convert TCB address to hex-like EBCDIC.
 USING PSA,Rð
 UNPK DBLWORK(9),PSATOLD(5)
 MVC WTODYN+(WTORTCB@-WTORM)(8),DBLWORK
 TR WTODYN+(WTORTCB@-WTORM)(8),TRTTABLE
 SPACE
\ Convert RB address to hex-like EBCDIC.

L R1,PSATOLD get TCB address
 USING TCB,R1
 UNPK DBLWORK(9),TCBRBP(5)
 MVC WTODYN+(WTORRB@-WTORM)(8),DBLWORK
 TR WTODYN+(WTORRB@-WTORM)(8),TRTTABLE
 DROP Rð,R1
 SPACE
\ Convert point count to EBCDIC.

L R1,POINTCT get current count
LA R1,1(,R1) and add one

 ST R1,POINTCT and save
 L Rð,POINTCT
 CVD Rð,DBLWORK
 UNPK WTODYN+(WTORPT#-WTORM)(3),DBLWORK(8)
 OI WTODYN+(WTORPT#-WTORM)+2,C'ð'

3-18 OS/390 V2R8.0 MVS Sysplex Services Guide

 SPACE
\ Put out WTOR.

XC WTORECB,WTORECB ensure ECB zero
WTOR ,WTORRPLY, field to get reply +

1, length of reply +
WTORECB, ECB that'll be waited on +

 MF=(E,WTODYN)
 SPACE
\ Wait on reply to WTOR.
 WAIT ECB=WTORECB
 SPACE

LM Rð,R15,SAVEREGS load entry registers
BR R14 back to caller
TITLE '-- SAYRC, subroutine to report RC/RSN codes'

\\\
\ \
\ Subroutine to announce return and reason codes from an IXCARM ser- \
\ vice. \
\ \
\\\
 SPACE
SAYRC DS ðH

STM Rð,R15,SAVEREGS save entry registers
 SPACE

MVC WTODYN(SERVMW),SERVM copy static message
MVC WTODYN+(SERVSRVC-SERVM)(1ð),SAVESERV copy service name

 SPACE
\ Convert return code to hex-like EBCDIC
 UNPK DBLWORK(9),SAVERC(5)
 MVC WTODYN+(SERVRC-SERVM)(8),DBLWORK
 TR WTODYN+(SERVRC-SERVM)(8),TRTTABLE
 SPACE
\ Convert reason code to hex-like EBCDIC
 UNPK DBLWORK(9),SAVERSN(5)
 MVC WTODYN+(SERVRSN-SERVM)(8),DBLWORK
 TR WTODYN+(SERVRSN-SERVM)(8),TRTTABLE
 SPACE ,
 WTO MF=(E,WTODYN) issue WTO
 SPACE

LM Rð,R15,SAVEREGS load entry registers
BR R14 back to caller
TITLE '-- Constants'

\\\
\ \
\ Constants \
\ \
\\\
 SPACE
SAVECN DC C' Savework Area'
 SPACE
ELEMNAME DC CL16'IXCADEMO' element name
EVTEXTNM DC CL8'IEFBR14' event exit name
 SPACE
EVTEXTPR DS ðF event exit parameter list

DC C'This is a parameter list'
EVTEXTLL EQU \-EVTEXTPR length of parameter list
EVTEXTPL DC A(L'EVTEXTPR) event exit parameter list length
 SPACE ,
\ Entry message.
ENTRYM DS ðX

DC AL1(ð),AL1(ENTRYMW),AL2(ð) WTO header
ENTRYMX DC C'ARMD1ðð1I ' message prefix

DC C'IXCADEMO v&LEVEL in '
ENTNAME DS CL8 address space name
 DC C'('
ENTJESID DS CL8 JES id
 DC C') starting'
ENTRYMT EQU \-ENTRYMX length for TPUT
ENTRYMW EQU ENTRYMT+4 length for WTO
 SPACE ,
\ Exit message.
EXITM DS ðX

 Chapter 3. Using the Automatic Restart Management Function of XCF 3-19

DC AL1(ð),AL1(EXITMW),AL2(ð) WTO header
EXITMX DC C'ARMD1ðð2I ' message prefix

DC C'IXCADEMO v&LEVEL in '
EXTNAME DS CL8 address space name
 DC C'('
EXTJESID DS CL8 JES id
 DC C') finishing'
EXITMT EQU \-EXITMX length for TPUT
EXITMW EQU EXITMT+4 length for WTO
 SPACE ,
\ WTOR message.
WTORM DS ðX

DS 2FL4 addr of reply and of ECB
DC AL1(ð),AL1(WTORMW),AL2(ð) WTO header

WTORMX DC C'ARMD1ðð3I ' message prefix
 DC C'R12='
WTORR12 DS CL8
 DC C', R13='
WTORR13 DS CL8
 DC C', ASN='
WTORASID DS CL4

DC C', TCB at '
WTORTCB@ DS CL8

DC C', RB at '
WTORRB@ DS CL8

DC C', point '
WTORPT# DS CL3

DC C'; reply with anything'
WTORMT EQU \-WTORMX length for TPUT
WTORMW EQU WTORMT+4 length for WTO
WTORMWT EQU WTORMT+12 length for WTOR
 SPACE ,
\ Service (RC, RSN and type) message.
SERVM DS ðX

DC AL1(ð),AL1(SERVMW),AL2(ð) WTO header
SERVMX DC C'ARMD1ðð4I ' message prefix

DC C'Service = '
SERVSRVC DS CL1ð
 DC C', RC='
SERVRC DS CL8
 DC C', RSN='
SERVRSN DS CL8
SERVMT EQU \-SERVMX length for TPUT
SERVMW EQU SERVMT+4 length for WTO
 SPACE ,
\ The following has to be at least 24ð bytes into the CSECT
TRTTABLE EQU \-24ð
 DC C'ð123456789ABCDEF'

TITLE '-- Literals'
\\\
\ \
\ Literals \
\ \
\\\
 SPACE ,
 LTORG

TITLE '-- Save/work area'
\\\
\ \
\ Save/work area DSECT \
\ \
\\\
 SPACE
WORKAREA DSECT
SAVEAREA DS 18F register save area
WORKID DS CL(L'MODLNAME+L'SAVECN) EBCDIC identifier
 DS ðD alignment
BASESAVE DS A saved base register of IXCADEMO
SAVESAVE DS A saved R13 of caller
SAVEREGS DS 16F savearea for subroutines
 SPACE
\\\

3-20 OS/390 V2R8.0 MVS Sysplex Services Guide

\ \
\ IXCARM's parameter list area. \
\ \
\\\
 SPACE
 IXCARM MF=(L,IXCARML)
 SPACE
FULLWORK DS F
SAVERC DS F return code from IXCARM service
SAVERSN DS F reason code from IXCARM service
WTORECB DS F ECB for WTOR/WAIT
POINTCT DS F WTOR/WAIT point number
FLAGS DS ðF
FLAG1 DS X
FLAG2 DS X
FLAG3 DS X
FLAG4 DS X
WTORRPLY DS X 1-byte reply area for WTOR
RCHALF DS H return code halfword
 ORG \-1
RC DS X return code
SAVNAME DS CL8 job/STC name
SAVJESID DS CL8 JESx id
 SPACE
LCLANSWR DS XL32 answer area
SAVESERV DS CL12 service name for message

DS ðF alignment for WTODYN
WTODYN DS CL136
 DS ðD doubleword align
DBLWORK DS CL16

DS ðD doubleword align end of WORKAREA
 SPACE
WORKLEN1 EQU \-WORKAREA length of workarea

TITLE '-- DSECTs and EQUs'
\\\
\ \
\ DSECTs, EQUs & whatnot \
\ \
\\\
 SPACE
 PRINT NOGEN
 YREGS , register EQUs
 IHAPSA , PSA mapping
 IHAASCB , ASCB mapping
 IKJTCB , TCB mapping
 IEZJSCB , JSCB mapping
 IEFJSSIB , SSIB mapping

IXCYARM , ARM return and reason codes
IXCYARAA , ARM answer area mapping

 SPACE
IXCADEMO CSECT ensure resumed CSECT
CSECTEND DS ðD
 END

 Chapter 3. Using the Automatic Restart Management Function of XCF 3-21

3-22 OS/390 V2R8.0 MVS Sysplex Services Guide

Sysplex Services for Data Sharing (XES)

 Copyright IBM Corp. 1994, 1999

OS/390 V2R8.0 MVS Sysplex Services Guide

Chapter 4. Introduction to Sysplex Services for Data Sharing
(XES)

Sysplex services for data sharing allow subsystems, system products and
authorized applications running in a sysplex use a coupling facility for
high-performance, high-availability data sharing. Sysplex services support data
sharing while maintaining data integrity and consistency by:

� Allowing users to store and access data in a coupling facility in any of three
types of structures (list, lock, or cache).

� Guaranteeing that individual operations on coupling facility data are either
completed or, if necessary, backed out to their original state. Users are
prevented from accessing data that is being changed.

� Providing services to help users protect data when recovering from a failure.

� Enabling users to ensure that their local copies of shared data are valid.

� Allowing users who change shared data to automatically notify other users that
their local copies are no longer valid.

� Providing functions that allow users to create a customized set of locks and
locking protocols including:

 – Application-defined:

 - Resource locks
 - Lock states

- Lock state compatibility rules

– A mechanism to allow users to resolve lock contention. When contention
arises for a lock, the system passes control to the lock owner's contention
exit to resolve the lock contention according to the user's defined protocols.

– Support of failure recovery options through the retention of lock-related
information that will persist across system or sysplex outages.

Coupling Facility Structures

Instead of accessing data in a coupling facility by address, you can allocate three
types of objects, called structures , and access data in the structures as logical
entities (by name, for instance). The ability to access data in this manner frees
coupling facility users from having to be concerned with the physical location or
address of the data.

Each type of structure, described in detail in “Types of Coupling Facility Structures”
on page 4-4, provides a unique set functions and offers a different way of using a
coupling facility. The types of structures are:

 � Cache structure
 � List structure
 � Lock structure

A coupling facility can hold one or more structures of any type, however, each
structure must reside entirely in a single coupling facility. Applications are not
limited to using a single coupling facility structure. They can use multiple structures
of the same type or different types.

 Copyright IBM Corp. 1994, 1999 4-1

Products and subsystems that exploit the coupling facility indicate their coupling
facility structure requirements as part of their installation information. For instance,
a product might require a lock structure of a certain size, with particular attributes,
and a certain name. Or, a product might require that a structure be allocated in a
certain level (CFLEVEL) of a coupling facility because of the functionality it
provides.

When system administrators or system programmers install software that requires a
coupling facility structure, they create a coupling facility resource management
(CFRM) policy that specifies the name, size, and attributes of each structure to be
allocated. The CFRM policy also allows the installation to limit the amount of
storage each structure can occupy and control where each structure is allocated,
through a “preference list”, for multiple coupling facilities.

Once the policy is defined, the operator needs to issue the SETXCF command to
activate the policy. The activated policy does not cause the structures to be
allocated. A structure is allocated only when the first user connects to the structure.

For More Information

To learn more about the following coupling facility topics, see OS/390 MVS
Setting Up a Sysplex:

� What is a coupling facility?
� What is the role of the coupling facility in a sysplex?
� How does an installation define coupling facility structures?
� What is a CFRM policy and how does an installation define one?
� What are the hardware requirements for the coupling facility?
� What are the software requirements for the coupling facility?
� What are the planning considerations for using a coupling facility?

The following other books present information about the coupling facility:

� OS/390 Parallel Sysplex Overview
� OS/390 Parallel Sysplex Systems Management
� OS/390 Parallel Sysplex Hardware and Software Migration
� PR/SM Planning Guide

Data Sharing Concepts and Terminology
Data sharing in a sysplex refers to the ability of concurrent subsystems (such as
DB2 or IMS DB) or applications to directly access and change the same data while
maintaining data integrity and consistency throughout the sysplex.

In this book, the following terms are used:

� Data refers to any type of information, not only information contained in a data
base.

� Application refers to any subsystem, system product, or authorized application
running on MVS in a multisystem environment or sysplex.

Typically, multiple instances of the application, distributed across the sysplex,
work together to perform a set of functions. For example, a data base product
could be installed on several systems in a sysplex. On each system, an

4-2 OS/390 V2R8.0 MVS Sysplex Services Guide

instance of the application accesses and manipulates data that it shares with
the other instances of the application.

� User refers to an application or an instance of an application using sysplex
services to access a coupling facility structure. Because users connect to a
structure to access it, users are also referred to as connections or connected
users .

Figure 4-1 shows a schematic diagram of a coupling facility with connected users.

Coupling Facility

CPC2CPC1

ASID 2

ASID 1 ASID 1

ASID 2

Figure 4-1. Multiple Systems Sharing Data Through a Coupling Facility

The Coupling Facility from the Point of View of the Programmer
To a programmer, a coupling facility can be viewed as shared storage that is
directly accessible to connections distributed throughout the sysplex. Connections
using a coupling facility must reside on systems with a direct attachment to the
coupling facility.

Sysplex services for data sharing allow you to:

� Store and access data in the coupling facility.

� Choose synchronous or asynchronous structure operations, with a variety of
options for handling operation completion.

� Tailor structures and services for your specific needs by customizing your
structure and by coding exits to respond to events and make decisions.

� Use multiple structures, either for different purposes within the application or to
implement a complex function. For instance, an application could use a lock
structure to implement a serialization mechanism for use with a cache structure

� Specify whether a structure is to be deallocated if there are no active users
connected to it or whether the structure is to remain allocated until it is explicitly
deallocated.

 Chapter 4. Introduction to Sysplex Services for Data Sharing (XES) 4-3

� Relocate a structure elsewhere in the same coupling facility or in a different
one.

� Change the size of a structure and/or reapportion the use of structure storage
based on application growth or workload variations.

� Obtain diagnostic information about a coupling facility and its structures.

Types of Coupling Facility Structures
The characteristics and services associated with each structure support certain
types of uses and offer certain unique functions:

Cache structure
Allows high-performance sharing of frequently-referenced data.
Cache structure services, accessed through the IXLCACHE
macro, allow you to:

� Store and access data in the cache structure.

� Automatically notify affected users when you change shared
data in the cache system. The system keeps track of which
users are using a particular piece of data and notifies those
users when an update to the data makes their locally-cached
version obsolete.

� Determine whether your copy of shared data is valid by
checking system-maintained validity indicators for your
locally-cached copies of shared data.

Certain functions provided by cache structure services depend on
the level of a coupling facility in which the cache structure is
allocated.

List structure Enables users to share information organized as entries on a set
of lists or queues. Connections could use a list structure, for
example, to distribute work or maintain shared status information.

List structure services, accessed through the IXLLIST macro,
allow you to:

� Read, write, move, and delete list entries in a variety of ways,
with and without serialization.

� Monitor list transitions from empty to non-empty without
accessing the coupling facility and checking the lists directly.

� Define a lock table of exclusive locks as part of the list
structure. You can use the lock table to serialize access to
lists, list entries, or any other resources in the list structure.

Certain functions provided by list structure services depend on the
level of a coupling facility in which the list structure is allocated.

Lock structure Allows users to create a customized set of locks and locking
protocols for serializing user-defined resources, including list or
cache structure data.

You can implement a serialization mechanism with any scope you
require, thereby reducing contention for resources. For instance,

4-4 OS/390 V2R8.0 MVS Sysplex Services Guide

rather than serializing at a data set level, you can use the lock
structure to serialize access at the record or field level.

Lock structure services, accessed through the IXLLOCK macro,
allow you to:

� Associate user-specified data with each lock. IXLLOCK
supports shared and exclusive lock states. However, you can
use the user-specified data to create additional lock states to
tailor the locks to your application's needs.

� Implement customized locking protocols for your user-defined
lock states.

� Resolve lock contention according to your own protocol by
providing exits to handle contention resolution. The system
assists in contention resolution by supplying your exit with
information about the cause of the contention.

� Recover locks as part of an overall recovery mechanism to
recover for the failure of another connector.

Certain functions provided by lock structure services depend on
the level of a coupling facility in which the lock structure is
allocated.

Using Sysplex Services for Data Sharing
This topic provides an overview of what's involved in creating or modifying an
application to use a coupling facility structure. To have your application share data
using a coupling facility structure, you need to:

� Create an application that shares data using sysplex services.

� Have the installation running your application create a CFRM policy that defines
any coupling facility structures your application needs. You must provide the
installation with information about the attributes and size of the structure your
application requires.

Designing Your Application to Exploit the Coupling Facility
The process of designing your application to exploit a coupling facility involves the
following tasks. If you plan to use more than one structure, you need to perform the
tasks listed below for each structure.

� Select the type of coupling facility structure that fits your application.

� Study the attribute options for the structure and the functions provided by its
associated sysplex services. These functions should include those provided by
a particular coupling facility level (CFLEVEL).

 � Determine:

– The way your application will exploit the structure and its functions
– How you will organize your data in the structure
– The structure attributes you require
– The structure size you require.

� Address issues such as serialization that relate to the shared use of the
structure among multiple users. A coupling facility offers several ways to
establish and maintain locking protocols for resources; these include actual

 Chapter 4. Introduction to Sysplex Services for Data Sharing (XES) 4-5

locks as well as user-defined fields (such as the version number field in each
list structure entry) that could be used to provide serialization.

� Understand timing issues relating to asynchronous processing of multiple,
concurrent requests.

� Understand the events about which your application will be notified and decide
how your application will respond to each event. When you connect to a
structure, you provide the address of an event exit you have coded. Your event
exit gets control from the system to receive information about an event. Events
generally relate to a change in user, structure, or coupling facility status or to
an error condition.

� Understand the exits you must code for the structure you are planning to use
and decide what processing they should perform when they receive control.
Sysplex services rely heavily on application-provided exits, to allow
decision-making for critical events to be tailored to the application. Exits can
also be used to receive notification of asynchronous request completion.

� Determine how your application will respond when a structure becomes full.
The size of a structure in a coupling facility with CFLEVEL=1 or higher can be
altered in its current location or the structure can be rebuilt with a larger size in
another location.

| � Plan whether your application will support system-managed processes (for
| example, rebuild).

� Plan how your application will monitor and control structure utilization, and how
it will decide when to rebuild or change the size of the structure to increase
capacity.

� Plan how your application will implement peer recovery, restart recovery, or
both, in the event of:

 – User failure
 – Connectivity failure

– Coupling facility structure failure.

For peer recovery, XES services notify peer users when a user fails. Peer
users can perform recovery, clean up resources, and decide whether the failed
user will be permitted to reconnect to the structure.

For restart recovery, XES services enable users to re-establish connection to a
structure after a failure.

� Document the following requirements in your application's installation
instructions:

– The number and types of structures needed

– The structure sizes and attributes

– Whether the structures should be distributed across multiple coupling
facilities, and if so, how they should be distributed. For optimum
performance and availability, installations should spread coupling facility
structures across multiple coupling facilities

– Whether any structures cannot share the same coupling facility, for
capacity, performance or availability reasons. Make the necessary coupling
facility resource management (CFRM) policy exclusion list
recommendations for such structures.

4-6 OS/390 V2R8.0 MVS Sysplex Services Guide

– Whether any structures have CFLEVEL requirements. Make the necessary
CFRM policy preference list recommendations for such structures.

– Whether the structure can be rebuilt or have its size altered.

The topics following this overview of sysplex services for data sharing are intended
to help you to address these design considerations. However, certain design
decisions are application-specific, so it is not always possible to recommend a
particular approach or protocol.

Summary of the Sysplex Services for Data Sharing
The following tables list and describe each of the sysplex services for data sharing.
Each structure has associated with it a set of services, already mentioned briefly, to
allow you to read, write, and manipulate data in the structure. These are shown in
Figure 4-2.

There are also common services for tasks that apply to more than one type of
structure. These are shown in Figure 4-3.

Figure 4-2. Structure-Specific Services

Service Function Provided

IXLCACHE Cache structure services.

IXLLIST List structure services.

IXLLOCK Lock structure services.

IXLRT Obtain or clean up recording information in a lock structure
as part of recovery of resources held by a failed user.

IXLSYNCH Change ownership of a lock structure resource for which
there is contention.

Figure 4-3 (Page 1 of 2). Common Services for Coupling Facility Structures

Service Function Provided

IXLALTER Change the size and/or reapportion the use of storage in a
structure between entries and data elements.

IXLCONN Connect to a structure (obtain access)

The first user to connect to the structure causes the structure
to be allocated.

| IXLCSP| Calculate a structure's size or a structure's object counts.

IXLDISC Disconnect from a structure (relinquish access)

IXLEERSP Respond to an event presented to your event exit

IXLFCOMP Test completion or wait for completion of asynchronous
IXLLIST or IXLCACHE requests that specified an
asynchronous request token

IXLFORCE Delete:

� Failed-persistent connections to a structure
 � Persistent structures
 � Structure dumps

Release structure dump serialization.

 Chapter 4. Introduction to Sysplex Services for Data Sharing (XES) 4-7

Figure 4-3 (Page 2 of 2). Common Services for Coupling Facility Structures

Service Function Provided

IXLMG Obtain measurements relating to coupling facility utilization
and coupling facility structures.

IXLPURGE Purge outstanding coupling facility requests as part of
recovery processing.

IXLREBLD Rebuild a structure and its data:

� To change the attributes of the structure, such as its size
� For planned reconfiguration
� To recover from a coupling facility failure or a loss of

connectivity

IXLUSYNC Synchronize the processing of user-defined events among
multiple connectors to a structure

IXLVECTR � Test an entry in a list notification vector or local cache
vector

� Load and test a range of list notification vector entries or
local cache vector entries

� Change the size of a list notification vector or local cache
vector.

Guide to Sysplex Services Topics
Now that you have been introduced to sysplex services for data sharing, you can
read the succeeding chapters for more information. Following this introduction are
three chapters, each devoted to one of the structures and its associated macro.
These are:

� Chapter 6, “Using Cache Services (IXLCACHE)” on page 6-1
� Chapter 7, “Using List Services (IXLLIST)” on page 7-1
� Chapter 8, “Using Lock Services (IXLLOCK)” on page 8-1

Once you have a basic understanding of at least one of the three structures and its
services, you are ready to learn about connection services. The connection
services chapter explains how to:

� Define the attributes of a structure
� Define how long a structure will persist in the coupling facility
� Connect to a structure
� Plan for collecting diagnostic information
� Delete a structure
� Rebuild a structure
� Alter the size or reapportion the storage of a structure
� Disconnect from a structure
� Respond to connection events using your event exit.

Chapter 9, “Supplementary List, Lock, and Cache Services” on page 9-1, covers
the macros that you use with IXLCACHE, IXLLIST, and IXLLOCK, to perform
related functions.

Chapter 12, “Documenting your Coupling Facility Requirements” on page 12-1
provides a checklist of the information you must provide to the users of your
application or subsystem.

4-8 OS/390 V2R8.0 MVS Sysplex Services Guide

 Chapter 5. Connection Services

MVS provides services that allow authorized programs and subsystems to use the
coupling facility to share data in a sysplex. This chapter discusses coupling facility
services that manage connections to coupling facility structures and includes the
following information about connection services:

� Connecting to a coupling facility structure and causing allocation of the
structure in a coupling facility

� Disconnecting from a coupling facility structure and causing deallocation of the
structure in a coupling facility

| � Participating in structure rebuild processing for coupling facility structures

� Altering the size of coupling facility structures or, if applicable, the ratio of
entries to elements or the amount of storage allocated for event monitor control
objects within a structure

� Communicating events about coupling facility structures to all users

� Deleting coupling facility structures.

A coupling facility structure is a named piece of storage in a coupling facility. MVS
services support three types of structures — cache, list, and lock, each of which
provides unique functions in a data sharing environment. You connect to a coupling
facility structure in order to use the MVS services to manipulate or manage data
within the structure.

The first user to connect to a structure allocates the structure in the coupling facility
and defines the structure attributes, including the type of structure. Other users can
connect to the structure by name but cannot change the attributes of the structure
as long as the structure remains allocated. Depending on the application protocol,

| however, it is possible through user-managed rebuild for connected users to rebuild
the structure with different attributes.

Guide to the Topics

The following topics are presented to help you understand the connection
services that you use to access a coupling facility.

� “Overview of Connection Services” on page 5-2
� “Structure Concepts” on page 5-4
� “Connecting to a Coupling Facility Structure” on page 5-22
� “Structure Rebuild Processing” on page 5-63
� “Responding to Connection Events” on page 5-128
� “Using IXLUSYNC to Coordinate Processing of Events” on page 5-140
� “Disconnecting from a Coupling Facility Structure” on page 5-143
� “Forcing the Deletion of a Coupling Facility Object” on page 5-147
� “Coding Exit Routines for Connection Services” on page 5-149

 Copyright IBM Corp. 1994, 1999 5-1

Overview of Connection Services
The coupling facility storage can contain three types of structures, each of which
has its own set of services. To access these services, you must first “connect” to a
structure, specifying both a name and a structure type. The name you provide for
the structure when you connect is the same name that appears in the active
coupling facility resource management (CFRM) policy governing the installation's
use of the coupling facility. The IXLCONN macro is the service that allows you to
connect to a structure.

When you no longer need access to a coupling facility structure, you can
disconnect from the structure. The IXLDISC macro is the service that allows you to
disconnect from a structure. In order to access the structure at some later time, you
must again connect to the structure using the IXLCONN macro.

Sysplex-wide information about connectors to a structure is made known
throughout the sysplex through each connector's exits. The system uses the event
exit to notify you about new connections to a structure, disconnections, loss of
connectivity or failure of a structure, synchronization points when a structure is
being rebuilt, other user-defined synchronization points, and changes in the volatility
state of the coupling facility. How you respond to these events depends on the type
of event — some events require that you respond through a macro invocation,
IXLEERSP, while other events require only that you set a return code in a
parameter list that your event exit accesses.

Other structure-specific information is made known to connectors through additional
exits, which, if applicable, you specify when you connect to a structure. The
complete exit, which applies to all structure types, notifies you when a request that
you submitted previously has completed. The notify exit, which applies only to
serialized structures — lock and serialized list, may be used when contention for a
resource occurs. The contention exit, which applies only to a lock structure, is used
to manage resource contention. The list transition exit, which applies only to a list
structure using list monitoring, notifies you when a list has changed from an empty
to a non-empty state. Each exit type references a parameter list with which you can
communicate to the system and to your peer connections. (A peer connection is
another user connected to the same structure.)

For planned reconfiguration, recovery, and improved availability and usability, three
additional connection services are available — IXLREBLD, IXLUSYNC, and
IXLALTER.

| The IXLREBLD service is for structure rebuild processing. There are two types of
| structure rebuild, rebuild and duplexing rebuild, and there are two methods for
| structure rebuild, user-managed and system-managed.

| � For user-managed rebuild, IXLREBLD allows you to rebuild a structure either in
| the same coupling facility or in another. The rebuilt structure can have the
| same or different attributes as the original, thus allowing you to change the size
| and most other structure attributes through the rebuild process.

| � For user-managed duplexing rebuild, IXLREBLD allows you to duplex a cache
| structure in a different coupling facility to achieve higher structure availability
| through redundancy. For structure rebuilds that are user-managed, IXLREBLD
| provides synchronization points to synchronize the phases of the structure

5-2 OS/390 V2R8.0 MVS Sysplex Services Guide

| rebuild process. Optionally, the connected users can use IXLUSYNC macro for
| additional user-defined synchronization points.

| � For system-managed rebuild, IXLREBLD allows you to participate in a
| simplified protocol in which the system performs all the significant steps in the
| rebuild process. For structure rebuilds that are system-managed, IXLREBLD
| does not provide phase synchronization because the connected user is not
| required to participate in the structure rebuild process.

IXLUSYNC allows for defining user-defined synchronization points not only in
recovery scenarios, but as your application requires.

As of SP 5.2, the IXLALTER service allows you to dynamically change the size of a
structure and/or the apportionment of structure storage while connectors continue to
use the structure. Structure alter requires:

� The structure is allocated in a coupling facility with a CFLEVEL=1 or higher
� All connections are connected from an SP 5.2 or higher system
� All connections have specified ALLOWALTER=YES when connecting to the

structure.

For cleanup processing, the IXLFORCE service allows you to delete structure
resources in a coupling facility.

IXLPURGE is used to complete outstanding operations against a coupling facility
structure.

Authorizing Coupling Facility Requests
The security administrator might want to protect the integrity of the data within the
structure before coupling facility requests, such as IXLCONN, IXLREBLD, and
IXLFORCE are issued. If the OS/390 Security Server, which includes RACF, or
another security product is installed, the administrator can define profiles that
control the use of the structure in the coupling facility.

The following steps describe how the RACF security administrator can define RACF
profiles to control the use of structures:

1. Define resource profile IXLSTR.structure-name in the FACILITY class.

2. Specify the users who have access to the structure using the RACF PERMIT
command.

3. Make sure the FACILITY class is active, and generic profile checking is in
effect. If in-storage profiles are maintained for the FACILITY class, refresh
them.

For example, if an installation wants to permit an application with an identifier of
SUBSYS1 to issue the IXLCONN macro for structure-name CACHE1, the security
administrator can use the following commands:

RDEFINE FACILITY IXLSTR.CACHE1 UACC(NONE)

PERMIT IXLSTR.CACHE1 CLASS(FACILITY) ID(SUBSYS1) ACCESS(ALTER)

SETROPTS CLASSACT(FACILITY)

You can specify RACF userids or RACF groupids on the ID keyword of the
PERMIT command. If RACF profiles are not defined, the default allows any

 Chapter 5. Connection Services 5-3

authorized user or program (supervisor state and PKM allowing key 0-7) to issue
coupling facility macros for the structure.

For information about RACF, see OS/390 Security Server (RACF) Security
Administrator's Guide.

 Structure Concepts
Whether a structure is defined as a cache, list, or lock structure, certain
characteristics are common to all types. The following topics provide basic
information about all types of structures:

� “Defining the Structure Attributes”
� “Identifying Connection States”
� “Understanding Connection Persistence and Structure Persistence” on

page 5-7

“Allocating a Structure in a Coupling Facility” on page 5-8 provides information
about how the system handles a request for structure allocation. You need to
understand this to provide planning information for your users when they use your
coupling facility application.

Defining the Structure Attributes
When using IXLCONN to connect to a structure, you specify structure attributes
that describe the structure you need. Whether the attributes you specify are used
by the system depends not only on your IXLCONN parameters, but also on
resource availability in the coupling facility, what the installation has defined in its
CFRM policy, and whether or not you are the first to issue the IXLCONN macro for
the structure, thus causing its allocation.

The structure to which you receive connectivity might or might not meet all your
requirements. The system returns the actual attributes of the structure to you in the
connect answer area, mapped by the macro IXLYCONA. It is your responsibility to
verify that the attributes of the structure, as indicated in the answer area, are
acceptable. If you decide not to accept one or more of the attributes, you can
disconnect from the structure or attempt to rebuild it with different attributes.

The attributes discussed here are generic for each structure type. There are
additional attributes that are specific to the type of structure. For a description of
the information required on IXLCONN for each structure type, see “Connecting to a
Coupling Facility Structure” on page 5-22.

Identifying Connection States
A connection to a coupling facility structure might be in one of four states, as
defined below. You can use the IXCQUERY macro and the DISPLAY XCF operator
command to determine the state of a connection.

� Undefined state — The connection does not exist.

� Active state — The connection is active.

� Failed-persistent state — The connection has abnormally terminated or
disconnected with REASON=FAILURE and all event exit responses have been
received. All event exit responses from peer connections indicated that the
connection should not be released.

5-4 OS/390 V2R8.0 MVS Sysplex Services Guide

� Disconnecting or failing state — The connection has disconnected with
REASON=NORMAL (disconnecting state) or has been abnormally terminated
or disconnected with REASON=FAILURE (failing state). All event exit
responses have not yet been received for the disconnection or failure of the
connection.

If a user issues IXLCONN with the same connection name as the connection in
the disconnecting or failing state, IXLCONN rejects the request with reason
code IXLRSNCODERSPNOTREC. (See the IXLYCON macro for a description
of all XES reason codes.)

While the connection is in the disconnecting or failing state, you cannot force
the connection with the IXLFORCE service or the SETXCF FORCE command.

When all event exit responses are received, the connection is placed either in
the undefined state (the connection does not exist) or the failed-persistent
state.

 – Undefined state

1. The connection disposition is delete, or

2. The connection disconnected with REASON=NORMAL, or

3. The connection disposition is keep and the connector terminated
abnormally or disconnected with REASON=FAILURE, and any peer
connection indicated that the connection could be released.

 – Failed-persistent state

The connection disposition is keep and the connector terminated
abnormally or disconnected with REASON=FAILURE, and all peer
connections indicated that the connection should not be released.

Figure 5-1 on page 5-6 shows the events that can cause a connection to change
from one state to another.

 Chapter 5. Connection Services 5-5

The connection is in the
disconnecting or failing state
until all peer connections
provide an event exit response to
the Disconnected or failed
Connection event.

All peer connections must provide
an event exit response for the
Disconnected or Failed connection
event in order for a connection to
be in the undefined state. The
following cases will cause a
connection to be put

All peer connections must provide
an event exit response for the
Disconnected or Failed connection
event with RELEASECONN=NO
in order for the connection to be
placed in the failed-persistent state.
The following cases will
cause a connection to be put in the
failed-persistent state:

Abnormal termination of a
connection with CONDISP=KEEP,
or

1)

1)

2)

2)

Disconnect
(IXLDISC REASON=FAILURE for a
connection with CONDISP=KEEP)

IXLFORCE macro or the SETXCF
FORCE operator command.

Event Exit Response for the
Existing connecton event
indicating that the connection
should be released, or

Reconnect via IXLCONN specifying
the same connection name as the
failed-persistent connection.

*An IXLDISC REASON=NORMAL request by a connection
which owns resources in a lock structure, will be
converted to an IXLDISC REASON=FAILURE request.

Failed-persistent to Active:

Active to Failed-persistent:

Undefined to Active:
Active Undefined

Disconnecting
or

Failing

Disconnecting
or

Failing

Failed-
Persistent

Connect (IXLCONN).

Failed-persistent to Undefined:

abnormal termination
of a connection with
CONDISP=DELETE,
or

Active to Disconnecting or Failing: Active to Undefined:

in the undefined state:
1)

2)

3)

4)

Disconnect
(IXLDISC REASON=NORMAL), or
*** See note below ***

Disconnect
(IXLDISC REASON=FAILURE for a
connection with CONDISP=DELETE), or

At least one peer connection
indicated RELEASECONN=YES
when providing an event exit
response for a connection that
abnormally terminated with
CONDISP=KEEP.

Figure 5-1. Connection State Transitions: Undefined, Active, Disconnecting, Failing

5-6 OS/390 V2R8.0 MVS Sysplex Services Guide

Understanding Connection Persistence and Structure Persistence
The attribute of persistence applies both to structures and to connections to a
structure. Both structure persistence and connection persistence are specified at
connect time.

 Connection Persistence
The connection disposition (CONDISP) allows you to specify how to handle a
connection to a coupling facility structure that ends abnormally. The connection
disposition determines in the event of a failure whether or not the connection
remains defined to the structure. (A failed connection can be the result of a task,
address space, or system failure, or REASON=FAILURE on the IXLDISC macro.
See “Disconnection Because of Failure” on page 5-145.)

A connection disposition of KEEP indicates that when the connection fails, the
failed connection remains defined as a failed-persistent connection and the
structure remains allocated. For a connection disposition of KEEP, you must specify
a connect name (CONNAME) on IXLCONN. The system uses the connect name to
determine when you can reestablish the connection after a failure has occurred.
CONNAME uniquely identifies your connection to the structure.

If a connection with a disposition of KEEP fails, the system considers the
connection to be in a failed-persistent state. The connection remains in that state
until a new instance of the failed connection, a peer connection, or an operator or
program take actions to change it. When the application restarts and reissues an
IXLCONN request for the structure, the same CONNAME that was specified on the
previous IXLCONN request must be specified. If the reconnection is successful,
IXLCONN returns a return code X'4'. The CONARECONNECTED flag in the
connect answer area (IXLYCONA) is set to indicate that the connection has been
reestablished.

A peer connection can indicate after recovery processing that a connection should
no longer be failed-persistent by issuing IXLEERSP or by setting a return code in
the event exit parameter list (IXLYEEPL). See “Deleting Failed-Persistent
Connections” on page 5-62. Once all peer connections have completed their
recovery processing for the failed connection and have responded to the
Disconnect/Failed User event, the failed-persistent connection can be deleted. The
operator can use the SETXCF FORCE command or an authorized program can
issue the IXLFORCE macro to delete a failed-persistent connection.

A connection disposition of DELETE indicates that the connection should become
undefined to MVS in the event of a failure. If the connection disposition is DELETE,
then you are not required to specify CONNAME; however, if you do not provide a
connection name, MVS generates one.

If the connection terminates normally (disconnect with REASON=NORMAL), the
persistence attribute for the connection does not apply, and so the connection
becomes not defined. However, if a connector to a lock structure disconnects with
REASON=NORMAL while still owning resources associated with the lock structure,
XES converts the reason to REASON=FAILURE.

 Chapter 5. Connection Services 5-7

 Structure Persistence
 The persistence attribute of a structure is affected both by how you define your
structure disposition and the disposition of the connections to the structure.

The structure disposition (STRDISP) determines whether or not the structure
remains allocated when there are no active or failed-persistent connections to the
structure. A structure disposition of KEEP indicates that when there are no active or
failed-persistent connections to the structure, the structure remains allocated. For
example, if data in the structure needs to be kept permanently in the coupling
facility, you should specify a disposition of KEEP. A structure that remains allocated
when there are no active or failed-persistent connections is called a persistent
structure. The operator or an authorized program can use the SETXCF FORCE
command or the IXLFORCE macro to delete a persistent structure in some
instances. See “Deleting Persistent Structures” on page 5-61.

A structure disposition of DELETE indicates that when there are no active or
failed-persistent connections to the structure, the structure is deallocated. However,
if there are any active or failed-persistent connections to the structure, the structure
remains allocated.

Note that you can determine the persistence attribute of both a structure and a
connection with the IXCQUERY macro.

Allocating a Structure in a Coupling Facility
The allocation of a structure in a coupling facility depends on several factors —
application requirements, installation requirements, and availability of coupling
facility storage. The application request to allocate a coupling facility structure
(through the IXLCONN macro) may rely on the installation's specifications for the
coupling facility's use as defined in the active coupling facility resource
management (CFRM) policy. (An authorized application can query the CFRM policy
by using the IXCQUERY macro.) The application's request for structure allocation,
combined with the coupling facility control code's storage utilization requirements,
ultimately determine if, where, and how large a structure is allocated.

MVS Considerations When Allocating a Structure
The system allocates a structure in a coupling facility based on the requirements
that the installation has specified in its active CFRM and sysplex failure
management (SFM) policies, and in accordance with the attributes specified on the
IXLCONN macro.

� The CFRM policy not only lists structure names and sizes, but also defines
preference lists and exclusion lists. A preference list is an ordered list of the
coupling facilities in your installation in which you would prefer having a
structure allocated. An exclusion list is an unordered list of coupling facility
structures which you do not want to reside in the same coupling facility as this
specific structure.

� The SFM policy assigns a weight to each system in the sysplex designating the
system's relative importance in the sysplex.

The system allocates the structure in the coupling facility in the preference list that
meets the following allocation criteria, listed in order of relative importance from
most important to least important:

5-8 OS/390 V2R8.0 MVS Sysplex Services Guide

1. Has connectivity to the local system trying to allocate the structure

2. Has a coupling facility operational level (CFLEVEL) equal to or greater than the
requested CFLEVEL

3. Is a failure-independent coupling facility in relation to the coupling facility
containing the old structure in user-managed duplexing rebuild processing. The
system will give preference to failure-independent coupling facilities when
allocating the new structure during user-managed duplexing.

4. Has space available that is greater than or equal to the requested structure
size

5. Meets the volatility requirement requested by the connector

6. Does not contain a structure in this structure's exclusion list.

Note that the system assumes certain criteria when selecting a coupling facility for
new structure allocation in user-managed structure duplexing. The system always
assumes LOCATION=OTHER when selecting the coupling facility. As listed above,
the coupling facility chosen by the system will, if possible, be failure-independent
with respect to the coupling facility containing the old structure. Lastly, if the level of
connectivity to the new structure is less than that to the old structure, the action
taken by the system is LESSCONNACTION=TERMINATE.

If there is no coupling facility in the preference list that meets all these allocation
criteria, then the system determines the coupling facility that most closely meets
the criteria. To do this, the system uses a weighting system for each of the coupling
facilities in the structure's preference list. The weights correspond to the list of
criteria — with system connectivity having the highest weight, CFLEVEL the next
higher weight, and so on down the list.

Using these weights, the system orders the coupling facilities that meet all
requirements and attempts to allocate the structure. If two or more coupling
facilities are assigned identical weights, then the selection is made based on the
order in which the coupling facilities are defined in the CFRM policy preference list.
If the attempt to allocate the structure is not successful, the system reorders the
coupling facilities in the preference list, ignoring the exclusion list requirement, and
again attempts to allocate the structure. The system continues its allocation attempt
in successively lower-weighted coupling facilities until allocation is successful. The
system will choose the coupling facility that most closely meets the requirements
of the connect request. If no coupling facility meets the allocation requirements, the
IXLCONN request fails with reason code IXLRSNCODENOFAC.

An application running on OS/390 Release 2 or higher can override the local
connectivity criterion by indicating on its IXLCONN invocation that the system is to
choose the “best” coupling facility for all systems in the sysplex. (“Best” can mean
either the coupling facility connected to the most important systems in the sysplex
or the coupling facility that meets all the allocation criteria.) See “Specifying
Coupling Facility Connectivity Requirements” on page 5-25 for a description of the
CONNECTIVITY parameter on IXLCONN.

With OS/390 Release 2 or higher, once it has ordered the coupling facilities in
accordance with the relative importance of the allocation criteria, the system might
consider the SFM weights of the systems attached to each coupling facility at the
time of the IXLCONN request. If an active SFM policy is in effect in the sysplex, a
system at OS/390 Release 2 and higher uses the SFM weights as part of the

 Chapter 5. Connection Services 5-9

coupling facility selection criteria; a system at a lower level (MVS SP 5.1 through
OS/390 Release 1) uses the default selection algorithm, which does not factor in
SFM weights.

The OS/390 Release 2 or higher system attempts to allocate the structure in the
coupling facility that:

� Meets as many of the installation and application requirements as possible.
� Has the best available connectivity across the sysplex.

See “Selecting a Coupling Facility for Structure Allocation” on page 5-16 for a
description of the process the system uses to select a coupling facility for structure
allocation.

Specifying the Required Coupling Facility Attributes
The application, on its IXLCONN invocation, specifies certain coupling facility
attributes required for its structure. The application also must document these
requirements for users of the application, so that the installation can properly
configure its coupling facilities.

Attributes that the application can specify are:

� A connectivity requirement
� The level of coupling facility
� A volatility requirement
� A failure-independence requirement

Attributes that the installation controls are:

� The preference and exclusion lists

Note that both the application and the installation can specify the required size of
the structure to be allocated, which can also affect the choice of coupling facility.
See “Specifying the Structure Size” on page 5-13 and “Coupling Facility
Considerations When Allocating a Structure” on page 5-18 for information about
how the size of the for information about how the size of the structure is determined
and how coupling facility resources are allocated to the structure.

Specifying a Connectivity Requirement
Starting with OS/390 Release 2, an application can specify its connectivity
requirements with the CONNECTIVITY keyword on the IXLCONN macro when
connecting to a structure. An application can specify that it requires a structure to
be allocated in a coupling facility that has connectivity to all systems in the sysplex,
that has connectivity to the best subset of systems in the sysplex based on SFM
weights, or that most closely meets the coupling facility attributes requested.

The CONNECTIVITY keyword applies only to the IXLCONN request that causes
the structure to be allocated, the first connector to the structure. The system
ignores the connectivity requirement specified by subsequent connectors to the
structure. See “Selecting a Coupling Facility for Structure Allocation” on page 5-16
for information about how the system uses the CONNECTIVITY keyword.

5-10 OS/390 V2R8.0 MVS Sysplex Services Guide

Specifying a Coupling Facility Level Requirement
An application specifies its coupling facility operational level requirements with the
CFLEVEL keyword on the IXLCONN macro. MVS attempts to allocate a structure in
a coupling facility of the CFLEVEL requested, that is, a coupling facility that
provides at least the level of architected function that the user has requested. If
necessary, the structure will be allocated in a coupling facility with a CFLEVEL
lower than requested. If the structure is already allocated, the CFLEVEL is ignored.
Upon successful connection to the structure, the connect answer area contains the
CFLEVEL of the coupling facility in which the structure was allocated. It is the
responsibility of the connector to check this field (CONACFACILITYCFLEVEL) and
verify that the level is acceptable.

Note that you should specify the lowest possible CFLEVEL on IXLCONN that will
provide the required functions. This will allow the space in the higher level coupling
facilities to remain available for applications that require the coupling facility
functions supported only by those levels.

| When exploiting a system-managed process, connectors should not specify the
| CFLEVEL required by the system-managed process simply because they have
| specified ALLOWAUTO=YES. For example, connectors should not specify
| CFLEVEL=8 because they support system-managed rebuild. The system will
| automatically attempt to allocate the structure in a coupling facility of the necessary
| CFLEVEL when the connector specifies ALLOWAUTO=YES.

The following minimum coupling facility levels support XES functions:

CFLEVEL=1

� Maximum of 255 data elements per data item
� IXLALTER requests for altering structure size and/or entry-to-element

ratio
� IXLLIST request types that support entry version number comparison,

automatic list key assignment, list cursor manipulation, entry key
comparison, and conditional processing based on list authority.

CFLEVEL=2

 � IXLCACHE REQUEST=REG_NAMELIST
� IXLCACHE REQUEST=WRITE_DATA, WHENREG=YES, with

VECTORINDEX specified.
� IXLLOCK REQUEST=PROCESSMULT for batched release requests.

CFLEVEL=3

� IXLLIST request types that support event queues and their use for
sublist monitoring. The request types include:

 – IXLLIST REQUEST=MONITOR_SUBLIST
 – IXLLIST REQUEST=MONITOR_SUBLISTS
 – IXLLIST REQUEST=MONITOR_EVENTQ
 – IXLLIST REQUEST=READ_EQCONTROLS
 – IXLLIST REQUEST=READ_EMCONTROLS
 – IXLLIST REQUEST=DEQ_EVENTQ

 Chapter 5. Connection Services 5-11

CFLEVEL=4

� IXLALTER requests for altering percentage of list structure storage
allocated for event monitor controls.

� IXLCACHE REQUEST=UNLOCK_CO_NAME to unlock a single castout
lock.

� IXLCACHE REQUEST=READ_DATA,RETURNDATA=YES|NO to
register interest in an entry without returning the associated data.

� IXLCACHE REQUEST=WRITE_DATA, with no data written.

� Support for dumping structures that contain event monitor controls.

� Performance enhancements to support system cleanup of lock tables
for failed connections.

CFLEVEL=5

� IXLCACHE functions that include entry version number support, delete
type options to control what portions of an entry are to be deleted,
suppress registration options to allow an entry to be read or written
without registering interest in the entry, and information level options on
READ_COCLASS and READ_COSTATS to request additional
information to be returned.

� IXLCACHE REQUEST=DELETE_NAMELIST command for deleting a
specific set of data entries from a structure.

� Support for cache structures containing user data field (UDF) order
queues.

CFLEVEL=6

� No associated support for XES processing.

| CFLEVEL=7

| � Support for the use of a name class mask definition to be assigned to
| cache entry names. Name classes are used by the coupling facility to
| assign each entry to a logical group within the structure. Name classes
| in conjunction with the name class mask definition can be used to
| improve the processing efficiency of the IXLCACHE
| REQUEST=DELETE_NAME command.

| CFLEVEL=8

| � Support for the system-managed rebuild process in which the system
| performs all significant steps in the structure rebuild process with
| minimal participation by the connectors. Note that it is not necessary to
| code CFLEVEL=8 if you have coded ALLOWAUTO=YES.

| � The IXLCSP service, which performs the following types of
| computations:

| – Computes the size and ratios associated with a structure, given
| structure attributes and object counts

5-12 OS/390 V2R8.0 MVS Sysplex Services Guide

| – Calculates structure object counts based on the size, ratios, and
| other attributes associated with a structure.

For the most accurate list of CFLEVEL functions with associated hardware and
software corequisites, see “CFLEVEL Considerations” at
http://www.ibm.com/s390/pso/ on the Library page.

Specifying the Structure Size
The size of a coupling facility structure is specified in the CFRM policy and also can
be specified on the IXLCONN macro. Starting with SP 5.2, you also can specify an
initial structure size with the INITSIZE parameter in the CFRM policy. The INITSIZE
value is optional and is used only when an SP 5.2 and above system initially
requests allocation of the structure in a coupling facility or subsequently requests a

| connection to a structure during user-managed rebuild processing.

How MVS Allocates the Structure: The system allocates storage for a coupling
facility structure based on the level of the system requesting the allocation.

� In SP 5.1, structure size allocation uses the STRSIZE defined on the IXLCONN
macro, if a value was specified. Otherwise, it uses the SIZE specified in the
CFRM active policy.

� In SP 5.2 and above, structure size allocation uses the STRSIZE defined on
the IXLCONN macro, if a value was specified. Otherwise, it uses the INITSIZE
specified in the CFRM active policy. If INITSIZE is not specified (it is an
optional parameter), then the SIZE specified in the CFRM active policy is used.

Note that a CFRM policy might be formatted on an SP 5.2 and above system, but
used on an SP 5.1 system. In that case, if an INITSIZE value is present, the SP 5.1
system will ignore the INITSIZE value. If, however, there are both SP 5.1 and SP
5.2 systems connecting to a structure, structure size allocation depends on the first
system to request allocation. In that case, if an INITSIZE value is present and an
SP 5.2 system requests to connect to the structure, structure size allocation uses
the INITSIZE value (assuming that STRSIZE is not specified).

The following tables illustrate how the system determines the amount of storage to
be allocated to a structure. The target size is chosen both when the system
receives an initial request to connect to a structure and when the system receives a
subsequent request to connect to a structure during rebuild processing.

Figure 5-2 shows the size determination for a connection from an SP 5.1 system.
The STRSIZE value specified on IXLCONN might or might not be present,
depending on the application using the structure. The INITSIZE value from the
CFRM policy will be present only if the policy was formatted on an SP 5.2 and
above system. On an SP 5.1 system, however, the INITSIZE value is ignored.

Figure 5-2. Structure Size Allocation in SP 5.1

 CFRM Policy

 INITSIZE specified INITSIZE not specified

IXLCONN
STRSIZE specified

Target size = STRSIZE Target size = STRSIZE

IXLCONN
STRSIZE not specified

Target size = SIZE Target size = SIZE

 Chapter 5. Connection Services 5-13

Figure 5-3 on page 5-14 shows the size determination for a connection from an SP
5.2 and above system. The STRSIZE value specified on IXLCONN might or might
not be present, depending on the application using the structure. The INITSIZE
value from the CFRM policy also might or might not be present, and is only
available if the policy was formatted on an SP 5.2 system.

Structure Rebuild Process Considerations: If you have altered the size of a
structure to a size different from either SIZE or INITSIZE, and then you attempt to
rebuild the structure, the system determines the target size of the structure to be
rebuilt as described above. If the altered size value is to be used, it is the
responsibility of either the connection, if STRSIZE is specified, or the installation, if
INITSIZE or SIZE is specified, to change the value in IXLCONN or the CFRM
policy.

| When the rebuild is a system-managed process, it is possible for the size of the
| newly-allocated structure to differ from what is specified by the SIZE or INITSIZE
| parameters in the CFRM active policy. For example, the allocated size of the new
| structure:

| � Might be larger than the maximum size indicated by SIZE.

| � Might be between the INITSIZE and SIZE values. (Perhaps in order to be able
| to copy all data that must be copied from the old structure to the new
| structure.)

| � Might be less than INITSIZE. (Perhaps because of a coupling facility storage
| constraint, but the small size still provided a sufficient number of structure
| objects to allow the copy process to succeed.)

If the size or the attributes of the structure were changed during a system-managed
rebuild, and if all connectors specified IXLCONN ALLOWALTER=YES, connectors
will receive the Alter Begin and Alter End events in their event exits, from which
they can determine the newly-allocated size and object counts.

Determining Maximum Structure Size: When a structure is allocated, the
coupling facility sets the maximum structure size equal to the structure size
specified in the CFRM active policy. The maximum structure size value remains
constant as long as this instance of the structure remains allocated. However, the
actual structure size might be less than the maximum structure size value. A
smaller size could occur because:

� INITSIZE was specified in the CFRM active policy with a smaller size
� STRSIZE was specified on an IXLCONN macro with a smaller size
� Storage constraints exist in the coupling facility
� A previous structure alter reduced the structure size.

Figure 5-3. Structure Size Allocation in SP 5.2

 CFRM Policy

 INITSIZE specified INITSIZE not specified

IXLCONN
STRSIZE specified

Target size = STRSIZE Target size = STRSIZE

IXLCONN
STRSIZE not specified

Target size = INITSIZE Target size = SIZE

5-14 OS/390 V2R8.0 MVS Sysplex Services Guide

| Note that during a system-managed rebuild, the new structure might be allocated
| with a size larger than the maximum structure size specified by SIZE, if the larger
| size is required to accommodate the system-managed rebuild process.

Determining Minimum Structure Size: The coupling facility also sets the
minimum structure size when the structure is initially allocated. The minimum
structure size value is the minimum coupling facility control space required to
allocate the structure with the specified percentage allocation of storage for event
monitor controls as well as the specified entry-to-element ratio. The minimum
structure size value can change when the structure is reapportioned with an
entry-to-element ratio that is different from the previous ratio.

Determining Marginal Structure Size: When allocating the structure, the
coupling facility also determines the marginal structure size — the true minimum
size at which the structure can be allocated. The marginal structure size is less
than the minimum structure size and does not take into consideration the
entry-to-element ratio or the percentage of storage used for event monitor controls.
Thus, when allocating the storage in the structure, the percentage specified for
event monitor controls is applied to the storage in the structure that is available
beyond that designated as the marginal size. The entry-to-element ratio is applied
to the storage that is available after the percentage for event monitor controls has
been determined.

Should there not be enough space in a coupling facility to allocate the structure
with the requested size, the system allocates the structure in the coupling facility in
the preference list with the most available space, which satisfies the largest set of
other allocation requirements. For a lock structure, the allocation fails if a large
enough area in a coupling facility cannot be found to support the number of lock
entries required.

The coupling facility ensures that the size of a structure is a multiple of the coupling
facility storage increment (see “Coupling Facility Storage Increment” on page 5-20).
If not, the coupling facility rounds up the size value to be a multiple of the
increment. Ultimately, the actual size of the structure allocated in a coupling facility
is based on storage allocation priorities with which the coupling facility control code
complies and on storage constraints in the coupling facility itself. See “Coupling
Facility Considerations When Allocating a Structure” on page 5-18.

A connected user of the structure can determine the structure's size by examining
the connect answer area for both the maximum structure size and the actual
structure size (fields CONAMAXSTRUCTURESIZE and CONASTRUCTURESIZE).
An operator can display a structure's size by issuing the DISPLAY
XCF,STRUCTURE command.

Understanding Coupling Facility Volatility
A coupling facility might support nonvolatility, that is, the ability to maintain the data
stored in the coupling facility should a power outage occur. The importance of
allocating a structure in a nonvolatile coupling facility is dependent on the
requirements of the application. The application must document its requirement for
a nonvolatile coupling facility so that the installation can properly configure its
coupling facilities.

If the first connected user specifically requests with NONVOLREQ=YES that the
structure be allocated in a nonvolatile coupling facility and one is available, then the

 Chapter 5. Connection Services 5-15

request is granted. Subsequent connectors to the structure can determine whether
the structure currently is in a volatile or nonvolatile coupling facility by interrogating
a flag in the connect answer area (field CONAVOLATILE).

Planning for Coupling Facility Failure-Independence
An application might require that its structure be placed in a failure-independent
environment. To accomplish this, the installation must ensure that the coupling
facility is not in the same failure domain as the MVS systems that access it. For
example, placing the coupling facility in an LPAR in a processor with one or more
additional LPARs that are running MVS to access the coupling facility would not
provide a failure-independent environment.

Similarly, an application designed to exploit user-managed structure duplexing
requires that the structures be allocated in a failure-independent environment. To
accomplish this, the installation should ensure that the coupling facility in which the
old structure is allocated is failure-independent from the coupling facility in which
the new structure is allocated. For example, if the old structure is allocated in a
coupling facility which is in an LPAR in a processor, and the new structure is
allocated in another LPAR configured as a coupling facility in the same processor,
both structures would be lost should the processor fail. The installation should
ensure that, when coupling facility failure-independence is required, the structure's
preference list contains coupling facilities that allow XES to uphold this requirement.

Connectors needing a structure allocated in a failure-independent environment must
specify NONVOLREQ=YES on their IXLCONN invocation. Connectors to the
structure can determine whether the structure currently is in a failure-independent
coupling facility by interrogating a flag in the connect answer area (field
CONAFAILUREISOLATED).

Creating the Exclusion List
The exclusion list contains an unordered list of structures that are not to be
allocated in the same coupling facility as this structure. The exclusion list of
structures is defined in the CFRM policy. If the system cannot meet the exclusion
list requirements but is able to allocate the structure, a flag in the connect answer
area indicates that the exclusion list was ignored.

Selecting a Coupling Facility for Structure Allocation
Based on the attributes required, the system selects a coupling facility that either
meets or most closely meets the allocation criteria. If there is an active SFM policy
in effect at coupling facility selection time, the system might also use the weights in
the policy to aid in the selection process.

Calculating a Coupling Facility's Attribute Value
Using the allocation criteria, the system assigns a value to each coupling facility
being considered for selection (the system evaluates only those in the preference
list). Once the value is assigned based on the allocation criteria, and depending on
the level of the system, the system might consider the SFM weights of each system
connected to each coupling facility. Systems at OS/390 Release 2 and higher use
the SFM system weights when selecting a coupling facility. If an SFM policy is not
in effect, either because the installation did not activate the policy or because one
or more of the systems do not have access to the SFM couple data set(s), the
system treats every system as having equal weight.

5-16 OS/390 V2R8.0 MVS Sysplex Services Guide

Using the SFM System Weights in Coupling Facility Selection
With OS/390 Release 2 and higher, the system selects the coupling facility that is
accessible from the set of systems that has the highest aggregate SFM system
weight. How the system uses the SFM system weights depends on whether the
CONNECTIVITY keyword is used on the IXLCONN request.

CONNECTIVITY=DEFAULT: If the CONNECTIVITY keyword is not used (or if
CONNECTIVITY=DEFAULT), the system uses the default coupling facility selection
algorithm described in “MVS Considerations When Allocating a Structure” on
page 5-8. The SFM system weights, if available, are used as the lowest-weighted
attribute in the selection process. The system will choose the coupling facility that
most closely meets the requirements of the connect request. If no coupling facility
meets the allocation requirements, the IXLCONN request fails with reason code
IXLRSNCODENOFAC.

CONNECTIVITY=BESTGLOBAL: The system calculates the connectivity value
(based on system SFM weights) of all coupling facilities in the current sysplex and
uses this value as the highest-weighted attribute to select the coupling facility in
which to allocate the structure. The system calculates the aggregate SFM system
weights for each coupling facility in the preference list. The system then attempts
structure allocation in the one or more coupling facilities with the highest weight. If
the structure allocation fails because of a local connectivity problem (that is, the
system invoking the IXLCONN service did not have connectivity to the coupling
facility), the IXLCONN request fails with reason code IXLRSNCODENOFAC. If, on
the other hand, the reason for the allocation failure was not local connectivity but
rather a reason such as insufficient storage in the coupling facility, the system
continues to attempt to select a coupling facility by considering the coupling
facilities in the preference list with the next highest aggregate SFM system weights.
Using the same procedure as for the coupling facilities with the highest weights, the
system will continue its attempt to allocate the structure until all coupling facilities in
the preference list have been considered.

CONNECTIVITY=SYSPLEX: The system does not use the SFM system weights,
as all systems in the sysplex must be connected to the same coupling facility. If no
coupling facility meets this requirement, the IXLCONN request fails with reason
code IXLRSNCODENOFAC.

Understanding Connectivity in a Mixed Sysplex Environment
In a mixed sysplex environment made up of systems at MVS SP Version 5 and
OS/390 Release 1, each of those systems must have APAR OW19718 installed in
order to coexist with one or more OS/390 Release 2 systems. The APAR allows
the systems to use the SFM weights in a consistent manner. With this support, the
system selects a coupling facility for structure allocation based on the level of the
system invoking the IXLCONN service:

� A request from an OS/390 Release 2 and higher system uses the SFM weights
as part of the coupling facility ordering process when selecting a coupling
facility. If an SFM policy is not in effect in the sysplex, all system are
considered to have equal weight.

� A request from an MVS SP 5.1 through OS/390 Release 1 system uses the
default selection algorithm for coupling facility selection and does not factor in
the SFM weights.

 Chapter 5. Connection Services 5-17

In a mixed sysplex environment in which any system is at the MVS SP Version 4
level, that system will cause a request from another system to connect to a
structure with a specification of IXLCONN CONNECTIVITY=SYSPLEX to fail.

Coupling Facility Considerations When Allocating a Structure
Coupling facility structure size includes both control areas required by the coupling
facility control code and data areas used by the application. The size is also
affected by coupling facility allocation rules and the coupling facility allocation
increment size, which is a function of the level of the coupling facility.

The actual allocation of coupling facility resources for a given structure depends on:

� CFRM policy specification
� Authorized application specification when using the XES services
� Coupling facility storage constraints
� Coupling facility storage increment
� Coupling facility level.

You must take all of these factors into account when determining how to define
your CFRM policy and how to configure your coupling facility.

Understanding Coupling Facility Storage
The storage for a coupling facility LPAR is defined in the same way as a
non-coupling facility partition. However, the storage in a coupling facility LPAR
cannot be dynamically reconfigured. If another partition on the same processor
fails, its storage cannot be taken over by the coupling facility partition. Or, if the
coupling facility partition fails, its storage cannot be taken over by another partition.

Storage in a coupling facility consists of two types — control storage and
non-control storage, each of which the coupling facility control code uses for a
specific purpose. Essentially, the coupling facility control code uses the control
storage either for its control information or for data, and the non-control storage
only for data. Depending on the particular processor on which the coupling facility is
defined, the storage can be all control storage or a combination of control and
non-control storage. The installation controls the amount of storage assigned to
control and non-control storage when configuring the amount of central and
expanded storage in the coupling facility LPAR. The amount of central storage
equates to the amount of control storage; the amount of expanded storage equates
to the amount of non-control storage. (In processors that do not support the
concept of central and expanded storage, all coupling facility storage is considered
to be control storage.)

The split of control and non-control storage becomes a consideration when the
coupling facility control code allocates specific amounts of storage to a structure.
The division between the two storage types must be monitored to ensure that the
coupling facility storage is distributed most efficiently for the authorized application's
use.

The DISPLAY CF command displays information about coupling facility storage
including the total amount, total in-use, and total free control and non-control
storage.

5-18 OS/390 V2R8.0 MVS Sysplex Services Guide

Coupling Facility Resource Allocation “Rules”
A coupling facility structure is located in a particular coupling facility and allocated
at a certain size based on values specified by the installation in a CFRM policy, by
the authorized application in its request for XES services, and by characteristics of
the coupling facility itself, such as storage constraints, storage increment, and
structure ID limit.

CFRM Policy Specification
The CFRM policy contains the maximum structure size, as well as the ordered
preference list of coupling facilities and unordered list of structures for allocation of
the structure. The structure size defined in the CFRM policy is used as the
attempted allocation size unless it is overridden by a structure size specified on the
IXLCONN macro.

Authorized Application Specification
When requesting an XES service to connect to a structure, the authorized
application optionally can specify a size for the structure. The system uses the
smaller of the two sizes (as specified in the CFRM policy or by the authorized
application), as the target allocation size for the structure.

The authorized application also is required to specify certain structure attributes
when connecting to a structure. These structure attributes are used by the coupling
facility control code when determining how to most efficiently allocate the various
parts of the structure in the coupling facility. Some examples of structure attributes
are data element size, whether or not locks are used, the number of list headers,
and whether an adjunct area is required. The coupling facility control code
evaluates each attribute in the following sequence:

 � Available space

The structure is allocated as large as possible based on the available storage
in the requested coupling facility. The target size is derived from either the
CFRM policy or the authorized application's request to connect to the structure.

 � Entry/element ratio

Within the total available space allocated to the structure, the coupling facility
control code attempts to allocate entries and elements in a way that most
accurately approximates the requested entry/element ratio. If the structure has
been allocated with a size less than the minimum structure size required by the
specified structure attributes, then the entry/element ratio may deviate from the
requested value. If the structure has been allocated with a size greater than or
equal to this minimum structure size, then the entry/element ratio should be
satisfied.

� Entry and element counts

Within the total available space allocated to the structure, the coupling facility
control code attempts to maximize the actual number of entries and elements
(as opposed to the ratio) that can be placed in the structure.

 Chapter 5. Connection Services 5-19

Coupling Facility Storage Constraints
The coupling facility control code locates parts of a structure in either control or
non-control storage, depending on whether the part is control information or data.
Control information MUST reside in control storage and cannot reside in non-control
storage; data may reside in either control or non-control storage.

The amount of control storage available can affect structure allocation. When there
is no control storage available in the coupling facility, control information, such as
list entry controls or directory entries, cannot be allocated (even though there might
be ample available non-control storage in the structure).

The following summarizes the actions taken when there is no more available
control storage in a coupling facility structure:

� Entries, which are control information, cannot be allocated because they must
reside in control storage.

� If data elements are requested in the structure, they can continue to be
allocated because they can reside in non-control storage. This action causes
the actual entry/element ratio to be skewed in favor of elements.

� The coupling facility control code continues allocating data elements until either

– The total space for the structure is equal to the requested total structure
size or

– The number of elements allocated equals the number of elements that
result in an actual achieved entry/element ratio of 1/MAXELEMNUM. Note
that MAXELEMNUM is specified by the authorized application when it
connects to the structure and indicates the maximum number of data
elements per entry that are supported for any entry in the structure.

Even though the total requested structure size may not be reached when
the 1/MAXELEMNUM ratio is achieved, additional data elements are not
allocated.

Coupling Facility Storage Increment
Coupling facility storage is allocated in multiples of the coupling facility
model-dependent storage increment size. For coupling facility levels 0 through 8, all
structure allocations are rounded up to a multiple of 256K.

Coupling Facility Structure ID Limit
The coupling facility control code imposes a limit on the number of structures that
can reside in any one coupling facility. See PR/SM Planning Guide for the structure
ID limit for the level of coupling facility that you are using.

Successful Completion of Structure Allocation
Each time you successfully invoke IXLCONN for a structure, the system places a
connect token (CONTOKEN) in the connect answer area. CONTOKEN identifies
each connection to the structure and is unique for each connection within the
sysplex. You can issue IXLCONN from any system in the sysplex that is connected
to the coupling facility.

Figure 5-4 on page 5-21 shows task 1 allocating a structure for the first time:

5-20 OS/390 V2R8.0 MVS Sysplex Services Guide

allocates and
connects to
the structure
by name.

coupling facility

IXLCONN
task 1 structure

Figure 5-4. Allocating a Structure

In Figure 5-5 task 2 connects to the same structure:

connects to
structure by
name

coupling facility

IXLCONN

IXLCONN

task 1

task 2
structure

Figure 5-5. Connecting to an Allocated Structure

Whether the first connector or a subsequent connector to a structure, all connectors
must verify that the structure attributes are acceptable.

� For the first connector, even though the return code might be
IXLRETCODEOK, IXLCONN might not have satisfied all attributes requested.
The CONACONNALLOC flag is set to indicate that this connection allocated
the structure in the coupling facility.

� Subsequent connectors to an already allocated structure must verify that the
attributes received by the first connector to the structure are acceptable.

If you find that the structure attributes are not acceptable, you can do one of the
following:

� Disconnect from the structure.
� Rebuild the structure.

For information on rebuilding a structure, see “Structure Rebuild Processing” on
page 5-63.

Once you are connected to a structure, you can use specific coupling facility
structure services (IXLCACHE, IXLLIST, or IXLLOCK) to manipulate the cache, list,
or lock structure.

 Chapter 5. Connection Services 5-21

Note about designing structure connections
XES associates a connection to a coupling facility structure with the task that
issues the IXLCONN macro. When that task is ended, either normally or
abnormally, the connection to the structure fails. The task that issued the IXLCONN
macro is responsible for termination/cleanup and is accountable for all resources
associated with the task.

This task association has several implications which require that you evaluate
carefully your application design:

� Should a task that has issued one or more IXLCONN requests terminate
abnormally for some reason, then all the associated XES connection(s) will be
terminated as a result of the termination. For example, if your task connects to
several structures, each of which is required to support the task's function, and
your task fails, all connections fail. This might be acceptable because your task
would not have been able to provide any function without connectivity to all
structures.

� Should a task that performs both XES-related and non-XES-related functions
fail, then both types of processing are disrupted. The failure of the single task
causes a loss of capability with a greater scope than might be necessary.

IBM, therefore, recommends that you evaluate your design with the following
considerations:

� Do not aggregate unrelated XES connections under the same task.

� Do not aggregate XES connections under the same task with non-XES-related
functions.

Connecting to a Coupling Facility Structure
As an authorized user, you connect to a coupling facility structure to manipulate
data using sysplex services. The data within the structure depends on the type of
structure - cache, list, or lock.

Overview of Connect Processing
You connect to a coupling facility structure to use XES services to manipulate
structure data. The system administrator must define the characteristics of the
structure in an administrative CFRM policy and an operator must activate that
policy before you can connect to the structure.

The first user to connect to a structure causes the structure to be allocated in a
coupling facility, using the attributes from both the policy definition and the
IXLCONN parameters. Subsequent connectors to the structure cannot change

| these initial attributes, unless all connectors agree to rebuild (ALLOWREBLD=YES)
| or alter (ALLOWALTER=YES) the structure with new attributes. The number of

users that are allowed to connect to a structure is a function of the coupling facility
model, the CFRM couple data set format statements, and for a lock structure, a
user-supplied limit when the lock structure is allocated.

A connector to a structure is aware of other connectors to the same structure,
(called peer connections), through its event exit.

Upon successful completion of your IXLCONN request, you

5-22 OS/390 V2R8.0 MVS Sysplex Services Guide

� Receive data in the connect answer area (mapped by IXLYCONA)

� Are connected to the coupling facility structure you requested

� Can request structure services that are valid for this type of structure

� Will be notified about other connections to this structure through your event
exit. (Any other active connections to the structure also are notified of your
connection through their event exits.)

Note: If you are connecting to a lock or a serialized list structure, the system joins
an XCF group for your connection. You might need, therefore, to allow for
an increase in the number of XCF groups and reformat the sysplex couple
data set accordingly. Be aware that this XCF group is strictly for the
system's use. If you wish to use XCF services, then you must join your own
group using IXCJOIN.

If your IXLCONN request does not complete successfully, you might decide to use
the ENF notification of events to determine whether to retry the request. Users
waiting to connect to a structure can use ENF event code 35 to be notified when
coupling facility resources become available. Whether a subsequent IXLCONN
request will be successful depends on the then current set of factors, such as
whether the structure dumping or structure rebuild processing is in progress.

For planned reconfiguration or recovery, connected users to a structure can rebuild
the structure. The new structure has the same name as the old structure, but can
be placed in a different coupling facility and can have some changed attributes,
such as size. All connected users must participate in the rebuilding process or else
must disconnect from the structure. Rebuilding requires stringent coordination
among the participating systems; checkpoints in the form of event notifications
require responses from all participants.

For improved availability and usability, connected users to a cache structure can
duplex the structure. By default, the new instance of the structure is placed in a
different coupling facility and has the same or better connectivity as the old
structure. As with rebuilding, all connected users must participate in the
user-managed duplexing process, all participating systems are required to
coordinate their actions, and all participating systems are required to respond to
event notifications.

Naming the Structure
Use the STRNAME parameter to identify the name of the structure. This is a
required parameter. The name you choose is also the name that is to be specified
in an installation's CFRM active policy. You must supply this name to users of your
application.

Use the TYPE parameter to specify whether the structure is to be allocated as a
cache, list, or lock structure.

Naming the Connection
Use the CONNAME parameter to identify your connection to the structure.
CONNAME is required if the connection is to be persistent (CONDISP=KEEP) and
optional if the connection is to be non-persistent (CONDISP=DELETE). However, if
you do not specify a name when CONDISP=DELETE, the system generates a
unique name for the connection. This field cannot be changed if the structure is
rebuilt.

 Chapter 5. Connection Services 5-23

Note also that IXLCONN REBUILD will not be successful unless you specify the
same connection name as for the original connect (either user-specified or
system-generated).

Specifying Connector Data
Use the CONDATA parameter to provide eight bytes of connection data. The
system passes this data to your exits when invoked, and is for your use only. A
possible use for CONDATA is as a pointer to a control block that represents the
connector. This field cannot be changed if the structure is rebuilt.

Providing a Connection Level
Use the CONLEVEL parameter to provide eight bytes of connector data that
specifies any non-local information, such as connection or version level. The
system passes this data to the structure's peer connections through the event exit.
(See the EEPLSUBJCONLEVEL field in IXLYEEPL.)

A possible use for CONLEVEL is to provide a way for different levels of connected
users to share the same structure. Depending on the migration protocol employed,
peer connectors might not allow a lower-level connection to the structure and the
lower-level connector would disconnect immediately upon determining the connect
level of peer connections. Alternately, the protocol might require that the uplevel
connectors limit their functionality to that of a lower level connector.

This field cannot be changed if the structure is rebuilt.

Requesting a Coupling Facility Level
Use the CFLEVEL parameter to specify the level of the coupling facility in which the
structure is to be allocated. (The coupling facility level is defined in PR/SM Planning
Guide).

If you attempt to connect with a CFLEVEL higher than that supported by the MVS
system on which you are running, your IXLCONN request fails with reason code
IXLRSNCODECFLEVEL. The maximum CFLEVEL value supported by the MVS or
OS/390 release in returned in the connect answer area, field
CONAMVSRELEASEMAXCFLEVEL. The level of coupling facility functionality
supported for a connector, based on the requested CFLEVEL and the actual
CFLEVEL of the coupling facility in which the structure is allocated, iis returned in
CONACFACILITYCFLEVEL.

The CFLEVEL requested by each connector to a structure is saved in the CFRM
active policy. Other connectors are informed of this level through their event exits
— for new connection, existing connection, rebuild new connection, and rebuild
existing connection events.

The CFLEVEL can be specified only through IXLCONN. To change to a different
coupling facility level, you must disconnect and connect to the structure again with
a different value. You also cannot change your requested CFLEVEL when
rebuilding the structure. The structure might be rebuilt in a coupling facility with a
different CFLEVEL, but that is dependent on the first connector to issue the
IXLCONN REBUILD request and what coupling facility resources are available for
allocating the new structure.

5-24 OS/390 V2R8.0 MVS Sysplex Services Guide

See “Coupling Facility Considerations When Allocating a Structure” on page 5-18
for an explanation of how the coupling facility level for an explanation of how the
coupling facility level affects the allocation of a structure in a coupling facility.

Specifying Coupling Facility Connectivity Requirements
Use the CONNECTIVITY keyword in OS/390 Release 2 and higher to define the
application's connectivity requirements to the structure. The system uses this
requirement to select the coupling facility in which to allocate the structure.
CONNECTIVITY values are:

� SYSPLEX — Requests that the system allocate the structure in a coupling
facility that has connectivity to all systems currently in the sysplex. If no
coupling facility meets this requirement, the IXLCONN request fails with reason
code IXLRSNCODENOFAC. In the connect answer area,
CONAFACILITYARRAY, which contains an entry for each coupling facility in
which allocation was attempted, indicates the reason why the allocation failed
for that coupling facility. The reason code for a coupling facility that did not
meet the connectivity requirement is CONARSNINSUFFCONNECTIVITY.

Specifying SYSPLEX implies that all systems currently in the sysplex are at the
SP 5.1 level or above (or OS/390), have an active CFRM policy, are capable of
attaching to a coupling facility, and have operating links to a coupling facility.

� BESTGLOBAL — Requests that the system allocate the structure in the
coupling facility that provides the best global connectivity to systems in the
sysplex, if possible. The system calculates the connectivity value of all coupling
facilities in the current sysplex and uses this value as the highest attribute to
select the coupling facility in which to allocate the structure. See “Selecting a
Coupling Facility for Structure Allocation” on page 5-16. The system attempts
to allocate the structure in a coupling facility with the highest connectivity value
that has the best local and global connectivity. (The coupling facility selected
must have connectivity to the local system that issued the IXLCONN request.)
If the structure allocation fails, the system selects successively lower-weighted
coupling facilities in which to attempt the allocation. If no allocation is possible,
the IXLCONN request fails with reason code IXLRSNCODENOFAC.

In the connect answer area, CONAFACILITYARRAY contains reason code
CONARSNPREFERREDCFSELECTED for any coupling facility that was not
selected because another coupling facility was a preferable choice.

� DEFAULT — Requests that the system use the coupling facility selection
algorithm to select the coupling facility in which to allocate the structure. If there
is an active SFM policy, the system calculates the connectivity value for a
coupling facility only when selecting a coupling facility that is equal in regard to
all coupling facility attributes other than connectivity. If there is no active SFM
policy, the algorithm does not include the calculation of the coupling facility
connectivity value.

If the system cannot find a coupling facility that meets all requirements, the
system attempts structure allocation in successively lower-weighted coupling
facilities until allocation is successful. The system chooses the coupling facility
that most closely meets the requirements of the IXLCONN request.

 Chapter 5. Connection Services 5-25

Allowing User-Managed Rebuild for a Structure
Connectors specify whether or not they will allow the structure to be rebuilt
(ALLOWREBLD). If rebuild is allowed, the connectors can allocate another structure
of the same name and rebuild data into the new structure. ALLOWREBLD=YES is
the default, so if you do not allow the structure to be rebuilt, you must provide your
own interfaces for planned shutdown before reconfiguring a coupling facility. You
also must specifically code ALLOWREBLD=NO, which will prevent the operator
from starting the rebuild process.

Allowing the Structure to be Duplexed
User-managed duplexing rebuild, a variation of the structure rebuild process, is
available only for cache structures. For duplexing to occur, all connectors to the
structure must specify not only ALLOWDUPREBLD=YES but also
ALLOWREBLD=YES when connecting to the structure.

Comparing User-Managed Rebuild and Duplexing Rebuild

Structure rebuild and duplexing rebuild provide the framework by which an
application can ensure that there is a viable and accurate version of a structure
being used by the application.

Structure rebuild allows you to reconstruct the data in a structure when
necessary, for example, after a failure. Duplexing rebuild allows you to maintain
the data in duplexed structures on an ongoing basis, so that in the event of a
failure, the duplexed structure can be switched to easily. Duplexing rebuild is
the solution for those applications that are unable or find it difficult to reconstruct
their structure data after a failure occurs.

| Allowing the System to Manage Structure Rebuild
| System-managed rebuild, which is intended for use in planned reconfiguration
| scenarios, provides a means for rebuilding a structure with minimal participation
| from connectors to the structure. Connectors use the ALLOWAUTO parameter to
| indicate whether they support the system-managed rebuild process. If you specify
| ALLOWAUTO=YES, you must have available in the CFRM preference list for the
| structure at least two coupling facilities of CFLEVEL=8 or higher. The system will
| attempt to allocate the structure in a coupling facility of CFLEVEL=8 or higher when
| ALLOWAUTO=YES is specified. You also must have in use an active CFRM
| couple data set that has been formatted with the ITEM NAME(SMREBLD)
| NUMBER(1) statement. All systems in the sysplex using that CFRM couple data set
| must be at OS/390 Release 8 or higher for the system-managed rebuild process to
| be enabled. Additionally, list and lock structures must have been allocated by a
| system at OS/390 Release 8 or higher to be enabled for system-managed rebuild.

Allowing the Structure to be Altered
Use the ALLOWALTER parameter to indicate whether you permit the structure to
be altered. If you specify ALLOWALTER=YES, you also must specify CFLEVEL=1
or higher because the structure must be allocated in a coupling facility that supports
structure alter processing. For structure alter to occur, all connectors to the
structure must specify ALLOWALTER=YES and CFLEVEL=1 or higher.

When you specify ALLOWALTER=YES, you can also specify:

� Whether the entry-to-element ratio can be changed (RATIO)

5-26 OS/390 V2R8.0 MVS Sysplex Services Guide

� Whether the percentage of event monitor controls (EMC) storage can be
changed (RATIO)

� The minimum number (as a percent value) of both entries and elements you
want to be available at the conclusion of the structure alter process.

For list structures, this is a percentage of currently “in-use” entries and
elements; for cache structures, this is a percentage of “in-use and changed”
entries and elements.

– MINENTRY specifies the minimum level of available entries.
– MINELEMENT specifies the minimum level of available elements.

� The minimum amount of storage (as a percent value) of storage allocated for
event monitor controls that you want available at the conclusion of the structure
alter process.

For keyed list structures, this is a percentage of “currently-in-use” EMCs.

– MINEMC specifies the minimum level of available EMCs.

Comparing Structure Rebuild and Structure Alter

Structure alter and structure rebuild are complementary functions, each with its
own purpose in a coupling facility environment. The structure rebuild function,
introduced in SP 5.1, allows a connector to a structure to change many of the
structure attributes, but requires the other connectors to participate in the
rebuild process. The structure alter function, available in SP 5.2, allows an
authorized user, not necessarily a connector to a structure, to change the
structure's size, entry-to-element ratio, and percentage of storage for event
monitor controls, without disrupting the structure's current connectors. The
structure rebuild function physically relocates the structure, either in the same or
a different coupling facility, thus requiring the installation to plan its CFRM policy
to allow for coupling facility space to be left available for possible later rebuild
use. The structure alter function does not relocate the structure, but changes it
“in place”. Structure alter does not require additional coupling facility space to
be reserved for a “new” structure, and does not disrupt the processing of
connectors to the structure while it is being altered.

Handling Dump Serialization
You can specify the amount of time (if any) that SVC Dump can hold serialization
on the structure for dumping purposes. SVC Dump supports dumping of list,
serialized list, and cache structures; it does not support dumping of lock structures.

Use the ACCESSTIME keyword to can indicate the following:

� The structure is not permitted to be dumped (dump serialization may not be
held)

 ACCESSTIME=MAXIMUM,MAXTIME=ð

� Dump serialization can be held up to a maximum specified time

 ACCESSTIME=MAXIMUM,MAXTIME=n

where n is tenths of seconds.

� Dump serialization can be held for as long as it takes to dump all data that was
requested to be dumped.

 Chapter 5. Connection Services 5-27

 ACCESSTIME=NOLIMIT

The operator can override the ACCESSTIME parameter that was specified on the
IXLCONN macro with the DUMP command.

Specifying Structure Attributes for All Structures
The following IXLCONN parameters define the common requirements of the cache,
list, and lock structures. Parameters specific to each structure type are explained in
later topics.

STRNAME Specifies the name of the structure to which you want to
connect.

STRSIZE Specifies the size of the structure in 4K blocks. The size
specified in the CFRM policy is the maximum size for
allocation of this structure. To allocate a smaller size structure,
use this IXLCONN keyword.

CONDATA Specifies connector data to be passed to your exit routines.

STRDISP Specifies the disposition of the structure when all connections
are released.

CONDISP Specifies the disposition of this connection in case of the
connection's abnormal termination.

CONNAME Specifies the name of this connection.

| ALLOWREBLD Specifies whether this connection allows user-managed
structure rebuild to be initiated for the structure.

ALLOWALTER Specifies whether this connection allows structure alter to be
initiated for the structure.

| ALLOWAUTO Specifies whether this connection allows system-managed
| processes to be initiated for the structure.

| SUSPEND Specifies whether this connection can tolerate suspension of
| work units during system-managed processing for a structure.

RATIO Specifies whether this connection allows the ratio of
entries-to-elements to be changed if the structure is altered.

MINENTRY Specifies the minimum number of “in-use” (list) and “in-use and
changed” (cache) entries that are to be available at the
completion of structure alter processing.

MINELEMENT Specifies the number of “in-use” (list) and “in-use and
changed” (cache) elements that are to be available at the
completion of structure alter processing.

NONVOLREQ Specifies whether the connector to the structure requires that
the data in the structure be both nonvolatile and
failure-independent.

CONLEVEL Specifies a connector's level to be passed to peer connections
in the event exit.

CFLEVEL Specifies the requested level of the coupling facility in which
the structure is to be allocated.

5-28 OS/390 V2R8.0 MVS Sysplex Services Guide

CONNECTIVITY Specifies the scope of system connectivity to a coupling facility
in which the structure is to be allocated.

EVENTEXIT Specifies the address of your event exit.

COMPLETEEXIT Specifies the address of your complete exit.

ACCESSTIME Specifies the length of time that you can tolerate not having
access to the structure while SVC Dump holds serialization on
the structure.

MAXTIME Specifies the maximum amount of time that you can tolerate
not having access to the structure.

| The IXLCSP service can be used to assist you when defining certain IXLCONN
| parameters. See “Using the IXLCSP Service to Determine Structure Size or
| Attributes” on page 5-38.

Connecting to a Cache Structure
This section describes the IXLCONN parameters that you code to connect to a
cache structure. To help you code the IXLCONN macro, use the general IXLCONN
guidance information in “Connecting to a Coupling Facility Structure” on page 5-22
together with the information provided here.

The first application that connects to a cache structure allocates the structure and
defines its attributes. Subsequent connectors to the structure use the structure as it
has been allocated by the first connector. The following IXLCONN parameters
define the attributes of the cache structure:

ALLOWDUPREBLD
Specifies whether this connection allows user-managed
duplexing rebuild to be initiated for the cache structure.

ELEMCHAR or ELEMINCRNUM
Specifies the data element size for the cache structure.

MAXELEMNUM Specifies the maximum number of data elements per data
entry. For a coupling facility of CFLEVEL=0, the maximum
number can be from 1 to 16. For a coupling facility of
CFLEVEL=1 or higher, the maximum number can be from 1 to
255.

DIRRATIO Specifies the directory component of the directory-to-element
ratio.

ELEMENTRATIO Specifies the element component of the directory-to-element
ratio.

ADJUNCT Specifies whether the cache structure is to contain adjunct
areas.

VECTORLEN Specifies the maximum number of data items for which the
connection can have concurrent registration.

NUMCOCLASS Specifies the maximum number of cast-out classes that can be
used by the connection.

NUMSTGCLASS Specifies the maximum number of storage classes that can be
used by the connection.

 Chapter 5. Connection Services 5-29

UDFORDER Specifies whether a user data field (UDF) order queue should
be maintained for each cast-out class for the structure.
Applicable only to cache structures allocated in a coupling
facility with CFLEVEL=5 or higher.

| NAMECLASSMASK
| Specifies the name class mask pattern definition to be applied
| to entry names at connect time. Name classes are used by the
| coupling facility to assign each entry to a name class within the
| structure. Name classes can be used to improve the
| processing efficiency of IXLCACHE
| REQUEST=DELETE_NAME command. Applicable only to
| cache structures allocated in a coupling facility with
| CFLEVEL=7 or higher.

Selecting the Number of Data Elements and Their Size
To select the data element size for the cache structure, you need to understand the
approximate sizes of the smallest and largest pieces of data to be stored in the
cache entries. If the data can fit into adjunct areas, you could avoid using data
entries altogether. Code a value of 0 for ELEMENTRATIO to define a cache
structure without data entries. The system ignores the MAXELEMNUM
parameter if you specify it with an ELEMENTRATIO of 0.

The system allows a maximum of 16 data elements per data entry (with
CFLEVEL=0) or 255 data elements per data entry (with CFLEVEL=1 or higher), but
you can use the MAXELEMNUM parameter to specify a smaller maximum number
if you want to further restrict the size of the largest data entries.

The value you specify for MAXELEMNUM must be greater than or equal to the
value specified for ELEMENTRATIO divided by the value specified for DIRRATIO:

MAXELEMNUM >= (ELEMENTRATIO / DIRRATIO)

The data element size multiplied by the maximum number of data elements must
be sufficient to accommodate the largest piece of data that you need to manipulate
as a single entry. For a list of possible data element sizes, see Figure 6-3 on
page 6-5.

Effect of CFLEVEL on MAXELEMNUM: Even if you request that a structure be
allocated in a CFLEVEL=1 or higher coupling facility (thus allowing up to 255 data
elements per data entry), the system might need to allocate the structure in a
CFLEVEL=0 coupling facility instead. The system will attempt to allocate the
structure with an entry size as great as that specified on the IXLCONN invocation
and then adjust the number of data elements to fit into the entry size. You can
examine the resulting data element and data entry values in the connect answer
area.

For example: You request to connect to a structure with a data element size of 256
bytes and a MAXELEMNUM of 128 (thus implying a CFLEVEL=1 or higher
coupling facility). The maximum entry size is 32K (256 bytes x 128). If the system
is forced to allocate the structure in a CFLEVEL=0 coupling facility, it will allocate
the structure with a data element size of 2K and a MAXELEMNUM of 16. The
maximum entry size is still 32K, but the MAXELEMNUM is changed to conform to
the maximum allowed in a CFLEVEL=0 coupling facility. (The system increases

5-30 OS/390 V2R8.0 MVS Sysplex Services Guide

the data element size by the same power of 2 by which the MAXELEMNUM value
was decreased.)

Note that a change to MAXELEMNUM will have a corresponding effect on the
directory-to-element ratio you specify. If the system changes the element size, it
also must change the directory-to-element ratio to suit the maximum entry size.
(The ratio is adjusted by the same power of 2 calculation described above.) You
can examine the resulting directory-to-element ratio information in the connect
answer area.

Selecting the Directory-to-Element Ratio
You cannot control directly the number of directory entries or data elements the
cache structure will hold. The installation uses the CFRM policy to specify the
amount of storage a particular cache structure will occupy. When the cache
structure is allocated, its storage is subdivided to reserve space for cache structure
components such as data elements and directory entries. The value you specify for
the directory-to-element ratio is used by the system to determine the proportion of
the cache structure storage to allocate to each component. The ratio, expressed as
a pair of whole numbers, such as 1:4, is passed to IXLCONN using the DIRRATIO
and ELEMENTRATIO parameters as follows:

� The DIRRATIO parameter specifies the part of the ratio for the directory entries
(for instance, the 1 in the 1:4 ratio)

� The ELEMENTRATIO parameter specifies the part of the ratio for the data
elements (for instance, the 4 in the 1:4 ratio).

In general, the directory-to-element ratio should reflect the average number of data
elements per cache entry. For example, if your data element size is 4096 bytes,
and you estimate that about half of the cache entries will require 1 data element
and about half of the cache entries will require 8 data elements, then you would
want a ratio of 1:4.5 which you would express in whole numbers as 2:9.

Although you request a particular directory-to-element ratio, the system might use a
slightly different ratio. The actual number of entries and elements in the structure,
rather than the ratio, is returned to you in the IXLCONN answer area mapped by
the IXLYCONA macro. Note that these values in IXLYCONA are not exact values.

If the directory-to-element ratio is incorrect for your use of the structure, you will
encounter frequent rejections of IXLCACHE requests because either the cache or
cache structure is full.

| See “Using the IXLCSP Service to Determine Structure Size or Attributes” on
| page 5-38.

Determining Whether to Have Adjunct Areas
The adjunct area can contain 64 bytes of user-specified data, such as information
about the status of the data entry or a time stamp. The adjunct area is maintained
separately from the data entry so you can change the contents of the data entry or
the adjunct area independently.

 Chapter 5. Connection Services 5-31

Selecting the Number of Cast-Out classes
The maximum number of cast-out classes that you select is dependent upon the
needs of your application. For information that can help you make this selection,
see “Casting out Data Items and Reclaim Processing” on page 6-33.

Selecting the Number of Storage Classes
The maximum number of storage classes that you select is dependent upon the
needs of your application. For information that can help you make this selection,
see “Assigning and Using Storage Classes” on page 6-29.

Determining Whether to Have User Data Field (UDF) Order
Queues
UDF order queues, available only in a cache structure allocated in a coupling
facility of CFLEVEL=5 or higher, provide the ability to have a queue associated with
each cast-out class, which the coupling facility maintains in order by user-data field.
You can use IXLCACHE REQUEST=READ_COSTATS to determine the lowest
user-data field for any entry in the cast-out class when UDF order queues are
present.

| Determining Whether to Use Name Class Masks
| A name class mask can be used to enhance the performance of the IXLCACHE
| REQUEST=DELETE_NAME command in a coupling facility of CFLEVEL=7 or
| higher. By establishing a naming convention for entries in a cache structure, the
| name class mask can be used when deleting entries that adhere to that naming
| convention. For an example of the use of a name class mask in conjunction with
| the name class specified when deleting entries from a cache structure, see “Using
| Name Classes in a Coupling Facility” on page 6-97.

Connecting to a List Structure
This section describes the IXLCONN parameters that you code to connect to a list
structure. To connect to a list structure, code the IXLCONN macro using the
general IXLCONN guidance information in “Connecting to a Coupling Facility
Structure” on page 5-22 together with the information provided here.

The first application that connects to a list structure allocates it and defines its
characteristics. Subsequent connectors to the list structure use the list structure as
it has been allocated by the first connector. The following IXLCONN parameters
define the attributes of the list structure:

ELEMCHAR or ELEMINCRNUM
Specifies the data element size to be used.

MAXELEMNUM Specifies the maximum number of data elements per data
entry. For a coupling facility of CFLEVEL=0, the maximum
number can be from 1 to 16. For a coupling facility of
CFLEVEL=1 or higher, the maximum number can be from 1 to
255.

EMCSTGPCT Specifies the percentage of available storage that is to be set
aside for event monitor controls used for sublist monitoring. The
sublist monitoring function

� Is available only with a coupling facility of CFLEVEL=3 or
higher.

5-32 OS/390 V2R8.0 MVS Sysplex Services Guide

� Requires a list structure defined as having keyed list entries
(REFOPTION=KEY).

ENTRYRATIO Specifies the entry component of the entry-to-element ratio.

ELEMENTRATIO Specifies the element component of the entry-to-element ratio.

ADJUNCT Specifies whether the list structure is to contain adjunct area.

LISTCNTLTYPE Specifies whether the amount of coupling facility storage which
may reside on a given list header is to be controlled by limiting
the maximum number of entries or the maximum number of
data elements.

REFOPTION Specifies whether list entries are to be referenced by entry
name, entry key, or neither. List entries can always be
referenced by entry ID or unkeyed position.

VECTORLEN If you are planning to use list monitoring, specifies the
maximum number of list headers that you can monitor for
transitions between empty and non-empty states.

If you are planning to monitor your event queue, specify a
VECTORLEN that includes a vector index to assign for event
queue monitoring.

� If you are using event queue monitoring without also using
list monitoring, specify a vector with a single vector index.

� If you are using event queue monitoring in conjunction with
list monitoring, specify a vector index whose length equals
the number of list headers that are to be concurrently
monitored plus one for the event queue.

LISTTRANEXIT If you are planning to use list monitoring or event queue
monitoring, specifies the address of your list transition exit.

LOCKENTRIES For a serialized list structure, specifies the number of lock
entries in the lock table.

NOTIFYEXIT For a serialized list structure, specifies the address of your
notify exit.

LISTHEADERS Specifies the number of lists to be allocated in the list structure.

Selecting the Data Element Size
To select the data element size for the list structure, you need to understand the
approximate sizes of the smallest and largest pieces of data to be stored in the list
entries. If the data can fit into adjunct areas, you could avoid using data entries
altogether. Code a value of 0 for ELEMENTRATIO to define a list structure
without data entries. The system ignores the MAXELEMNUM parameter if you
specify it with an ELEMENTRATIO of 0.

The system allows a maximum of 16 data elements per data entry (with
CFLEVEL=0) or 255 data elements per data entry (with CFLEVEL=1 or higher), but
you can use the MAXELEMNUM parameter to specify a smaller maximum number
if you want to further restrict the size of the largest data entries. In all cases,
whatever value you choose for MAXELEMNUM, the maximum size of a data entry
is 64K.

 Chapter 5. Connection Services 5-33

The value you specify for MAXELEMNUM must be greater than or equal to the
value specified for ELEMENTRATIO divided by the value specified for
ENTRYRATIO:

MAXELEMNUM >= (ELEMENTRATIO / ENTRYRATIO)

The data element size multiplied by the maximum number of data elements must
be sufficient to accommodate the largest piece of data that you need to manipulate
as a single entry. See Figure 7-3 on page 7-6 for a list of data element sizes.

Effect of CFLEVEL on MAXELEMNUM: Even if you request that a structure be
allocated in a CFLEVEL=1 or higher coupling facility (thus allowing up to 255 data
elements per data entry), the system might need to allocate the structure in a
CFLEVEL=0 coupling facility instead. The system will attempt to allocate the
structure with an entry size as great as that specified on the IXLCONN invocation
and then adjust the number of data elements to fit into the entry size. You can
examine the resulting data element and data entry values in the connect answer
area.

For example: You request to connect to a structure with a data element size of 256
bytes and a MAXELEMNUM of 128 (thus implying a CFLEVEL=1 or higher
coupling facility). The maximum entry size is 32K (256 bytes x 128). If the system
is forced to allocate the structure in a CFLEVEL=0 coupling facility, it will allocate
the structure with a data element size of 2K and a MAXELEMNUM of 16. The
maximum entry size is still 32K, but the MAXELEMNUM is changed to conform to
the maximum allowed in a CFLEVEL=0 coupling facility. (The system increases
the data element size by the same power of 2 by which the MAXELEMNUM value
was decreased.)

Note that a change to MAXELEMNUM will have a corresponding effect on the
entry-to-element ratio you specify. If the system changes the element size, it also
must change the entry-to-element ratio to suit the maximum entry size. The ratio is
adjusted by the same power of 2 calculation described above.) You can examine
the resulting entry-to-element ratio information in the connect answer area.

Requesting Storage for Event Monitor Controls
The EMCSTGPCT parameter allows you to specify the percentage of available
storage that is to be set aside for event monitor controls. Available storage is
defined as that storage that remains in the allocated structure after the storage
required for the marginal structure size has been assigned. (The marginal structure
size is the true minimum size at which the structure can be allocated. It consists of
structure controls and overhead, and under certain conditions, might contain a
small number of entries and elements.) Figure 5-6 on page 5-35 shows a structure
with an amount of its space used as the marginal structure size. The remainder of
the space in the structure is available for event monitor controls and entries and
elements.

5-34 OS/390 V2R8.0 MVS Sysplex Services Guide

List Structure Controls,
"Overhead"

Event

Monitor

Controls

Entries

Marginal
Structure Size

Allocated
Structure Size

Elements

Figure 5-6. List Structure Space Allocation

Note that the EMCSTGPCT parameter is applied first to the available storage to set
aside a percentage of the storage for event monitor controls (EMCs). EMCs are
used when monitoring sublists, an IXLLIST function available with a coupling facility

| of CFLEVEL=3 or higher when the list structure has been allocated as having
| keyed list entries (REFOPTION=KEY). The sublist monitoring function also requires

that the IXLLIST user have a local vector, which is requested by specifying a
nonzero VECTORLEN. The figure shows that as the EMCSTGPCT percentage
value increases, there will be less storage available for entries and elements.

After the storage for the EMCs is assigned, the remaining storage is available for
entries and elements. The ENTRYRATIO and the ELEMENTRATIO keywords
determine how many entries and elements can be defined in that storage area.

Selecting the Entry-To-Element Ratio
You cannot control directly the number of list entries or data elements the list
structure will hold. The installation uses the CFRM policy to specify the amount of
storage a particular list structure will occupy. When the list structure is allocated
and, if applicable, the percentage of list structure storage has been set aside for
event monitor controls objects, the list structure storage is subdivided to reserve
space for list structure components such as data elements and list entry controls.
The value you specify for the entry-to-element ratio is used by the system to
determine the proportion of the list structure storage to allocate to each component.
The ratio, expressed as a pair of whole numbers, such as 1:4, is passed to
IXLCONN using the following ENTRYRATIO and ELEMENTRATIO parameters.

� The ENTRYRATIO parameter specifies the part of the ratio for the list entry
controls (for instance, the 1 in the 1:4 ratio)

 Chapter 5. Connection Services 5-35

� The ELEMENTRATIO parameter specifies the part of the ratio for the data
elements (for instance, the 4 in the 1:4 ratio).

In general, the entry-to-element ratio should reflect the average number of data
elements per list entry. For example, if your data element size is 4096 byes, and
you estimate that about half of the list entries will require 1 data element and about
half of the list entries will require 8 data elements, then you would want a ratio of
1:4.5 which you would express in whole numbers as 2:9.

Although you request a particular entry-to-element through the IXLCONN macro,
the system might use a slightly different ratio. The actual number of entries and
elements in the structure, rather than the ratio, is returned to you in the IXLCONN
answer area mapped by the IXLYCONA macro. Note that these values in
IXLYCONA are not exact values because the coupling facility might reserve some
entries and elements for its own use. The reserved entries and elements are not
available for your use, but are accounted for in the IXLYCONA counts.

If the entry-to-element ratio is incorrect for your use of the list structure, you will
encounter frequent rejections of IXLLIST requests because the list structure is full.
If you are monitoring the entry and element counts to avoid a structure full
condition, take into account the reserved entries and elements used by the coupling
facility.

Deciding How to Limit the Storage Used by Each List
The LISTCNTLTYPE parameter allows you to choose how storage use is to be
managed for individual lists. You can limit either the number of list entries per list or
the number of data elements per list. A limit on storage use per list may be needed
to prevent the excessive use of storage by certain lists.

The flexibility offered by the choice of limits allows you to select the type of limit
that best suits your use of the list structure. For instance, if your main concern is to
limit the number of entries that might build up on a list, you should limit the number
of list entries per list. If your main concern is to prevent the entries on a given list
from consuming too much of the storage in the structure, you should limit the
number of data elements per list.

Determining Whether to Have Adjunct Areas
The adjunct area can contain 64 bytes of user-specified data, such as information
about the status of the data entry or a time stamp. The adjunct area is maintained
separately from the data entry so you can change the contents of the data entry or
the adjunct area independently.

Determining Whether to Have Named or Keyed List Entries
Named entries let users reference list entries by a user-specified name. Keyed
entries let users maintain list entries in a keyed order. The choice of named or
keyed entries, or the use of neither, depends on how the list structure is being
used. For instance, if the list entries represent units of work ordered by priority, you
might choose keyed entries. If the list entries represent customer records in a
particular category, you might choose named entries. If the lists represent units of
work to be processed on a FIFO basis, there might be no need for names or keys.

Note that sublist monitoring and event queue monitoring are functions that require
that the list structure have keyed entries.

5-36 OS/390 V2R8.0 MVS Sysplex Services Guide

Connecting to a Lock Structure
This section describes the IXLCONN parameters that you code to connect to a lock
structure. To help you code the IXLCONN macro, use the general IXLCONN
guidance information in “Connecting to a Coupling Facility Structure” together with
the information provided here.

The first application that connects to a lock structure allocates the structure and
defines its characteristics. Subsequent connectors to the structure use the structure
as it has been allocated by the first connector. The following IXLCONN parameters
define the attributes of the lock structure:

RECORD Specifies whether the lock structure is to include record data.

RNAMELEN Specifies whether resource names are a fixed or a variable
length for the lock structure.

LOCKENTRIES Specifies the number of lock entries in the lock structure.

NUMUSERS Specifies the maximum number of users allowed to connect to
the lock structure.

CONTEXIT Specifies the address of your contention exit.

NOTIFYEXIT Specifies the address of your notify exit.

Determining Whether to Specify Record Data
Record data allows you to maintain information about a resource that you own so
that, if you should lose connectivity or fail, your peer connections can initiate
recovery processing for the resource. The data that you include in the 64-byte
record data entry is entirely determined by your protocol, as are any recovery
procedures that you may implement using that data.

The maximum number of record data entries that a structure can support is
returned in the IXLYCONA answer area (CONALOCKMAXRECORDELEMENTS). If
the structure is already allocated, the number of record elements in use at the time
of the connect is returned in CONALOCKRECORDELEMENTS.

Understanding the Resource Name Length Attribute
Use the RNAMELEN parameter to specify whether the length of the resource name
(RNAME) is a fixed or a variable length. Prior to OS/390 Release 2, the resource
name always had a length of 64 bytes. With OS/390 Release 2 and higher, you can
specify as a structure attribute for the lock structure whether you want to use
resource names that have a fixed length of 64 bytes, or that have a variable length
of from 1 to 300 bytes. The default, if you do not specify the RNAMELEN
parameter, is that resource names will have a fixed length of 64 bytes.

The first connector to the structure establishes the resource name length attribute.
Subsequent connectors to the structure must specify the same value for the
attribute or the attempt to connect fails with reason code IXLRSNCODESTRTYPE.
When rebuilding a lock structure, you must specify an RNAMELEN parameter on
your IXLCONN REBUILD request that is consistent with the RNAMELEN specified
for the original structure. The IXLCONN REBUILD invocation fails with reason code
IXLRSNCODESTRTYPE if you specify the RNAMELEN parameter.

 Chapter 5. Connection Services 5-37

Determining the Number of Lock Entries
Use the LOCKENTRIES parameter to specify the number of entries in the lock
structure. This value determines the number of available ‘slots’ in a structure's lock
table, to which a specific resource is mapped by a hashing algorithm. The value of
LOCKENTRIES is rounded up to a power of 2, if it is not already specified as such.
With OS/390 Release 2 and higher, if you define the lock structure to have no
record data associated with it (RECORD=NO), you can request that the system is
to attempt to obtain the largest possible number of locks for the allocated size of
the structure by specifying LOCKENTRIES=0. The system returns the number of
lock entries actually allocated in the IXLYCONA answer area, field
CONALOCKENTRIES. A value of 0 for a lock structure with record data is not valid
and the request fails with reason code IXLRSNCODENOLENTRIES.

Determining the Number of Lock Structure Users
Use the NUMUSERS parameter to limit the number of users of a lock structure.
The limit can be one that your application imposes or may be a limit based on the
level of coupling facility you are using. The limit is returned in the IXLYCONA
answer area, field CONAFACILITYMAXLOCKUSERS.

The total number of lock structure users will be the minimum of:

� NUMUSERS parameter on IXLCONN

� Number of CONNECT records supported by the CFRM policy. (These records
limit the number of connections per structure.)

� Limit based on the coupling facility level.

The number of lock structure users is returned in field CONALOCKNUMUSERS in
IXLYCONA.

When rebuilding a lock structure, you can specify a NUMUSERS value that is
greater than the value specified for the original lock structure. If you specify a
NUMUSERS value less than the original value, the request fails with reason code
IXLRSNCODEREBUILDNUMUSER.

| Using the IXLCSP Service to Determine Structure Size or
| Attributes
| The XES Structure Computation Service (IXLCSP), in conjunction with a coupling
| facility of CFLEVEL=8 or higher, provides a means for obtaining both coupling
| facility capacity planning and structure size optimization information. Potential uses
| for the IXLCSP service are:

| � Planning coupling facility storage utilization and the contents of CFRM policies

| � Planning structure size required by an application

| � Optimization of connect parameters

| The XES Structure Computation Service (IXLCSP) can be used in either of two
| ways:

| � To compute the size and ratios associated with a structure, given structure
| attributes and object counts

| � To calculate structure object counts based on the size, ratios, and other
| attributes associated with a structure

5-38 OS/390 V2R8.0 MVS Sysplex Services Guide

| IXLCSP directs a request to compute either a structure's size or object counts to a
| coupling facility of CFLEVEL=8 or higher. The coupling facility will perform the
| requested calculation just as if it were actually allocating the structure. However, no
| structure allocation occurs and the contents of the target coupling facility are
| unchanged at the conclusion of the IXLCSP calculation.

| The following considerations apply to the target coupling facility:

| � The target coupling facility must be described in the CFRM active policy.

| � The calculations performed by the coupling facility are idealized in the sense
| that they do not account for any constraints or conditions (such as storage
| shortages) that might prevent a structure from actually being allocated in the
| coupling facility.

| � The calculations performed by the coupling facility are appropriate to the
| CFLEVEL of that coupling facility. Coupling facilities at different CFLEVELs will,
| in all likelihood, return different answers.

| Determining Structure Size and Ratios Given Structure Attributes: Use the
| appropriate IXLCONN values as input to the IXLCSP service to arrive at a structure
| size. This size can then be input to the CFRM policy definitions. Chapter 12,
| “Documenting your Coupling Facility Requirements” on page 12-1 describes the
| process by which you can use the parameters specified on the IXLCONN macro as
| input to the IXLCSP service.

| Determining Structure Counts Given Structure Size and Ratios: To use
| IXLCSP to determine structure counts, you must know the values of the INITSIZE
| and SIZE parameters that were used when defining the structure in the CFRM
| policy, and the ratios to be used when connecting (IXLCONN DIRRATIO,
| ENTRURATIO, ELEMENTRATIO, and EMCSTGPCT parameters, as appropriate).
| The values returned by IXLCSP can then be used as input to the IXLCONN
| service. Structure counts available from IXLCSP are:

| � Cache structure

| – Number of directory entries that can be contained in the target structure
| – Total number of elements that can be contained in the target structure

| � List structure

| – Number of event monitor controls that can be contained in the target
| structure
| – Number of list entries that can be contained in the target structure
| – Total number of elements that can be contained in the target structure

| � Lock structure

| – Number of record data entries that can be contained in the target structure
| – Number of lock entries that can be obtained in the target structure.

Defining the Required Exit Routines
XES uses exit routines to communicate some information to connected coupling
facility users. Depending on the structure type, you will need to supply one or more
of these exit routines, which are identified on the IXLCONN macro.

 Chapter 5. Connection Services 5-39

 Event Exit
XES invokes your event exit to report error and status information, such as a new
connection or a failed structure. “Events Reported to the Event Exit” on page 5-130
lists the events that are reported to the event exit. All connected users of a coupling
facility structure must provide an event exit. The EVENTEXIT keyword of IXLCONN
identifies the address of your routine.

Note that the Event exit might receive control before the system returns to the next
sequential instruction following the IXLCONN request.

 Complete Exit
XES invokes your complete exit to inform you that a previous IXLCACHE, IXLLIST,
or IXLLOCK request that you submitted was processed asynchronously and has
completed.

For IXLCACHE and IXLLIST requests, the complete exit is invoked when you
specify either:

 � MODE=ASYNCEXIT

� MODE=SYNCEXIT, which then received a return code
IXLRETCODEWARNING and a reason code IXLRSNCODEASYNCH.

For IXLLOCK requests, the complete exit is invoked when you specify
MODE=SYNCEXIT. However, if the lock request can be processed synchronously,
the MODE keyword is ignored and the request is processed synchronously.

All connected users of a coupling facility structure must provide a complete exit.
The COMPLETEXIT keyword of IXLCONN identifies the address of your routine.

 Notify Exit
XES invokes your notify exit to inform you that another connected user of a
structure has requested use of the resource associated with the structure.

� For a serialized IXLLIST request, the notify exit is used to inform a connected
user that other connected users have requested a lock currently owned by this
user.

� For an IXLLOCK request, the notify exit is used by the connected user
managing contention for a resource to communicate with other owners of the
resource.

Connected users of lock and serialized list structures must provide a notify exit. The
NOTIFYEXIT keyword of IXLCONN identifies the address of your routine.

 Contention Exit
XES invokes your contention exit to allow a connector to assume resource
management responsibilities when contention for a resource is recognized. This
process of presenting a request for a resource is called percolation. Connected
users of a lock structure must provide a contention exit. The CONTEXIT keyword of
IXLCONN identifies the address of your routine.

5-40 OS/390 V2R8.0 MVS Sysplex Services Guide

List Transition Exit
XES invokes your list transition exit to inform you that a list header that you are
monitoring has changed from an empty to a non-empty state. Connected users of
a list structure that are using the list monitoring function of IXLLIST can provide a
list transition exit, depending on the type of monitoring being done. The
LISTTRANEXIT keyword of IXLCONN identifies the address of your routine.

Summary of Required Exit Routines
For a cache structure , the event exit and the complete exit are required.

For a list structure , the event exit and the complete exit are required. The list
transition exit is optional.

For a serialized list structure , the event exit, complete exit, and notify exit are
required. The list transition exit is optional.

For a lock structure , the event exit, complete exit, notify exit, and contention exit
are required.

| See “Coding Exit Routines for Connection Services” on page 5-149 for information
| about writing exit routines.

Determining the Success of a Connection
When you invoke IXLCONN, you identify the storage area where the system is to
return information about the success or failure of your connect request.

RETCODE Contains the return code.

RSNCODE Contains the reason code.

If your request to connect to a structure is successful, RETCODE contains one of
the following:

IXLRETCODEOK Your connection is successful. The system has returned data
to you in the answer area. See “Receiving Answer Area
Information” on page 5-42.

IXLRETCODEWARNING
Your connection is successful, but you might need to do
additional processing based on the information returned to
you in the answer area. See “Receiving Answer Area
Information” on page 5-42.

If RSNCODE is IXLRSNCODESPECIALCONN, check the
CONAFLAGS field in the answer area.

When your connection is successful, it is your responsibility to verify that the
structure attributes, which may differ from those which you requested, are
acceptable.

If your request to connect to a structure is unsuccessful, RETCODE contains one of
the following:

IXLRETCODEPARMERROR
You have incorrectly specified a parameter on the IXLCONN
request.

 Chapter 5. Connection Services 5-41

IXLRETCODEENVERROR
There is an environmental error.

IXLRETCODECOMPERROR
A system failure occurred. Provide IBM with the diagnostic
data available in the answer area.

The reason codes for each of the unsuccessful return codes are defined in
IXLYCON, Cross-System Extended Services Constants.

Receiving Answer Area Information
When you invoke IXLCONN, you identify the storage area where the system is to
return information about the status of your request. Use the following IXLCONN
parameters to specify this area:

ANSAREA Contains the address of the answer area. Use the IXLYCONA macro
to map this area.

ANSLEN Contains the length of the answer area. It must be large enough to
hold the answer area mapped by IXLYCONA.

At the completion of IXLCONN processing, the answer area contains the following
information depending on the outcome of the request to connect to a structure.

Successful Completion of a Connection
IXLCONN returns the following information in the ANSAREA area:

CONACONTOKEN Token that uniquely identifies the connection within the
sysplex. You must specify the CONACONTOKEN value
returned by IXLCONN as input to other structure requests
such as IXLCACHE, IXLLIST, or IXLLOCK.

Whenever the following events occur, the system invalidates
your CONACONTOKEN:

| � If the structure is in certain phases of the user-managed
| rebuild or duplexing processes. (Note that the
| CONTOKEN is not invalidated during system-managed
| processes.)

� If your connection disconnects or fails.
� If a structure fails, or a failure of the coupling facility

occurs.
� If you lose connectivity to a structure.

You cannot access the structure when the
CONACONTOKEN is invalidated.

CONACONNAME Name that uniquely identifies the connection to the structure.
If you do not specify a name on IXLCONN, the system
generates a unique name.

CONACONID A connection identifier to identify this active connection. If
the active connection becomes failed-persistent, the
connection retains the same connection identifier. If the
failed persistent connection is able to reconnect, the
CONACONID remains the same.

5-42 OS/390 V2R8.0 MVS Sysplex Services Guide

CONASTRUCTUREATTRIBUTES
Structure specific attributes. You must verify that the
attributes for the structure are acceptable. If the attributes
are not acceptable, you can release your connection by
issuing IXLDISC or you can attempt to rebuild the structure.

If the connector caused the structure to be allocated, the
CONACONALLOC bit will be on in
CONASTRUCTUREATTRFLAGS.

See “Verifying Structure Attributes” on page 5-45 for the
type of attribute information the system returns for a cache,
list, and lock structure.

CONAFLAGS Connection status flags that indicate whether the structure is
in a special state. The special states include:

 � Rebuild (CONAREBUILD)
� Rebuild stop (CONAREBUILDSTOP)
� User sync point event (CONAUSYNCEVENTSET)
� Alter in progress (CONAALTERINPROGRESS)
� Whether the connection is new or has been reconnected

(CONARECONNECTED).

| When connecting during a user-managed structure rebuild
process or when a user sync point is set, you are expected
to participate in the process indicated by the CONAFLAGS
and respond to the event. The connect answer area contains
the information that you would have received in the event
exit if you had been connected to the structure at the time of
the event.

If you connect to a structure that is in the process of being
altered, the CONAALTERINFO area contains information
about changes being made to the structure.

CONAREBUILDFLAGS
| Flags for a connection that occurs during user-managed

duplexing rebuild processing. Information includes:

� Duplexing rebuild in progress (CONAREBUILDDUPLEX)

� Duplexing rebuild switch in progress
(CONAREBUILDDUPLEXSWITCH)

CONACONNECTIONVERSION
Connection version number. Each time you connect to a
version of the structure, your connection version number
increases. For example, if a failed-persistent connection
reconnects to a structure, the connection version number is
incremented and is greater than the connection version
number of the original connection. However, if you connect
with the REBUILD option, the connection version number is
the same as the original connection version number. The
rebuild connect request does not define a new connection; at
rebuild connect time the original connection must be active.

| CONASTRUCTUREVERSION or CONAPHYSICALSTRUCTUREVERSION
| Physical structure version number. Connectors that specified
| or defaulted to IXLCONN ALLOWAUTO=NO use this field to

 Chapter 5. Connection Services 5-43

| uniquely identify a physical instance of a structure.
| Connectors that specified IXLCONN ALLOWAUTO=YES
| must use this field, along with
| CONAPHYSICALSTRUCTUREVERSION2, to identify a
| physical instance of the structure. Each time a structure is
| allocated for the same structure name, the version number
| for the structure increases. For example, when a new
| structure is allocated during rebuild, the structure version
| number of the new structure is greater than the structure
| version number of the original structure. See “Understanding
| the Structure Version Numbers” on page 5-50.

| CONAPHYSICALSTRUCTUREVERSION2
| Second physical structure version number. Applicable only
| for connectors that specified IXLCONN ALLOWAUTO=YES.
| This field, along with
| CONAPHYSICALSTRUCTUREVERSION, uniquely identifies
| a physical instance of the structure. See “Understanding the
| Structure Version Numbers” on page 5-50.

| CONALOGICALSTRUCTUREVERSION
| Used for diagnostic purposes.

CONAFPCONNSNOTINPOLICY
Information about failed-persistent connections, specifically
the number of failed-persistent connections that are defined
in the structure, but which could not be reconciled into the
policy because the number of CONNECT records in the
CFRM active policy is too small. This situation occurs only
when all systems fail and the first system is re-IPLed into the
sysplex with a CFRM policy that supports a smaller number
of CONNECT records. The system issues warning message
IXC502I.

CONAUSERSYNCPOINTEVENT
A user sync point event if one was defined by an existing
connector using the IXLUSYNC macro. You are expected to
perform the processing required for the event and then
provide a confirmation using the IXLUSYNC macro. See
“Using IXLUSYNC to Coordinate Processing of Events” on
page 5-140.

CONAREBUILDINFO
Information for a connection that connects during

| user-managed structure rebuild process. You are expected
to participate in the processing by responding to events.
Further, for user-managed duplexing rebuild, once the
structure is in the Duplex Established phase, you are
expected to maintain the synchronization of the data in the
duplexed structure. of duplexed structure data. See
“Structure Rebuild Processing” on page 5-63.

CONAALTERINFO Information for a connection that connects during structure
alter. The information is valid when the alter flag in
CONAFLAGS (CONAALTERINPROGRESS) is set.

5-44 OS/390 V2R8.0 MVS Sysplex Services Guide

CONAFACILITYARRAY
If this connection allocated the structure
(CONACONNALLOC is set), the connect answer area
contains information about each coupling facility in which the
system attempted to allocate the structure in order to explain
why the structure was allocated in the coupling facility that it
was. If the connect request failed because no suitable
coupling facility was found in the preference list (reason
code IXLRSNCODENOFAC and CONACONNALLOC not
set), this array indicates which coupling facilities were
attempted and describes why each was not suitable. A
reason code (CONAFACILITYRSNCODE) is provided for
each coupling facility in which the system could not allocate
the structure, which explains why the structure was not
allocated in that coupling facility.

CONACFACILITYINFO
Current information about the coupling facility in which the
structure is allocated. The information includes the
operational level of the coupling facility, space utilization, and
model-dependent limits.

Verifying Structure Attributes
The system returns the following information for the allocated structure. If the
attributes with which the structure has been allocated are not acceptable, you can
release your connection.

Cache Structure: IXLCONN returns the following structure attributes for a cache
structure:

| CONACACHEDIRENTRYCOUNT Approximate number of directory entries
supported in the structure. This count is
only substantially accurate.

| CONACACHEMAXELEMENTCOUNT Approximate maximum number of data
elements supported by the structure. This
count is only substantially accurate.

CONACACHEADJUNCT Flag to indicate whether the structure
supports adjunct data.

CONACACHEUDFORDER Flag to indicate whether the structure
supports a queue ordered by user data
field for each cast-out class. Only
applicable to cache structures allocated in
a coupling facility with CFLEVEL=5 or
higher.

| CONACACHENAMECLASSMASK Value of the name class mask in effect for
| the structure. Applicable only to cache
| structures allocated in a coupling facility of
| CFLEVEL=7 or higher.

CONACACHEMAXSTGCLASS Maximum storage class value.

CONACACHEMAXCOCLASS Maximum castout class value.

CONACACHEELEMCHAR Data element characteristic, if applicable.

 Chapter 5. Connection Services 5-45

CONACACHEELEMINCRNUM Data element increment number, if
applicable.

CONACACHEMAXELEMNUM Maximum number of data elements per
entry, if applicable.

| CONACACHECHGDIRENTRYCOUNT Approximate count of changed directory
entries. Applies only to cache structures
allocated in a coupling facility of
CFLEVEL=1 or higher.

CONACACHECHGDIRELEMENTCOUNT
| Approximate count of changed data

elements. Applies only to cache structures
allocated in a coupling facility of
CFLEVEL=1 or higher.

List Structure: IXLCONN returns the following structure attributes for a list
structure:

CONALISTFLAGS Flags to indicate whether list counts are
kept on an entry or an element basis,
whether the structure supports lock
entries, data elements, and adjunct data,
and whether the structure supports named
or keyed entries.

CONALISTELEMINCRNUM Data element increment number, if
applicable.

CONALISTELEMCHAR Data element characteristic, if applicable.

CONALISTMAXELEMNUM Maximum number of data elements per
entry, if applicable.

CONALISTHEADERS Number of list headers.

CONALISTLOCKENTRIES Number of lock entries.

CONALISTELEMENTCOUNT Number of data elements in use at the
time of the connect.

| CONALISTMAXELEMENTCOUNT Approximate maximum number of data
elements supported by the structure. This
count is only substantially accurate.

CONALISTENTRYCOUNT Number of entries in use at the time of
the connect.

| CONALISTMAXENTRYCOUNT Approximate maximum number of entries
supported by the structure. This count is
only substantially accurate.

CONALISTEMCCOUNT Number of event monitor controls in use
at the time of the connect, if applicable.
Applies only to keyed list structures
allocated in a coupling facility with
CFLEVEL=3 or higher.

| CONALISTMAXEMCCOUNT Approximate maximum number of event
monitor controls in the structure, if
applicable. Applies only to keyed list

5-46 OS/390 V2R8.0 MVS Sysplex Services Guide

structures allocated in a coupling facility
with CFLEVEL=3 or higher.

Lock Structure: IXLCONN returns the following structure attributes for a lock
structure:

CONALOCKFLAGS Flag to indicate whether record data
elements are allocated.

CONALOCKNUMUSERS Number of users supported.

CONALOCKENTRIES Number of lock entries in the structure.

CONALOCKRECORDELEMENTS Actual number of record elements in use
at the time of the connect, if applicable.

CONALOCKMAXRECORDELEMENTS Maximum number of record data elements
supported by the structure, if applicable.

Handling Failed Attempts to Connect to a Structure
When IXLCONN is not successful (the system rejects a connect request), you must
consider the situations that might have caused the rejection. In a short term
situation, you probably want to reissue the connect request in a timely manner.
Examples of short term situations that cause a connect request to be rejected are:

� The requested structure is in structure rebuild processing.

� The requested structure is being altered and the connection either does not
support the structure alter function or cannot tolerate the target values specified
for the alter request.

� The requested structure is being dumped.

� A failed-persistent connection is attempting to reconnect before all other
connections have provided an event exit response for the connector's failure.

 For these cases, you should listen for event notification facility (ENF) event code
35 to determine when to reissue the connect request. ENF Event code 35 signals
listeners about a change in the state of coupling facility resources. See “Using ENF
Event Code 35” on page 5-48.

Another type of situation might require system administrator or operator intervention
and therefore take a significantly greater amount of time to resolve. It might be
necessary to activate a new policy or reconfigure connectivity to a coupling facility.
Examples of longer term situations that cause a connect request to be rejected are:

� All connections to the specified structure are in use. (The maximum number of
connections for which the CFRM policy was formatted has been reached.)

� A request to join an XCF group failed. (The maximum number of groups and/or
members for which the sysplex couple data set was formatted has been
reached.)

� The requested structure name is not defined in the active policy.

� The requesting system does not have connectivity to the coupling facility
containing the specified structure.

� The structure allocation failed because there was no suitable facility to allocate
the structure based on the preference list in the policy.

 Chapter 5. Connection Services 5-47

� The connection failed because information about the previous instance of this
connection (for reconnect) could not be reconciled into the policy.

� The coupling facility function is not active. (There might be no CFRM couple
data set available or a CFRM policy might not be active.)

� The coupling facility has insufficient connectivity to systems in the sysplex.

Using ENF Event Code 35
ENF Event code 35 is available to inform interested subsystems or applications of
changes in the state of sysplex resources. Use the ENF Event code 35 to monitor
both the availability of coupling facility resources and the changes to system
membership in the sysplex. For example, use the ENF Event code 35 to be notified
when coupling facility resources are now available so that you can reissue a
previously rejected connection request. Or, use the ENF Event code 35 to be
notified when a system is joining or has been partitioned from the sysplex.

When using ENF Event code 35 to monitor the availability of coupling facility
resources, define an ENFREQ LISTEN service to specify a listen exit for event
code 35 prior to attempting a connect request. If the system rejects the connect
request, the listen exit receives control when there is a change in the state of
coupling facility resources. The system issues the ENF signal on all active systems
in the sysplex with an established ENF event code listen routine. You can then
retry the rejected connect request. Delete the listen exit once the connect request is
successful.

When a system either is joining or has been removed from the sysplex, the system
issues the ENF signal on all active systems in the sysplex, except on the system
that is joining or has been partitioned from the sysplex.

On entry to the application's or subsystem's ENF listen exit, GPR 1 contains the
address of a fullword that contains the address of the ENF parameter list. The XCF
ENF Signal parameter list, mapped by IXCYENF, contains:

� The particular function code for the event being signalled.

� If applicable, the coupling facility structure name that has been affected by
some action (such as a change in coupling facility policy or the completion of a
rebuild request).

� If applicable, the system name and system ID (slot number) of a system that
has either entered the sysplex or been removed from the sysplex.

The function code returned in IXCYENF indicates to the ENFREQ LISTEN
subscriber that the system has determined that one of the following has occurred:

� IXCYENFFUNCTIONRESAVAIL — A new coupling facility resource is
available. The system, however, cannot limit the scope to a particular coupling
facility structure becoming available. Some reasons for these changes in
availability might be:

– Introduction of a new coupling facility

- Due to a change in coupling facility policy
- Due to one or more additional coupling facilities being made available
- Due to a change in coupling facility connectivity.

– Deallocation of a coupling facility structure.

5-48 OS/390 V2R8.0 MVS Sysplex Services Guide

– Completion of a structure alter that reduced the size of a structure.

– Deallocation or decrease in the amount of coupling facility dump space.

– Change in coupling facility policy.

– Change in coupling facility volatility state where the coupling facility has
become non-volatile.

� IXCYENFFUNCTIONSTRAVAIL — A particular coupling facility structure has
been affected by some change. The system provides the name of the coupling
facility structure in the parameter list. Some changes that might trigger this
function code are:

– Disconnection of a user of a coupling facility structure.

| – Completion of structure rebuild processing for a coupling facility structure.

– Completion of alter processing for a coupling facility structure.

– Release of dump serialization for a coupling facility structure.

– Information concerning a coupling facility structure or a connection to a
coupling facility structure reconstructed into the active CFRM policy from
the coupling facility.

� IXCYENFFUNCTIONSYSJOINEDSYSPLEX — A system has joined the
sysplex.

� IXCYENFFUNCTIONSYSLEFTSYSPLEX — A system has been partitioned
from the sysplex.

When to Use ENF Event Code 35

For monitoring coupling facility resources, you can use either the ENF event
code 35 interface or the event exit interface.

The ENF Event code 35 interface is intended for the application or
subsystem that is attempting to connect to a structure in a coupling facility,
but has not been successful. The information returned by this interface
indicates that new coupling facility resources are now available and that the
user should, if appropriate, reissue the connect request.
The event exit interface is intended for the application or subsystem that
has successfully connected to a connector to a structure in a coupling
facility. The information returned by the event exit pertains to structure
availability and connection specific status.

For monitoring sysplex membership, you can use either the ENF event code 35
interface or the group user routine interface.

The ENF Event code 35 interface is intended for the application or
subsystem that is not a member of an XCF group (and therefore does not
have a group user routine established), but that needs to be aware when a
system is joining or has been partitioned from the sysplex. The information
returned by this interface identifies the system by name and system ID.

To avoid the system overhead of joining an XCF group, an ENF listen exit
might be more appropriate for your application.

For information about ENFREQ, see OS/390 MVS Programming: Authorized
Assembler Services Reference ENF-IXG.

 Chapter 5. Connection Services 5-49

| Understanding the Structure Version Numbers
| The structure version number (CONAPHYSICALSTRUCTUREVERSION) is used to
| identify the instance of a structure with a given name. The structure version
| number changes when a new instance of the structure is allocated, as in a
| user-managed or system-managed rebuild, when there is at least one active
| connector to observe the allocation. For example, in a user-managed rebuild, the
| value of the physical structure version number that is returned on an initial connect
| to a structure might be “A”. When the IXLCONN REBUILDs are performed during
| the user-managed rebuild process, the physical structure version number returned
| for the new structure might be “B”. Keeping track of a structure's physical structure
| version number allows you to uniquely identify the instance of the structure with
| which you are working.

| In OS/390 Release 8, a second physical structure version number
| (CONAPHYSICALSTRUCTUREVERSION2) is introduced. This version number is
| used only in system-managed protocols. Its purpose, in combination with
| CONAPHYSICALSTRUCTUREVERSION, is to uniquely identify an instance of a
| structure. For example, if a connector supports system-managed protocols (that is,
| specifies ALLOWAUTO=YES), the version numbers received on initial connect
| might be:

| CONAPHYSICALSTRUCTUREVERSION A
| CONAPHYSICALSTRUCTUREVERSION2 0

| During a system-managed rebuild, the version numbers provided with the Structure
| State Change event might be:

| EEPLSSCSTRPHYSICALVERSION B
| EEPLSSCSTRPHYSICALVERSION2 0

| Because the two pairs of values are not identical, the connector can recoginze that
| a new instance of the structure has been allocated.

Reconnecting to a Structure
You can use the IXLCONN macro to reestablish a failed-persistent connection to a
structure. Reconnection to a structure might be necessary when a connection
terminates abnormally and peer recovery is not possible, or when the protocol is to
use restart recovery instead of peer recovery.

To reconnect to a structure, specify the same connect name on the IXLCONN
macro as was used for the prior connection to the structure. When the reconnection
is complete, the version number of the structure is the same as it was for the prior
connection to the structure. The system does not increment the version number of
the structure because the structure is not new and has not been reallocated.
However, the connection version will be different from the previous connection
version.

When the connection is reconnected, IXLCONN sets a return and a reason code
(IxlRsnCodeSpecialConn) to indicate that additional status information is available
about the connection and possibly also the structure. A bit in the CONAFLAGS field
on IXLYCONA indicates whether the connection has been reconnected. The
reconnected user might need to do additional clean-up or recovery, such as for

5-50 OS/390 V2R8.0 MVS Sysplex Services Guide

locks held or work in progress by the previous instance of the connection,
depending on the application's protocol.

Note that you can use the IXCQUERY macro to determine the names of the
connections that are in a failed-persistent state.

Figure 5-7 illustrates structure B with two active connections, A and C. Connection
A is an existing connection. Connection C has just connected as a new connection
and has specified a connection disposition of KEEP and a connection name of
CNAME:

connection Aconnection C

failed
persistent active

IXLCONN STRNAME=B,...,
CONDISP=KEEP,
CONNAME=CNAME

B

Figure 5-7. Active Connections

Figure 5-8 illustrates what happens when connection C fails (in this case
connection C issues IXLDISC for the structure with REASON=FAILURE as part of
an error routine). Connection C enters a failed-persistent state:

STRNAME=B, . . . ,
REASON=FAILURE

connection Aconnection C

failed
persistent active

IXLDISC

B
STR

Figure 5-8. A Failed-Persistent Connection

Figure 5-9 on page 5-52 illustrates connection A acknowledging connection C's
failure.

 Chapter 5. Connection Services 5-51

Connection A responds
through even exit
parameter list IXLYEEPL
acknowledging the failed
connection. Sets rc=0.

connection Aconnection C

failed
persistent active

B
STR

Figure 5-9. Acknowledging a Failed-Persistent Connection

If the connection in a failed-persistent state can restart and perform recovery for
itself other active connections have acknowledged the failed connection through the
event exit parameter list, the connection can reconnect. Figure 5-10 illustrates what
happens when connection C reconnects to structure B:

STR

IXLCONN STRNAME=B, . . . ,
CONDISP=KEEP,
CONNAME=CNAME

Connection B is able to recover and
issues IXLCONN with CONNAME to
reconnect.

connection Aconnection C

failed
persistent active

B
STR

Figure 5-10. Reconnection of a Failed-Persistent Connection

For an example of how active connections can delete a failed-persistent
connection, see “Deleting Failed-Persistent Connections” on page 5-62.

| Connecting to a Structure During User-Managed Rebuild
| The user-managed rebuild process causes the structure to be reallocated in
| another location, but with the same structure name. The rebuild process also allows
| you to change the attributes of the original structure. Connectors to the structure
| being rebuilt can move data from the old structure to the new structure. When the
| rebuild process is complete, the system deallocates the old structure and
| connectors continue normal processing using the new structure. See “Structure
| Rebuild Processing” on page 5-63 for a description of the rebuild process.

| Depending on the phase of the rebuild process, you might or might not be allowed
| to connect to the structure that is being rebuilt. IXLCONN sets the following return
| codes when you request a connection to a structure that is being rebuilt:

| � IXLCONN sets a return and a reason code (IXLRSNCODESPECIALCONN) to
| indicate that additional status information is available. Two bits in the
| CONAFLAGS field in IXLYCONA indicate whether the structure is in rebuild or

5-52 OS/390 V2R8.0 MVS Sysplex Services Guide

| rebuild stop processing. Both of these states require that the connector must
| participate in the user-managed rebuild process. If you do not want to
| participate in the process, you should issue IXLDISC to disconnect from the
| structure. You also have the option of causing the structure to stop being rebuilt
| unless rebuild stop is already in progress. See “Handling New Connections
| During a User-Managed Rebuild Process” on page 5-91 for additional
| information about the IXLRSNCODESPECIALCONN reason code.

| � IXLCONN also might set a return and a reason code
| (IXLRSNCODECONNPREVENTED) to indicate that a new connection is not
| permitted at this time because rebuild is in progress. In this situation, you
| should use ENF event code 35 to determine when the rebuild process is
| complete. The ENF signal parameter list contains the name of the structure that
| has been rebuilt. See “Using ENF Event Code 35” on page 5-48 for information
| about using ENF event code 35.

Connecting to a Structure During User-Managed Duplexing Rebuild
User-managed structure duplexing allows connectors to request that a second
instance of the structure be allocated in another coupling facility for the purpose of
duplexing the data in each structure to achieve increased availability and usability.
The duplexing process also allows you to change the attributes of the original
structure. Connectors to the structure being duplexed can copy data from the old
structure to the new structure. Once the structure is duplexed (Duplex Established
phase), connectors synchronize their use of both structures. At any time it is
possible to discontinue the duplex process and either fall back to using the original
structure or switch (forward complete) to use the secondary structure. See
“Overview of User-Managed Rebuild Processing” on page 5-66 for a description of
the structure duplexing process.

Depending on the phase of the duplexing process, you might or might not be
allowed to connect to the structure that is being duplexed. IXLCONN sets the
following return codes when you request a connection to a structure that is being
duplexed:

� IXLCONN sets a return and reason code (IXLRSNCODESPECIALCONN) to
indicate that additional status information is available. The same two bits in the
CONAFLAGS field (CONAREBUILD and CONAREBUILDSTOP) in IXLYCONA
that are used by structure rebuild also report the status of a duplexed structure.
Additionally, a bit in the CONAREBUILDFLAGS field indicates whether the

| rebuild in progress is a duplexing rebuild. See “Handling New Connections
| During a User-Managed Rebuild Process” on page 5-91 for additional
| information about the IXLRSNCODESPECIALCONN reason code.

� IXLCONN also might set a return and reason code
(IXLRSNCODECONNPREVENTED) to indicate that a new connection is not
permitted at this time because all active connectors have confirmed the Duplex
Rebuild Complete event and must complete their cleanup of one instance of
the structure. New connections are not permitted until all active connections
have provided an event exit response to the Rebuild Cleanup event. New
connections also are not permitted if a request to stop the duplexing rebuild to
fall back to using the old structure is received.

Connections to duplexed structures are allowed throughout most phases of the
duplexing operation, and the connectors are expected to participate in the
duplexing process. The connect answer area identifies the phase of duplexing the

 Chapter 5. Connection Services 5-53

structure is in and whether switch processing is in progress. See “Handling New
Connections During a User-Managed Rebuild Process” on page 5-91.

Connections to structures in the Duplex Established phase while structure alter is
being processed for the duplexed structure are also allowed. See “Altering a
Duplexed Structure” on page 5-120 for a description of structure alter for a
duplexed structure.

| Connecting to a Structure During a System-Managed Process
| Connections to a structure are not permitted while the structure is undergoing a
| system-managed process such as system-managed rebuild. During the process,
| the system may be transferring data from one instance of a structure to another,
| deallocating an instance of a structure, or performing other operations on the
| affected structure that would be disrupted by new connections to the structure.
| IXLCONN sets reason code IXLRSNCODECONNPREVENTED to indicate that a
| new connection is not permitted at this time because a system-managed process is
| in progress. You should use ENF event code 35 to determine when the rebuild
| process is complete. The ENF signal parameter list contains the name of the
| structure that was affected by the system-managed process.

Connecting to a Structure That Is Being Altered
Structure alter dynamically changes the size and/or entry-to-element ratio of a
structure without requiring connectors to quiesce their use of the structure.
Connectors must be at the SP 5.2 or higher level, and must have specified
ALLOWALTER=YES and CFLEVEL=1 or higher on their IXLCONN invocation. All
connectors also must be consistent in their specification for RATIO — if all existing
connectors indicated that the entry-to-element ratio can be changed (RATIO=YES)
then any new connector must specify RATIO=YES. Assuming that those
prerequisites are met, whether a connector is allowed to connect to a structure that
is in the process of being altered is determined by the entry and element minimum
levels specified on IXLCONN.

� IXLCONN accepts a request to connect when the connector specifies:

 – ALLOWALTER=YES

– Entry and element minimum levels that are the same or less restrictive than
the current composite established for the structure.

The connector must examine the connect answer area to determine the state of
the structure.

Note that if the connector determines that the structure is in the duplexing
rebuild process as well as a structure alter process, the connector must be able
to support the duplexing protocol.

� IXLCONN rejects a request to connect with one of the following reason codes:

– IXLRSNCODEALTERNOTALLOW — the connection specified
ALLOWALTER=NO.

 – IXLRSNCODEALTERRESTRICT

- The connection specifies more restrictive limits for the entry and
element minimum levels than are currently in effect for the structure.

5-54 OS/390 V2R8.0 MVS Sysplex Services Guide

- The connection specifies RATIO=NO and the current composite
established for the structure indicates that the ratio can change during
structure alter.

– IXLRSNCODECONNPREVENTED — the connection is not at the SP 5.2
level.

See “Altering a Coupling Facility Structure” on page 5-117 for a description of the
alter process.

Connecting to a Structure when a Synchronization Point Is Set
User synchronization points are used to provide synchronization of processing
among connectors to a structure. When a user attempts to connect to a structure
after one of these synchronization points has been set, IXLCONN sets a return and
a reason code (IXLRSNCODESPECIALCONN) to indicate that additional
information is available about the connection. A bit in the CONAFLAGS field of
IXLYCONA indicates that a user sync point has been set. IXLYCONA also contains
the next user sync point event and the user state associated with the event. The
user must do whatever processing is required by the event and respond to confirm
the event by using the IXLUSYNC service. See “Using IXLUSYNC to Coordinate
Processing of Events” on page 5-140 for information about using IXLUSYNC.

 Dumping Considerations
IXLCONN rejects new connections for a structure that currently is serialized for
dumping. IXLCONN sets return code IXLRETCODEENVERROR and reason code
IXLRSNCODEDUMPINPROGRESS to indicate that the serialization is in effect. In
this situation, the user should use ENF event code 35 to determine when the
dumping serialization is released and new connections are allowed. The ENF signal
parameter list contains the name of the structure for which dumping serialization
has been released.

Handling a Connection's Abnormal Termination
The topics below describe how the system handles the following types of
connection termination.

1. Connector's system terminates

2. Connector's address space terminates

3. Connector's task terminates

4. An address space other than the connector's address space terminates with
outstanding IXLCACHE, IXLLIST, or IXLRT operations. (The connector remains
active.)

5. A task other than the connector's task terminates with outstanding IXLCACHE,
IXLLIST, or IXLRT operations. (The connector remains active.)

Notes:

1. The connector that requests XES services must provide abnormal termination
processing for a connection by establishing end-of-task (EOT)/end-of-memory
(EOM) resource managers. XES assumes that the connector is the owner of
any storage passed to an XES service, specifically IXLCACHE, IXLLIST, and
IXLRT.

 Chapter 5. Connection Services 5-55

If the connector is not the owner of the storage passed to XES, then the
connector must provide an address space termination resource manager for
handling cases where the owner of the storage terminates. The address space
termination resource manager must invoke IXLPURGE to break any
XES-established storage binds before allowing the storage to be cleaned up.

2. When a recovery exit receives control while its subsystem or system
component is suspended by an IXLLIST, IXLCACHE, IXLRT, or IXLFCOMP
request, the recovery exit must issue IXLPURGE to complete or purge the
request. The recovery exit must do this prior to deleting any storage passed as
input to XES and prior to looking at the answer area to determine the status of
the request.

3. In certain instances, XES must quiesce the activity of user exits in order to
perform cleanup processing. For example, when a user disconnects or
abnormally terminates, XES will force to completion any user exits executing on
behalf of that user by issuing a PURGEDQ against the appropriate units of
work. Note that if a connector terminates while a rebuild is in progress, any
exits pertaining to both the original and the new structures will be forced to
completion. In addition to forcing the currently executing user exits to
completion, XES will also prevent any new invocations of these exits by
cancelling any events that are pending presentation.

A user exit must be sensitive to conditions that can occur as a result of actions
taken by XES and must be able to handle these as appropriate. For example, if
a user exit has suspended itself, when the PURGEDQ is issued the system
abends the user exit's unit of work with a retryable X'47B' abend and gives
control to the user exit's recovery routine. (Note that although the recovery
routine can retry, the user exit can not re-suspend itself because the system
will fail any request to suspend a unit of work that has been the target of a
PURGEDQ.) If the recovery routine percolates back to the system, its
associated connection is terminated.

Case 1. Connector's System Terminates

When a connector's system terminates, another system in the sysplex performs the
clean-up processing.

� The system notifies all peer connections through the Disconnected or Failed
connection event that is presented to each peer connector's event exit.

� All peer connections must respond to the Disconnected or Failed Connection
event. When the system has received all event exit responses, the connection
is placed in either the undefined state or the failed-persistent state.

 – Undefined state

1) The failed connection specified CONDISP=DELETE on the connection,
or

2) The failed connection specified CONDISP=KEEP on the connection and
at least one peer connection responded that the connection should be
released.

 – Failed-persistent state

The failed connection specified CONDISP=KEEP on the connection and all
peer connections responded that the connection should not be released.

5-56 OS/390 V2R8.0 MVS Sysplex Services Guide

� The system disconnects all connections owned by the terminated system when
all responses are received. For each connection, the system must clean up all
structure-specific resources, such as castout locks and registered interest for a
cache structure. See “Handling Resources for a Disconnection” on page 5-146
for a list of resources that are cleaned up when the failed connection is
detached from the coupling facility structure.

� At this point, the structure might be deallocated if the structure has a STRDISP
of DELETE and there are no more defined connections.

Case 2. Connector's Address Space Terminates

When a connector's address space terminates, the connector's end-of-memory
resource manager receives control in the master address space. The resource
manager must perform storage clean-up before turning control over to the XES
resource manager for additional processing.

� Connector Resource Manager Processing

The EOM resource manager must clean up all storage associated with
outstanding coupling facility requests, specifically the storage buffers associated
with IXLCACHE, IXLLIST, and IXLRT. Note that no input storage buffers are
provided for IXLLOCK. Use the IXLPURGE service to purge the outstanding
requests and ensure that there are no XES-established binds to the storage
associated with the request. At the completion of IXLPURGE processing,
control returns to the end-of-memory resource manager with all storage binds
broken. Processing after invoking IXLPURGE differs according to whether the
request was asynchronous or synchronous.

 – Asynchronous request

Request-related storage can be released without waiting for notification of
request completion. Because the connector's address space is terminated,
request completion notification cannot be scheduled.

– Suspended Synchronous request

The following processing normally occurs for an IXLLIST, IXLCACHE, or
IXLRT request:

- The answer area is initialized with IxlRsnCodeUnknown reason code
prior to performing the request.

- The answer area is updated with the request results when the request
is completed. The answer area is updated while running under the
requestor's unit of work with addressability from the connector's and
requestor's address spaces.

Request-related storage for requests initiated with the home address space
equal to the connector's address space can be released without waiting for
notification of request completion. The requestor can no longer run.

Request-related storage for requests initiated with the home address space
not equal to the connector's address space are handled by the recovery
routine of the requestor. If the connector's address space has terminated,
the requestor can observe the IxlRsnCodeUnknown reason code in the
answer area. However, if the answer area storage is in the connector's
address space, the answer area will not be addressable. For the answer
area to be addressable during termination processing when a connector's

 Chapter 5. Connection Services 5-57

address space terminates, the answer area storage must be in common
storage.

� XES Resource Manager Processing

At the completion of processing by the connector's resource manager, the XES
resource manager continues the clean-up processing.

– XES invokes IXLPURGE to release any additional storage binds. XES uses
the STOKEN of the terminating address space as input to IXLPURGE.

– XES notifies all peer connections about the termination by invoking their
event exits with the Disconnection or Failed connection event.

– All peer connections must respond to the Disconnected or Failed
Connection event. When the system has received all event exit responses,
the connection is placed in either the undefined state or the
failed-persistent state.

 - Undefined state

1) The failed connection specified CONDISP=DELETE on the
connection, or 2) The failed connection specified CONDISP=KEEP on
the connection and at least one peer connection responded that the
connection should be released.

 - Failed-persistent state

The failed connection specified CONDISP=KEEP on the connection
and all peer connections responded that the connection should not be
released.

– XES disconnects a connection owned by the terminating address space
from the structure when all responses are received. For each connection,
all structure-specific resources such as local vectors, castout locks, etc. are
cleaned up. See “Handling Resources for a Disconnection” on page 5-146
for resources associated with each structure type.

– At this point, the structure might be deallocated if the structure has a
STRDISP of DELETE and there are no more defined connections.

Case 3. Connector's Task Terminates

When a connector's task terminates, the connector's end-of-task resource manager
receives control running under the failing task. The resource manager must perform
storage clean-up before turning control over to the XES resource manager for
additional processing.

� Connector Resource Manager Processing

The connector's end-of-task resource manager must clean up all storage
associated with outstanding coupling facility requests, specifically the storage
buffers associated with IXLCACHE, IXLLIST, and IXLRT. Note that no input
storage buffers are provided for IXLLOCK. Use the IXLPURGE service to purge
the outstanding requests and ensure that there are no XES-established binds
to the storage associated with the request. At the completion of IXLPURGE
processing, control returns to the end-of-task resource manager with all storage
binds broken. IXLPURGE processing differs according to whether the request
was asynchronous or synchronous.

 – Asynchronous request

5-58 OS/390 V2R8.0 MVS Sysplex Services Guide

Request-related storage cannot be deleted until the connector is notified
about each request's completion. The connection is still active and
therefore, request completion notification will be scheduled normally (either
through posting an ECB or driving the complete exit). Issue IXLFCOMP to
obtain the results of asynchronous request tokens. If necessary, invoke
IXLFCOMP before invoking IXLPURGE.

– Suspended Synchronous request

The requestor's recovery routine receives control for a suspended request
running under the connector's task. Prior to this, the XES recovery routine
received control and attempted to complete the request. The request
recovery routine must issue IXLPURGE to ensure that the request is
complete.

The system resumes a suspended request associated with a task other
than the connector's task and returns a return code that indicates whether
the request was purged or completed. The system resumes the suspended
task whether the suspended task's home address space is equal to the
connector's address space or not.

� XES Resource Manager Processing

At the completion of processing by the connector's resource manager, the XES
resource manager continues the clean-up processing.

– XES invokes IXLPURGE to release any additional storage binds. XES uses
the TTOKEN of the terminating task as input to IXLPURGE.

– XES notifies all peer connections about the termination by invoking their
event exits with the Disconnection or Failed connection event.

– All peer connections must respond to the Disconnected or Failed
connection event. When the system has received all event exit responses,
the connection is placed in either the undefined state or the
failed-persistent state.

 - Undefined state

1) The failed connection specified CONDISP=DELETE on the
connection, or 2) The failed connection specified CONDISP=KEEP on
the connection and at least one peer connection responded that the
connection should be released.

 - Failed-persistent state

The failed connection specified CONDISP=KEEP on the connection
and all peer connections responded that the connection should not be
released.

– XES disconnects a connection owned by the terminating task from the
structure when all responses are received. For each connection, all
structure-specific resources such as local vectors, castout locks, etc. are
cleaned up. See “Handling Resources for a Disconnection” on page 5-146
for resources associated with each structure type.

– At this point, the structure might be deallocated if the structure has a
STRDISP of DELETE and there are no more defined connections.

 Chapter 5. Connection Services 5-59

Case 4. An Address Space Other Than the Connector's Address Space
Terminates with Outstanding IXLCACHE, IXLLIST, or IXLRT Operations. The
connection remains active.

When an address space other than the connector's terminates, the connector's
end-of-memory resource manager receives control in the master address space.
The resource manager must perform storage clean-up before turning control over to
the XES resource manager for additional processing.

� Connector Resource Manager Processing

The connector's end-of-memory resource manager must clean up all storage
associated with outstanding coupling facility requests, specifically the storage
buffers associated with IXLCACHE, IXLLIST, and IXLRT. Note that no input
storage buffers are provided for IXLLOCK. Use the IXLPURGE service to purge
the outstanding requests and ensure that there are no XES-established binds
to the storage associated with the request. At the completion of IXLPURGE
processing, control returns to the end-of-memory resource manager with all
storage binds broken. IXLPURGE processing differs according to whether the
request was asynchronous or synchronous.

 – Asynchronous request

When IXLPURGE completes, the complete exit and ECB notifications
complete normally for asynchronous requests. Issue IXLFCOMP to obtain
the results of asynchronous token requests. Once IXLPURGE completes,
the system does not suspend an IXLFCOMP request because the
outstanding request has already been purged and therefore is complete.
Request-related storage cannot be deleted until all processing for the
request has been completed.

Note: In order to issue IXLFCOMP, the requestor must be running with
the primary address space equal to the connector's primary address
space and have the same addressability as when the asynchronous
request was initially issued.

– Suspended synchronous request

For IXLLIST, IXLCACHE, and IXLRT requests, XES initializes the answer
area mapped by the appropriate macro, IXLYLAA, IXLYCAA, or IXLYRTAA,
with the IxlRsnCodeUnknown reason code prior to performing the request.
When the request completes, XES updates the answer area with the
request results, while running under the requestor's unit of work and with
addressability to the connector's and the requestor's address spaces. If the
requestor's address space has terminated, the requestor observes the
IxlRsnCodeUnknown reason code in the answer area.

� XES Resource Manager Processing

At the completion of processing by the connector's resource manager, the XES
resource manager continues the clean-up processing.

– XES invokes IXLPURGE to release any additional storage binds. XES uses
the STOKEN of the terminating address space as input to IXLPURGE.

Case 5. A Task Other Than the Connector's Task Terminates with
Outstanding IXLCACHE, IXLLIST, or IXLRT Operations. The connection
remains active.

5-60 OS/390 V2R8.0 MVS Sysplex Services Guide

When a task other than the connector's task terminates, the connector's end-of-task
resource manager receives control running under the failing task. The resource
manager must perform storage clean-up before turning control over to the XES
resource manager for additional processing.

� Connector Resource Manager Processing

The connector's end-of-task resource manager must clean up all storage
associated with outstanding coupling facility requests, specifically the storage
buffers associated with IXLCACHE, IXLLIST, and IXLRT. Note that no input
storage buffers are provided for IXLLOCK. Use the IXLPURGE service to purge
the outstanding requests and ensure that there are no XES-established binds
to the storage associated with the request. At the completion of IXLPURGE
processing, control returns to the end-of-task resource manager with all storage
binds broken. IXLPURGE processing differs according to whether the request
was asynchronous or synchronous.

 – Asynchronous request

When the IXLPURGE request completes, if the connector is still active,
request completion notification is scheduled normally (either through
posting an ECB or driving the complete exit). Issue IXLFCOMP to obtain
the results of asynchronous token requests. Once IXLPURGE completes,
the system does not suspend an IXLFCOMP request because the
outstanding request has already been purged and therefore is complete.
Request-related storage cannot be deleted until all processing for the
request has been deleted.

Note: In order to issue IXLFCOMP, the requestor must be running with
the primary address space equal to the connector's primary address
space and have the same addressability as when the asynchronous
request was issued initially.

– Suspended synchronous request

For IXLLIST, IXLCACHE, and IXLRT requests suspended at the time of the
failure, the XES recovery routine receives control and attempts to complete
the request. When the requestor's recovery routine receives control, the
connector must issue IXLPURGE in order to ensure that the request is
complete.

� XES Resource Manager Processing

At the completion of processing by the connector's resource manager, the XES
resource manager continues the clean-up processing.

– XES invokes IXLPURGE to release any additional storage binds. XES uses
the TTOKEN of the terminating task as input to IXLPURGE.

Deleting Persistent Structures
When there are no defined (active or failed-persistent) connections to a structure
with a disposition of KEEP, the structure is persistent and remains allocated. In
most cases, to delete a persistent structure after there are no defined connections,
you can do the following:

� Issue the IXLFORCE macro
� Instruct the operator or use an extended MCS console interface to issue the

SETXCF FORCE command.

 Chapter 5. Connection Services 5-61

See OS/390 MVS Programming: Sysplex Services Reference for information about
IXLFORCE, and OS/390 MVS System Commands for information about SETXCF
FORCE.

Deleting Failed-Persistent Connections
Failed-persistent connections result when a connection with a disposition of KEEP
fails as the result of a task, address space, or system failure, or when IXLDISC
REASON=FAILURE is issued. Failure of the connection is reported to the event
exit of all connected users. When all connectors acknowledge the event, the failing
connection with a disposition of KEEP becomes failed-persistent. Users develop
protocols on how to handle failed-persistent connections. If the failed-persistent
connection cannot reconnect to the structure, you can delete the failed-persistent
connection.

Connections can delete a failed-persistent connection in the following ways:

� Through the event exit or IXLEERSP macro
 � IXLFORCE macro

The following steps summarize the process by which an active connection uses the
event exit or IXLEERSP to eliminate the failing connection:

1. All active connections are informed of the failing connection through their event
exits.

2. If one or more active connections can perform recovery for the failing
connection, they do so.

3. The active connection indicates to MVS that recovery for the failing connection
has completed by doing one of the following:

� Setting return code = X'01' in IXLYEEPL event exit parameter list before
returning from the event exit

� Setting a return code = X'08' in IXLYEEPL before returning from the event
exit. When the recovery processing is complete, the active connector
issues the IXLEERSP macro with
EVENT=DISCFAILCONN,RELEASECONN=YES.

4. Active connections must respond to the Disconnected or Failed Connection
event through their event exits. The failing connection remains in the failing
state until all acknowledgments are received.

See “Responding to Connection Events” on page 5-128 and “Using IXLEERSP” on
page 5-152.

Figure 5-11 on page 5-63 illustrates what happens when an active connection to
structure B performs recovery for failed-persistent connection C and sets return
code 1 in IXLYEEPL to release the connection:

5-62 OS/390 V2R8.0 MVS Sysplex Services Guide

CONDISP=KEEP
CONNAME=C

Receives acknowledgement
from all active connectors in
event exit; rc=1 indicates that
connection C is no longer
connected to structure B.

Other active
connections respond
through event exit
parm list IXLYEEPL; one
sets rc=1 and performs
recovery; releases persistent
state of connection C.

connection C

failed-persistent
state deleted

B 1.

2.

Figure 5-11. Deleting a Failed-Persistent Connection using IXLYEEPL

Using IXLFORCE or the SETXCF FORCE Command
The IXLFORCE macro or SETXCF FORCE command deletes a persistent structure
or a failed-persistent connection. Users can invoke the macro or command to
perform resource cleanup on structures. In order to delete the structure as a result
of the macro or command, active connections must disconnect normally and
persistent-connections must be released. Active connections must acknowledge the
failing state of a connection before the macro or command can delete the
failed-persistent connection.

You may use RACF or another security product to protect structures. See
“Authorizing Coupling Facility Requests” on page 5-3. For information on protecting
the use of MVS commands like SETXCF, see OS/390 MVS Planning: Operations.

See “Forcing the Deletion of a Coupling Facility Object” on page 5-147 for
additional information about the IXLFORCE macro.

| Structure Rebuild Processing
Rebuild is a process that allows another instance of a structure to be allocated with
the same name and containing data reconstructed from the initial instance of the
structure. Rebuilding allows a structure to be relocated or to have its attributes
changed.

| There are two methods by which rebuild can be accomplished: user-managed
| rebuild and system-managed rebuild. The method of rebuild will determine which
| structure attributes are allowed to change. Both processes result in the allocation of
| a new instance of a structure. The primary difference lies in the amount of direct
| participation by the connectors.

| � User-managed rebuild requires that connectors to the coupling facility
| containing the structure develop protocols to coordinate the rebuilding of the
| structure and the propagation of data within the structure. User-managed

 Chapter 5. Connection Services 5-63

| rebuild requires that there be at least one active connector to the coupling
| facility containing the structure.

| There are two types of user-managed rebuild: rebuild and duplexing rebuild.
| See “Overview of User-Managed Rebuild Processing” on page 5-66.

| � System-managed rebuild requires that connectors recognize that the structure
| will become temporarily unavailable for requests but does not require them to
| develop protocols to coordinate rebuild processing. The system provides the
| support necessary for rebuild processing and therefore does not require that
| there be any active connectors to the coupling facility structure being rebuilt.

| User-managed rebuild is intended for use in both planned and unplanned
| reconfiguration scenarios and provides capabilities for various failure scenarios.
| System-managed rebuild is intended for use in planned reconfiguration scenarios.

| The following chart outlines the basic differences between user-managed rebuild
| and system-managed rebuild.

| Figure 5-12 (Page 1 of 2). User-Managed vs. System-Managed Rebuild

| Feature| User-Managed Rebuild| System-Managed Rebuild

| Purpose| Planned reconfiguration and
| recovery.
| Primarily planned
| reconfiguration. Cannot recover
| for loss of structure connectivity,
| structure failure, or coupling
| facility failure.

| Minimum
| CFLEVEL
| None.| CFLEVEL=8.

| Minimum
| release
| MVS SP5.1.0.| OS/390 Release 8

| Active CFRM
| couple data
| set
| requirements

| Any.| Formatted to support
| system-managed rebuild.

| Connector
| requirements
| At least one active connector
| required.
| No connector requirements.

| Treatment of
| failed-persistent
| connectors

| Not preserved across the
| rebuild.
| Preserved across the rebuild.

| Connector
| support
| Controlled by connector
| specification of IXLCONN
| ALLOWREBLD keyword.

| Controlled by connector
| specification of IXLCONN
| ALLOWAUTO keyword.

| Initiation| SETXCF START,REBUILD
| command or IXLREBLD macro
| SETXCF START,REBUILD
| command or IXLREBLD macro

| Quiescing
| access to the
| structure

| Responsibility of the connected
| users
| Responsibility of the system on
| behalf of the users. Events are
| presented that allow the
| connectors to optionally do some
| quiescing of requests at the
| connection level.

5-64 OS/390 V2R8.0 MVS Sysplex Services Guide

| Figure 5-12 (Page 2 of 2). User-Managed vs. System-Managed Rebuild

| Feature| User-Managed Rebuild| System-Managed Rebuild

| Events
| received by
| active
| connection(s)

| May include:

| � Rebuild Quiesce
| � Rebuild Connect
| � Rebuild Connects Complete
| � Rebuild New Connection
| � Rebuild Existing Connection
| � Rebuild Connect Failure
| � Rebuild Cleanup
| � Rebuild Complete
| � Rebuild Stop
| � Rebuild Stop Complete

| May include:

| � Structure Temporarily
| Unavailable
| � Structure State Change
| � Structure Available
| � Alter Begin
| � Alter End

| Alter events are presented only
| if the connector supports alter
| processing.

| Creation of
| new structure
| Allocated by first connector to
| perform rebuild connect
| Allocated by the system without
| connector participation.

| CONTOKEN
| use
| Two CONTOKENs for the user
| to manage, both of which the
| system might invalidate during
| the user-managed rebuild
| process.

| One CONTOKEN that is neither
| changed nor invalidated.

| Vector token
| use
| Two vector tokens for the user to
| manage. One is initially valid; the
| other becomes valid later in the
| process.

| One vector token that is neither
| changed nor invalidated.

| Structure
| attribute
| changes

| Changes can be requested at
| rebuild connect
| Original structure attributes are
| preserved. The structure size
| might differ from the old
| structure, and if the connectors
| allow alter, the structure object
| counts might differ as well.

| Connection to
| new structure
| All connectors must reconnect
| via IXLCONN REBUILD.
| Reconnected by the system
| without connector participation.

| Population of
| new structure
| Connectors coordinate to
| populate new structure with all
| pertinent data.

| The system copies data from old
| structure to new without
| connector participation.

| New
| connections
| during rebuild
| processing

| Permitted only during the
| Rebuild Quiesce phase.
| Not permitted

| Initiating a Structure Rebuild
| Rebuild can be initiated by an authorized program, by an operator, or by MVS.
| When the new structure is allocated during rebuild on an OS/390 Release 2 system
| or higher, by default the system ensures that there will be equivalent or better
| connectivity to the rebuilt structure as there was to the original structure prior to the
| rebuild. An operator or an authorized program can override this default.

| Rebuild processing is initiated as the result of an IXLREBLD REQUEST=START
| macro invocation or a SETXCF START,REBUILD operator command. For each
| structure affected by the rebuild request, the system determines whether to start a
| rebuild and, if started, which method (user-managed or system-managed) to use.

 Chapter 5. Connection Services 5-65

| � A user-managed rebuild is initiated if there is at least one active connector to
| the structure and all active connectors have specified or defaulted to IXLCONN
| ALLOWREBLD=YES. The specification of IXLCONN ALLOWAUTO is not
| considered.

| � A system-managed rebuild will be initiated if a user-managed rebuild is not
| initiated and the following conditions are met:

| – There is at least one active connector and all connectors have specified
| IXLCONN ALLOWAUTO=YES.

| – There are no active connectors to the structure. The specification of
| IXLCONN ALLOWAUTO is not considered.

| � No rebuild will be initiated if neither a user-managed nor a system-managed
| rebuild is able to be initiated.

| “Overview of User-Managed Rebuild Processing” describes the user-managed
| rebuild process.

| “Overview of System-Managed Rebuild Processing” on page 5-104 describes the
| system-managed rebuild process.

Overview of User-Managed Rebuild Processing
The two types of user-managed rebuild processing are rebuild and duplexing
rebuild.

� Rebuild is intended for planned reconfiguration and recovery scenarios. An
installation might initiate rebuild because of loss of connectivity to a coupling
facility or a structure failure.

� Duplexing rebuild is intended for improved availability and usability for cache
structures. An installation might initiate duplexing rebuild for continuous use of
the structure by an application in the event of a structure failure or a loss of
connectivity by one system to a coupling facility, especially when reconstructing
the structure's data might be difficult or impossible. Duplexing rebuild allows a
connector to a structure to allocate another structure for the purpose of
duplexing the data in the structure. This type of rebuild process allows users to
use two instances of a cache structure in two different coupling facilities and, if
necessary, to revert to using only one of the structure instances. Duplexing
rebuild is available only for cache structures.

As user-managed processes, both rebuild and duplexing rebuild require that
connectors develop protocols among themselves to control the rebuilding process.
The system reports certain rebuilding events to the event exits so that connectors
can coordinate rebuilding.

� For rebuild, once the original structure has been rebuilt (rebuilding is complete),
the system deallocates the original structure and connectors can use the new
structure.

� For duplexing rebuild, once the data in the original structure has been copied to
| the duplexed structure (the Duplex Established phase has been reached),

connectors can duplex cache operations to both structures. Once the
connectors have decided to stop duplexing rebuild and use only one of the
structures, the system deallocates the structure that is no longer required.
Otherwise, both instances of the cache structure exist so that the connectors
can duplex the data in the structure.

5-66 OS/390 V2R8.0 MVS Sysplex Services Guide

Requesting Rebuild or Duplexing Rebuild
An operator can initiate the rebuilding process by issuing the SETXCF
START,REBUILD or SETXCF START,REBUILD,DUPLEX command. An authorized
program can initiate the rebuilding process by issuing the IXLREBLD
REQUEST=START or IXLREBLD REQUEST=STARTDUPLEX macro. The
IXLREBLD macro requires that a reason for starting the rebuild or duplexing rebuild
be specified. All connected users receive the reason for rebuilding through the
event exit.

Reasons for rebuild can include:

� Loss of connectivity to the coupling facility

 � Structure failure

� A specific connection-supplied reason for rebuilding

� An operator-initiated command.

Reasons for duplexing rebuild can include:

� A specific connection-supplied reason

� An operator-initiated command.

An operator can display the reason specified by the user who issued the rebuild
request by issuing the DISPLAY XCF,STRUCTURE command. Similar information
is available through the IXCQUERY macro.

| MVS can initiate nonduplexing rebuild in response to a loss of coupling facility
| connectivity, through REBUILDPERCENT processing. See “MVS-Initiated Rebuild
| Processing” on page 5-96. MVS can initiate duplexing rebuild in response to a
| specification of DUPLEX(ENABLED) in the active CFRM policy. See “Role of
| CFRM Policy in the Rebuild Process” on page 5-69.

Phases for User-Managed Processes
The rebuild and duplexing rebuild processes involve a series of established phases,
during which all active connectors to the structure coordinate their activities through
MVS. The responsibility for managing the structure and its contents during these
phases is that of the connector to the structure. The phases are:

� Rebuild Quiesce Phase

� Rebuild Connect Phase

� Rebuild Duplex Established Phase

� Rebuild Cleanup Phase

Connectors enter and leave each of these phases based on event notification
through their event exits. The events indicate to the connected user the start or
completion of a specific phase of the rebuild process. Connected users must
respond to some, but not all, of these events.

A brief description of each of the rebuild phases follows:

Rebuild Quiesce Phase: This phase applies to the rebuild and duplexing rebuild
processes. During the Rebuild Quiesce Phase, connectors to the structure are
notified of a request to rebuild the structure through the Rebuild Quiesce event and
are given the opportunity to decide whether to participate in the rebuild process.

 Chapter 5. Connection Services 5-67

Connectors quiesce their activity to the structure and if necessary, might purge
outstanding requests to the structure. Each connector participating in the rebuild
process must respond to the Rebuild Quiesce event, at which point its connect
token is invalidated (to ensure the continuance of the structure's quiesced state).

Note: If the activity to the structure is based on a restart token, the connector
participating in the rebuild process should process the request to completion
before responding to the Rebuild Quiesce event. See “Completing
Outstanding Structure Requests” on page 5-75.

When the system has received a response to the Rebuild Quiesce event from each
active connector to the structure, the Rebuild Quiesce Sync Point is reached and
the Rebuild Quiesce Phase ends.

Rebuild Connect Phase: This phase applies to rebuild and duplexing rebuild
processes. When the Rebuild Quiesce phase ends, each connector receives a
Rebuild Connect event to indicate that the connector should issue a connect
request for the new or duplexed structure. The system allocates the new structure
upon receipt of the first connect request; subsequent connect requests allow the
issuer access to the newly-allocated structure. Connectors to the structure are
notified of other connected users through their event exit. When a connected user
has issued its connect request to the new structure, the user can begin
reconstructing or propagating its data to the new structure. As each connector
completes its processing to transfer data to the new structure, the connector issues

| a rebuild complete request (IXLREBLD REQUEST=COMPLETE) to indicate the
completion to the system.

When the system has received the complete request from all active connectors to
the structure, the Rebuild Connect Phase ends and one of two sync points is
reached:

� If this is rebuild, the Rebuild Complete Sync Point is reached and processing
continues with the Rebuild Cleanup Phase.

� If this is duplexing rebuild, the Rebuild Duplex Established Sync Point is
reached and processing continues with the Rebuild Duplex Established Phase.

Rebuild Duplex Established Phase: This phase applies to the duplexing rebuild
process, not to the rebuild process. When the Rebuild Connect Phase ends, the
system notifies each connector with a Rebuild Duplex Established event. During the
Rebuild Duplex Established phase, connectors operate in duplex mode accessing
both the old and new structures to ensure that both structures are fully
synchronized. New connectors can request access to both structures, first to the
old structure, and if successfully connected, then to the new structure. If the
attempt to connect to the old structure is not successful, the system does not allow
the user to connect to the new structure, and both structures remain in the Duplex
Established phase. If the attempt to connect to the old structure is successful, but
the connect to the new structure is not, MVS stops the duplexing process for the
new structure.

The Rebuild Duplex Established phase is open-ended, that is, connectors can
continue in duplex mode for as long as is required. At some point, MVS might
determine that duplexing should be discontinued, or a connector or an operator
might send a request to the system to end the Duplex Established phase. The
request will specify which of the duplexed structures is to be kept — either by

5-68 OS/390 V2R8.0 MVS Sysplex Services Guide

falling back to use the old structure or by switching forward to complete the rebuild
process using the new structure.

� If the request is to stop the duplexing and fall back to the old structure
(KEEP=OLD), processing occurs as for stopping a non-duplexed structure
rebuild. See “Stopping a User-Managed Rebuild Process” on page 5-89.

� If the request is to stop the duplexing and switch to the new structure
| (KEEP=NEW), MVS marks the structure as “switch in progress” and delivers

the Rebuild Switch event to all connectors. Before responding to this event, all
connectors, including those who have connected while the switch is in
progress, must quiesce duplexing rebuild and complete operations to the new
structure. To confirm the completion of these activities, each connector issues
IXLREBLD REQUEST=DUPLEXCOMPLETE. When the system has received
the REQUEST=DUPLEXCOMPLETE request from all connectors, the Rebuild
Duplex Complete Sync Point is reached and the Rebuild Duplex Established
phase ends. Processing continues with the Rebuild Cleanup phase.

Rebuild Cleanup Phase: This phase applies to rebuild and duplexing rebuild
processes. During the Rebuild Cleanup Phase, each connector receives a Rebuild
Cleanup event to specify that the connector is to clean up any information that
pertains to the old structure being discarded. As each connector completes its
cleanup processing, it notifies the system through its response to the Rebuild
Cleanup event. When the system has received all cleanup confirmations, the
Rebuild Cleanup Sync Point is reached. The system notifies all connectors through
the Rebuild Process Complete event, deallocates the old structure, and allows
connectors to access the new structure again.

Role of CFRM Policy in the Rebuild Process
A change in the active CFRM policy might be required when an installation uses a
rebuild process to move a structure to another coupling facility or to create a
duplexed structure in another coupling facility. The active CFRM policy defines the
coupling facility preference list and the structure exclusion list of the structure that is
to be rebuilt or duplexed. The CFRM policy also specifies for each structure
whether duplexing rebuild is to be manually initiated or is able to be automatically
initiated by MVS.

Options for Initiating Duplexing Rebuild: The DUPLEX option in the CFRM
policy allows you to specify for each structure how the initiation of duplexing rebuild
is to be handled:

� DUPLEX(DISABLED) — Duplexing rebuild is not allowed. If a duplexing rebuild
is in progress for the structure at the time the CFRM policy changes to
DUPLEX(DISABLED), MVS will automatically attempt to stop the duplexing
rebuild and fall back to the old structure.

DUPLEX(DISABLED) is the default.

� DUPLEX(ALLOWED) — Duplexing rebuild is allowed to be manually
established through the SETXCF operator command or the IXLREBLD macro,
but will not be automatically initiated by MVS.

� DUPLEX(ENABLED) — Duplexing rebuild is allowed for both manual initiation
and automatic initiation by MVS. If duplexing rebuild is not in progress at the
time the CFRM policy changes to DUPLEX(ENABLED), MVS may start a
duplexing rebuild.

 Chapter 5. Connection Services 5-69

Note that changes to the CFRM policy that affect the DUPLEX option will always
take effect immediately. If the structure is allocated at the time of the CFRM policy
change, the DUPLEX option will not be made pending. Any duplexing rebuild
actions that are required because of the CFRM policy change will take effect
immediately.

Automatic Duplexing Rebuild by MVS: When DUPLEX(ENABLED) is specified
for a structure in the active CFRM policy, MVS will attempt to start a duplexing

| rebuild for a structure that is not currently duplexed when certain triggering events
| occur. For example:

� The structure becomes allocated with at least one active connector.

� The CFRM policy changes to DUPLEX(ENABLED) for an allocated structure
with at least one active connector.

� A new coupling facility resource becomes available.

� The last connector that did not support duplexing rebuild
(ALLOWDUPREBLD=NO) disconnects or is forced from the structure.

MVS will not attempt to start a duplexing rebuild for the structure under the
following conditions:

� The new structure in duplexing rebuild could not be allocated with the same
connectivity as the old structure and therefore MVS stopped the duplexing
rebuild.

| � Stop processing completes, and IGNOREDUPLEX was specified on the
| IXLREBLD STOPDUPLEX request.

MVS might be unable to duplex a structure again after an operator-initiated stop of
the duplexing rebuild process.

� When an operator initiates a stop of the duplexing rebuild, MVS will stop it as
requested. When duplexing the structure again, MVS will ensure that the
structure is not duplexed back into the same coupling facility from which a
duplex instance of the structure was just deallocated. Note, however, that if the
duplexing rebuild fails or is stopped again, the coupling facility for which the
duplexing was stopped may be selected for the next duplexing attempt.

MVS will stop the duplexing rebuild for the structure under the following conditions:

� The CFRM policy changes to DUPLEX(DISABLED).

� A coupling facility containing one of the structures is removed from the
structure's preference list.

Rebuilding with a New CFRM Policy: The system administrator might need to
redefine the CFRM policy to remove the current coupling facility from the
preference list in the CFRM policy and make sure that the preference list contains
another coupling facility that has both enough space for the new structure and
connectivity to all systems currently connected to the structure. Once the CFRM
policy is defined, the system administrator activates the new CFRM policy and
issues the SETXCF command to start rebuild processing.

Rebuilding without a New CFRM Policy: The rebuild option,
LOCATION=OTHER, specifies that the structure is to be rebuilt in any coupling
facility listed in the active CFRM policy's preference list “OTHER than” the coupling

5-70 OS/390 V2R8.0 MVS Sysplex Services Guide

facility in which the structure exists now. This option allows you to rebuild the
structure without having to change your active CFRM policy if the currently active
CFRM policy contains other suitable coupling facilities in the structure's preference
list. See “MVS-Initiated Rebuild Processing” on page 5-96 for information about
using the REBUILDPERCENT mechanism to rebuild a structure in another coupling
facility.

User-Managed Rebuild Enhancements
Prior to OS/390 Release 2, when a rebuild request is issued, the system can allow
the rebuild process whenever:

� The structure is defined in the active administrative policy
� The structure has active connections
� A structure is not already in the process of rebuilding or stopping rebuild
� All active connectors to the structure allow rebuild
� The structure is not an XCF signalling structure, when the rebuild request is for

rebuilding all structures in a particular coupling facility resulting from a SETXCF
START,REBUILD,CFNAME=... operator command or an IXLREBLD
REQUEST=START,CFNAME=... invocation.

Otherwise, the rebuild processing does not occur. The rebuild process can also be
stopped through the SETXCF STOP,REBUILD command or IXLREBLD
REQUEST=STOP macro. Stopping the rebuild process allows connected users to
try to restore the original structure for normal processing.

With OS/390 Release 2 and higher, the system by default allows a structure to be
rebuilt only when it can ensure the following connectivity levels at the time the
rebuild is initiated:

� If the rebuild was initiated because of a loss of connectivity, the rebuilt structure
will have better connectivity than the connectivity of the set of connectors to
the old structure that did not lose connectivity to that structure.

� If the rebuild was initiated for any other reason, the rebuilt structure will have
equivalent or better connectivity than the connectivity of the set of connectors
to the old structure that did not lose connectivity to that structure.

When the reason for the rebuild is other than loss of connectivity, the application or
the operator can override this system default by including a keyword,
LESSCONNACTION=CONTINUE, on the macro invocation or command. If the new
structure cannot be allocated with equivalent or better connectivity than the old
structure, and the application or the operator did not specify
LESSCONNACTION=CONTINUE, the system does not initiate the rebuild process.
For a duplexing rebuild, LESCONNACTION=TERMINATE is assumed.

Using the IXLREBLD Macro
Issue the IXLREBLD macro:

� To start a rebuild (REQUEST=START).

� To confirm that the rebuild is complete (REQUEST=COMPLETE).

� To stop a rebuild (REQUEST=STOP).

� To start a duplexing rebuild (REQUEST=STARTDUPLEX).

� To confirm that a duplexing rebuild is complete
(REQUEST=DUPLEXCOMPLETE).

 Chapter 5. Connection Services 5-71

� To stop a duplexing rebuild and specify which structure is to be kept
(REQUEST=STOPDUPLEX).

The first user to successfully initiate the rebuild or duplexing rebuild process
through IXLREBLD receives a return code of X'00' from the IXLREBLD macro. If a
rebuild process is in progress, subsequent start rebuild or start duplexing rebuild
requests fail with a return code of X'04'.

| User-Managed Rebuild Events and the Event Exit
All active connectors to a structure are required to participate in the user-managed
rebuild process for that structure. During the course of the rebuild, events are
presented to the event exits of all connectors to the structure. The events notify the
connected users of the start or completion of specific phases of the rebuild process.
The connected user must respond to some, but not all, of these events.

The following list summarizes the events that the system reports about the rebuild
process to the event exit and the responses expected by the event exits:

| Rebuild Quiesce Request to start structure rebuild processing. The IXLYEEPL
| will indicate the type of rebuild (rebuild or duplexing rebuild).
| (Response is required via IXLEERSP.)

| Rebuild Connect Request to issue IXLCONN REBUILD for the structure after
| all connectors have quiesced the use of the structure. When
| the connector has propagated all required data to the new
| structure, it must confirm that this processing is complete with
| IXLREBLD REQUEST=COMPLETE. (Response is required,
| first with IXLCONN REBUILD, and then via IXLREBLD
| REQUEST=COMPLETE.)

Rebuild Connects Complete
Confirmation that all connected users have issued IXLCONN
REBUILD for the structure. This event is not presented to
connectors during the duplexing rebuild process.

Rebuild New Connection
New connection to the new structure

Rebuild Existing Connection
Existing connection to the new structure

Rebuild Connect Failure
IXLCONN REBUILD failure for a connector because of
abnormal task or address space termination. (Response is
required via IXLEERSP or in IXLYEEPL.)

Rebuild Duplex Established
Duplexing has been established by each connector.
Connectors can begin duplexed structure operations. This
event pertains only to duplexing rebuild.

Rebuild Switch Request to switch to using only the new instance of a
duplexed structure. Request to issue
REQUEST=DUPLEXCOMPLETE after quiescing use of both
instances of the structure. This event pertains only to
duplexing rebuild. (Response is required via IXLREBLD.)

5-72 OS/390 V2R8.0 MVS Sysplex Services Guide

Rebuild Cleanup Confirmation that all connected users have completed
structure processing and should clean up information related
to the old structure which will be deallocated. (Response is
required via IXLEERSP.)

Rebuild Process Complete
Confirmation that the structure has been rebuilt.

Rebuild Stop Request to stop a structure rebuild process. If this is a
duplexing rebuild, the request is to stop the duplexing and
use the old structure. Connected users must clean up
information about the new structure, which will be deallocated.
(Response is required via IXLEERSP.)

Rebuild Stop Process Complete
Confirmation that the rebuilding process has been stopped.

Note that user-defined synchronization points can also be used if additional
coordination is required for rebuilding a structure. See “Using IXLUSYNC to
Coordinate Processing of Events” on page 5-140.

Some rebuild events require a response from all connected users that are
participating in the process. You can confirm the following rebuilding events through
the IXLEERSP macro:

� Rebuild Quiesce. You must respond to a request for rebuilding the structure
after you have quiesced your use of the existing structure. To continue the
rebuilding process, issue IXLEERSP with EVENT=REBLDQUIESCE.

� Rebuild Cleanup. You must ensure that resources associated with the original
structure have been released. To confirm the event, issue IXLEERSP with
EVENT=REBLDCLEANUP.

� Rebuild Connect Failure. You must respond to the rebuild connect failure after
cleaning up any control information. To confirm the event, issue IXLEERSP
with EVENT=REBLDCONNFAIL or respond with IXLYEEPL.

� Rebuild Stop. You must respond to the stop rebuild request. To confirm the
event, issue IXLEERSP with EVENT=REBLDSTOP.

Some rebuilding events can be superseded by a Rebuild Stop event. In these
cases, the connector must respond to the Rebuild Stop event rather than to the
event that was previously expected. The timing of an event being superseded by a
Rebuild Stop event might result in some connectors seeing the superseded event
and other connectors not seeing it. Therefore, some connectors might see the prior
event and then the Rebuild Stop event; other connectors might never see the prior
event and only see the Rebuild Stop event. Note that if a connector responds to an
event that has been superseded, the system returns a failing return code to the
connector.

The following rebuilding events can be superseded by a Rebuild Stop event:

 � Rebuild Quiesce
 � Rebuild Connect
� Rebuild Connects Complete
� Rebuild Duplex Established

See “Delivery of Rebuild Stop Event” on page 5-90.

 Chapter 5. Connection Services 5-73

| XES Monitoring of Rebuild Event Responses
| XES monitors certain events to ensure that required responses are received from
| connected users in a timely manner. The rebuild events that XES monitors are:

| � Rebuild Quiesce
| � Rebuild Connect
| � Rebuild Connect Failure
| � Rebuild Switch
| � Rebuild Cleanup
| � Rebuild Stop

| It is possible to connect to a structure during rebuild processing, in which case the
| connector is expected to return an explicit response depending on the rebuild
| phase into which the user connected. See “Handling New Connections During a
| User-Managed Rebuild Process” on page 5-91 for detailed information. XES
| monitors the following required responses:

| � After connecting during the Rebuild Quiesce phase
| � After connecting during the Rebuild Connect phase
| � After connecting during the Duplex Established phase
| � After connecting during the Rebuild Switch process
| � After connecting during the Rebuild Stop process

| If responses are not received in a timely manner, XES issues a message for each
| connector owing an expected response that is overdue. These messages can then
| be analyzed by the system programmer, operator, or automation package for the
| appropriate action to be taken so that processing can continue. See “XES
| Monitoring of Event Responses” on page 5-138.

Starting the User-Managed Rebuild Process
| The following are required for starting user-managed rebuild processing:

| � Rebuild and duplexing rebuild require that there be at least one active
| connector to the structure at the time of the request.

| � Duplexing rebuild requires that there be another eligible coupling facility with
| connectivity to all connectors to the old structure. The coupling facility should
| provide a failure-independent (failure-isolation) environment. This ensures that
| the duplexed structures will not both be subject to loss because of a single
| hardware failure in which both coupling facilities reside. See “Planning for
| Coupling Facility Failure-Independence” on page 5-16.

Understanding the Rebuild Quiesce Phase
During the Rebuild Quiesce phase:

1. The Rebuild Quiesce event is delivered.

2. Connectors decide whether to participate in the rebuild or duplexing rebuild
process.

3. Connectors quiesce their coupling facility accesses to the structure and their
use of restart tokens.

4. Connectors respond to the Rebuild Quiesce event.

5-74 OS/390 V2R8.0 MVS Sysplex Services Guide

Delivery of the Rebuild Quiesce Event
As soon as the rebuild start request is successfully completed, all connected users
are notified of the rebuild through the Rebuild Quiesce event. The system presents
the Rebuild Quiesce event to the event exit along with the reason for rebuilding the
structure, and an indication of failed-persistent connections to the original structure.
(Note that failed-persistent connections to the old structure will not exist in the new
structure after rebuild. It is the connection's responsibility to ensure that any
necessary recovery for the failed-persistent connection is complete before
proceeding with the rebuild process.)

If MVS has initiated the rebuild based on a policy-specified parameter concerning
loss of connectivity (REBUILDPERCENT), the system also presents to the event
exit the percentage of lost connectivity which caused MVS to initiate the rebuild.
See “MVS-Initiated Rebuild Processing” on page 5-96 for a description of how MVS
decides to initiate rebuild processing.

Responding to the Rebuild Quiesce Event
Users can respond to the Rebuild Quiesce event in one of the following ways:

� Decide to participate in the rebuild process.

� Disconnect from the structure and allow other connected users to participate in
the rebuild process.

� Stop the rebuild process by issuing IXLREBLD REQUEST=STOP or IXLREBLD
REQUEST=STOPDUPLEX. See “Stopping a User-Managed Rebuild Process”
on page 5-89.

Note that if users choose to stop the rebuild process, the system will generate a
Rebuild Stop event to be delivered to the event exits of the structure's connectors.
The Rebuild Stop event will supersede any Rebuild Quiesce event that has not yet
been delivered to a connector.

If connectors decide to participate in rebuilding, they must

1. Wait for outstanding requests to the structure to complete.
2. Stop making any new structure requests like IXLCACHE, IXLLIST, IXLLOCK, or

IXLRT.
3. Quiesce the use of restart tokens.
4. Issue IXLEERSP EVENT=REBLDQUIESCE to respond to the event.

Completing Outstanding Structure Requests: Before responding to the Rebuild
Quiesce event, users should complete any request that needs to be restarted
because it either exceeded the time-out criteria for the coupling facility or requires
more buffer space to return all requested information. In these situations, the
system returns either a restart token (from certain IXLCACHE, IXLLIST, and IXLRT
invocations) or an entry identifier (from certain IXLLIST and IXLRT invocations).

It is important to remember that after a structure is rebuilt, the new structure may
| not be an identical copy of the old structure. Specifically,

� Information in the restart token used to access the old structure will not be valid
for continued operations on the new structure.

� Entry ID values will differ between the old structure and the new structure.

� Depending on the exploiter's protocol, not all entries or data present in the old
structure will necessarily be present in the new structure.

 Chapter 5. Connection Services 5-75

� Depending on the exploiter's protocol, the order of lists that have been rebuilt in
the new structure (for example, lists of record data within a lock structure) may
differ between the old structure and the new structure.

For these reasons, users should not have any outstanding restart tokens
| (RESTOKENs or EXTRESTOKENs) or entry identifiers (ENTRYIDs) that are to be

used to redrive processes after replying to the Rebuild Quiesce event. Users should
always fully complete these types of requests before replying to the Rebuild
Quiesce event.

Once a user has responded to the Rebuild Quiesce event, the user's connect token
is temporarily invalidated to prevent any new accesses to the structure. Therefore,
it might be necessary to purge outstanding requests before responding to the
Rebuild Quiesce event.

� List, Serialized List, and Cache Structures

Use IXLPURGE to purge outstanding IXLLIST or IXLCACHE operations on
these structures. Do not respond to the Rebuild Quiesce event until receipt of a
confirmation of the completion of each of these outstanding IXLLIST and
IXLCACHE events.

 � Lock Structures

IXLPURGE cannot be used to purge outstanding IXLLOCK requests. Use
IXLUSYNC to ensure that all users have recognized the Rebuild Quiesce event
and that no connector has issued IXLREBLD REQUEST=STOP. Use
IXLPURGE to purge outstanding IXLRT operations. Do not respond to the
Rebuild Quiesce event until all outstanding IXLRT operations are complete.

After the Rebuild Quiesce event has been provided, the system handles exit
routines as follows:

� The system does not prevent the contention, complete, and notify exits from
being driven for events related to the original structure. However, the connector
can optionally defer the contention exit during the rebuild processing. See
“Contention Exit Processing” on page 8-44 for a description of how the
contention exit can be deferred.

� The system disables the list transition exit for a structure that is being rebuilt
when the connected user responds to the Rebuild Quiesce event. The list
transition exit remains disabled until either a Rebuild Complete or Rebuild Stop
Process Complete event is presented to the user's event exit.

Note that the invalidation of the connect token after the Rebuild Quiesce event is
temporary. XES revalidates the original CONTOKEN later in the process when
either the structure rebuild is complete or the rebuild is stopped (and all events
have been acknowledged). Users will use the original CONTOKEN to access the
new structure when it is rebuilt. The user is unable to access the original structure.

Completing the Rebuild Quiesce Phase
When all users that are to participate in rebuilding have issued IXLEERSP
EVENT=REBLDQUIESCE, the system reports the Rebuild Connect event to the
event exits of all connected users.

5-76 OS/390 V2R8.0 MVS Sysplex Services Guide

Connecting to the New Structure
The REBUILD option of IXLCONN allows a new version of the structure to be
allocated and permits the requesting connector access to the new structure. See
“Using the IXLCONN REBUILD Macro.”

Understanding the Rebuild Connect Phase
During the Rebuild Connect phase:

1. The Rebuild Connect event is delivered.

2. Connectors issue IXLCONN REBUILD to connect to the new structure.

3. Connectors reconstruct the new structure.

4. Connectors issue IXLREBLD REQUEST=COMPLETE to indicate that the
structure is reconstructed.

Delivery of Rebuild Connect Event
As soon as all connectors participating in the rebuilding or duplexing have
confirmed that their use of the structure has been quiesced, the connectors are
notified through the Rebuild Connect event. The users do not need to respond to
this event, but instead should issue IXLCONN with the REBUILD option. During the
Rebuild Connect phase:

� For rebuild, the system allows only rebuild connect requests to the structure
from this point until all rebuild processing is complete. The system rejects all
new connections with reason code IXLRSNCODECONNPREVENTED.

� For duplexing rebuild, the system allows new connections to the old structure
and to the new structure if a connection to the old structure already exists for
that connector. New connectors use IXLCONN to connect to the old structure
and IXLCONN REBUILD to connect to the new structure. The
CONAREBUILDPHASE field in IXLYCONA indicates in which phase the
connection occurred (Rebuild Quiesce phase, Rebuild Connect phase, or
Duplex Established phase).

Using the IXLCONN REBUILD Macro
The first connector to issue IXLCONN with REBUILD allocates the new structure.
The first connected user also defines the attributes for the new structure. When the
new structure is allocated, pending policy changes to structure size or location also
apply. Other users issue IXLCONN REBUILD to connect to the new structure but
cannot change the structure attributes. The connect answer area contains
information about the rules used to allocate the structure. It is the connector's
responsibility to verify that the attributes of the structure are acceptable.

To issue IXLCONN REBUILD the user must be connected to the original structure.
The user must issue IXLCONN REBUILD with the same structure name and
CONNAME as the original structure. Figure 5-13 lists the structure attributes that
users can change when rebuilding a structure.

 Chapter 5. Connection Services 5-77

The following restrictions also apply:

� IXLCONN REBUILD must be issued from the same system and address space
as the original IXLCONN request. You can issue IXLCONN REBUILD from a
task other than the task that issued the original IXLCONN request or from the
same task that issued the original IXLCONN request.

� Users of IXLCONN REBUILD cannot change the following attributes of the
structure:

– TYPE (structure type)
– RECORD (record data for lock structure)
– RNAMELEN (resource name length for lock structure)

� If users specified VECTORLEN on the IXLCONN request for the original
structure, then they must also specify it on the IXLCONN REBUILD request for
the rebuild structure. A user can, however, change the size of VECTORLEN on
the IXLCONN REBUILD request. If users did not specify VECTORLEN on the
IXLCONN request for the original structure, then they must not specify it on the
IXLCONN REBUILD request.

� If users specified LOCKENTRIES on the IXLCONN request for the original
structure, then they must also specify it on the IXLCONN REBUILD request for
the rebuild structure. A user can, however, change the value for the number of
lockentries on the IXLCONN REBUILD request.

� The value for NUMUSERS (specified for lock structures on IXLCONN to define
the maximum number of connected users) cannot be less than the value
specified for the original structure.

� When changing the size (STRSIZE) of a structure, the maximum structure size
is determined by the SIZE parameter in the CFRM active policy. The system
rejects a request specifying a STRSIZE larger than the current maximum
structure size in the CFRM active policy.

Note: If the size of the structure has been altered to a value different from the
SIZE parameter in the CFRM active policy, it is the responsibility of the
installation to change that value, if appropriate.

� When allocating a percentage of available structure storage for event monitor
controls, it IS possible on IXLCONN REBUILD requests for the connector to
specify a percentage value (EMCSTGPCT) that is different from what was
specified on the initial IXLCONN request. Thus, a user could specify that the

Figure 5-13. Structure Attributes That Can Be Changed with IXLREBLD

Cache List Lock

STRSIZE STRSIZE STRSIZE
NONVOLREQ NONVOLREQ NONVOLREQ
ACCESSTIME ACCESSTIME ACCESSTIME
ELEMCHAR ELEMCHAR LOCKENTRIES
ELEMINCRNUM ELEMINCRNUM NUMUSERS
MAXELEMNUM MAXELEMNUM
DIRRATIO ENTRYRATIO
ELEMENTRATIO ELEMENTRATIO
ADJUNCT ADJUNCT
VECTORLEN VECTORLEN
NUMCOCLASS LISTCNTLTYPE
NUMSTGCLASS REFOPTION
UDFORDER LISTHEADERS

| NAMECLASSMASK EMCSTGPCT

5-78 OS/390 V2R8.0 MVS Sysplex Services Guide

rebuilt structure was to provide for EMCs even if the original structure did not.
However, note that it is NOT possible to request the allocation of a local vector
on an IXLCONN REBUILD request unless the initial IXLCONN request had
requested a local vector.

Note also that a user cannot change the specification of a list transition exit
name when invoking IXLCONN REBUILD. LISTTRANEXIT is relevant to both
sublist monitoring and event queue monitoring.

� The following keywords have no meaning when specified on IXLCONN
REBUILD requests because the attributes are propagated from the original
IXLCONN request. However, you must specify them on the IXLCONN
REBUILD request or the request fails.

– STRDISP (structure disposition)
– CONDISP (connection disposition)
– CONDATA (connect data)
– EVENTEXIT (event exit name)
– COMPLETEEXIT (complete exit name)
– CONTEXIT (contention exit name)
– NOTIFYEXIT (notify exit name)
– LISTTRANEXIT (list transition exit name)
– CONLEVEL (connection level)
– ALLOWREBLD (whether rebuild is allowed)
– ALLOWDUPREBLD (whether duplexing rebuild is allowed).

The location of the new structure depends on the following:

� If LOCATION=OTHER was specified when the rebuild was initiated, XES will
not allocate the structure in the same coupling facility as the original structure.
(LOCATION=OTHER is assumed for duplexing rebuild.)

� For structure rebuild, XES allocates the structure in the first coupling facility in
the preference list that meets the standard allocation requirements. See
“Allocating a Structure in a Coupling Facility” on page 5-8.

� For duplexing rebuild, XES attempts to allocate the structure in a coupling
facility in the preference list that not only meets the standard allocation
requirements but also provides failure-independence with respect to the
coupling facility in which the old structure is allocated. If such a coupling facility
is not available, the installation should consider changing the active CFRM
policy so that the structure can be duplexed in a failure-independent
environment. See “Planning for Coupling Facility Failure-Independence” on
page 5-16 for a description of the failure-independent coupling facility attribute.

Specifying Coupling Facility Connectivity Requirements for
Rebuild Processing
The following information about structure connectivity and the rebuild process
applies to systems at the OS/390 Release 2 level and higher. Systems running on
a lower level of the system that allocate a structure cannot use the
CONNECTIVITY function of IXLCONN or the LESSCONNACTION function of
IXLREBLD.

You can specify a CONNECTIVITY value on the IXLCONN REBUILD invocation to
request a coupling facility with the same requirements that existed at initial connect
time. The system selects a coupling facility that meets the requested
CONNECTIVITY specification, if possible.

 Chapter 5. Connection Services 5-79

By default, the system does not allow a structure to be rebuilt if the new structure
will have poorer connectivity than the original structure. The system evaluates the
current connectivity of connectors to both the old and the new structures and allows
the rebuild to proceed only if the connectivity of connectors to the new structure will
be better than or equal to that of connectors to the old structure.

The LESSCONNACTION keyword of IXLREBLD allows you to override this default
action and to specify whether you want the system to rebuild the structure in spite
of a resulting degradation of connectivity. With LESSCONNACTION, you can
specify that the system is to stop rebuild processing (TERMINATE) or to continue
rebuild processing (CONTINUE) if the new structure would have poorer connectivity
than the original structure.

When a structure is in a duplexing rebuild process, the system assumes
LESSCONNACTION=TERMINATE and does not allow the new structure to be
allocated in a coupling facility that does not provide equivalent or better
connectivity.

Evaluating Current Connectivity Status: The system determines whether the
new structure will have equivalent or better connectivity than the old structure by
evaluating the current connectivity of both. For both the old structure and the new
structure, the system calculates the aggregate SFM system weight of all systems
that:

� Have connectivity to the coupling facility in which the structure resides, and
� Have one or more active connectors to the old structure.

If the system determines that connectivity to the new structure will be better (for a
rebuild reason of loss of connectivity) or equivalent or better (for any other
rebuild-initiation reason), the rebuild is allowed to proceed. Those systems that
have connectivity to the new coupling facility and have one or more active
connectors to the old structure will participate in the rebuild. For those systems that
might have had connectivity to the old structure in the original coupling facility but
do not have connectivity to the new coupling facility, the IXLCONN REBUILD
request will fail.

If the system calculates that connectivity to the new structure will be poorer than to
the original structure, then the LESSCONNACTION parameter is used. Note that if
the reason for the rebuild is a loss of connectivity, the system ignores the
LESSCONNACTION specification and stops the rebuild.

Handling Failed Attempts to Rebuild a Structure: If you have specified a
CONNECTIVITY value of SYSPLEX on your IXLCONN REBUILD invocation, XCF
attempts to select a coupling facility with full connectivity to all systems in the
sysplex. If there is no coupling facility with sysplex connectivity at the time of the
rebuild, the application will be unable to rebuild the structure and continue
processing. There are two options that the application might consider:

� Document for the installation that the rebuild protocol for the application
requires a coupling facility with sysplex connectivity. Neither the IXLREBLD
macro invocation nor the SETXCF START,REBUILD operator command will be
successful until the installation makes such a coupling facility available.

� Design a protocol by which the application reissues the IXLCONN REBUILD
request, but this time with a CONNECTIVITY=BESTGLOBAL. The application

5-80 OS/390 V2R8.0 MVS Sysplex Services Guide

would then have the responsibility of causing any systems that are not
connected to the selected coupling facility to be removed from the sysplex.

The application should consider carefully the use of this option, as it does
require some degree of effort.

 Sample Protocol

1. The connector issues IXLCONN REBUILD CONNECTIVITY=SYSPLEX.
When this fails, the connector can issue IXLCONN
CONNECTIVITY=BESTGLOBAL.

2. XCF keeps track of the connectors' rebuild attempts, and when all
connectors have issued at least one IXLCONN REBUILD request, the
system reports the Rebuild Connects Complete
(EEPLREBUILDCONNECTSCOMPLETE) event. (This event notifies all
connectors of the number of successful and unsuccessful connections to
the new structure.)

Note that a connector can issue its second IXLCONN REBUILD request
only until that point at which the all active connectors have issued
IXLREBLD REQUEST=COMPLETE.

3. The systems then can either:

a. Disconnect from the old structure, let the rebuild continue and complete,
and attempt to connect to the rebuilt structure when notified by the ENF
35 event that additional coupling facility resources are available, or

b. Stop the rebuild and somehow notify all connectors to retry the
IXLCONN REBUILD with CONNECTIVITY=BESTGLOBAL.

Successful Completion of IXLCONN REBUILD
When IXLCONN REBUILD is successful, the system returns return code
IXLRETCODEWARNING and reason code IXLRSNCODESPECIALCONN. The
CONAFLAGS field in the connect answer area indicates REBUILD=YES. The
connected user can expect the following:

� Connection to the new structure.
� Ability to make other coupling facility requests to the new structure through the

temporary CONTOKEN returned. The original CONTOKEN is used to access
the old structure.

� Notification of structure and connection events through the event exit.

To understand how the system maintains connect tokens during this phase, see the
description of CONACONTOKEN in “Receiving Answer Area Information from
IXLCONN REBUILD” on page 5-82.

The system reports the following connection events to the event exit of each
connected user that is in either the structure rebuild or the structure duplexing
process:

� Rebuild New Connection. Existing connections to the new structure receive
notification of each new user that connects to the new structure through
IXLCONN REBUILD.

� Rebuild Existing Connection. Each new connection to the new structure
receives notification of each existing connection to the new structure.

 Chapter 5. Connection Services 5-81

Handling a Failed IXLCONN REBUILD Request
When an IXLCONN REBUILD request for structure rebuild is not successful, the
connector has three options:

� Disconnect from the old structure and let the rebuild continue.

� Reissue the IXLCONN REBUILD request with one or more changed
parameters, based on the return and reason code returned by the failed
attempt. Note, however, that the more times you reissue the IXLCONN
REBUILD request, the longer you are holding up the entire rebuild cycle for all
connectors involved.

� Stop the rebuild process. Note that if you choose to stop the rebuild process,
the system will generate a Rebuild Stop event to be delivered to the event exits
of the structure's connectors. The Rebuild Stop event will supersede any
Rebuild Connect event that has not yet been delivered and may occur either
before or after the connector has issued IXLCONN REBUILD to connect to the
new structure.

When an IXLCONN REBUILD request for duplexing rebuild is not successful, the
following occurs:

� If the connector is connected to the old structure but is unable to connect to the
new structure because of lack of connectivity to that coupling facility, the
system initiates a fall back to the old structure for all connectors. (Duplexing
rebuild assumes LESSCONNACTION=TERMINATE.) If the IXLCONN
REBUILD request to connect to the new structure fails for any other reason, it
is the responsibility of the user to either stop the rebuild or disconnect.

� The system will attempt to duplex the structure in a different coupling facility if
the active CFRM policy specifies DUPLEX(ENABLED) for the structure.

Receiving Answer Area Information from IXLCONN REBUILD
At the completion of its processing, IXLCONN REBUILD returns the following
information in the connect answer area, mapped by IXLYCONA.

CONACONTOKEN Connect token that uniquely identifies the connection to a
new structure within the sysplex. This CONTOKEN is
temporary and is not the same CONTOKEN value that
IXLCONN returned for the original structure.

During the rebuilding process, use the temporary
CONTOKEN only when using mainline services IXLCACHE,
IXLLIST, IXLLOCK, IXLRT, IXLSYNCH, or IXLFCOMP to the
new structure.

For all other coupling facility requests (IXLDISC, IXLEERSP,
and IXLREBLD), use the CONTOKEN returned from
IXLCONN for the original structure. When the system reports
that the rebuilding process is complete (Rebuild Complete
event), discard the temporary connect token and use the
CONTOKEN returned from IXLCONN for the original
structure to access the new structure.

For successful IXLCONN REBUILD requests for cache and
list structures, the system revalidates the CONTOKEN
returned from IXLCONN for the original structure. At this
stage, users can make IXLCACHE or IXLLIST structure

5-82 OS/390 V2R8.0 MVS Sysplex Services Guide

requests. Accessing the original cache or list structure allows
users to move data between the original and new structures.
Lock users cannot use the CONTOKEN for the original
structure to access the original structure during rebuild.

CONACONID A connection identifier. The connection identifier is the same
as that for the original structure.

CONAFLAGS Connection status flags.

CONASTRUCTUREATTRFLAGS
Structure type attributes. Users must verify that the attributes
for the structure are acceptable. Otherwise, they should
disconnect or stop the structure rebuild.

CONASTRUCTUREVERSION
Structure version number. The structure version number will
be greater than the structure version number of the old
structure.

CONACONNECTIONVERSION
Connection version number. The connection version number
will be equivalent to the connection version number of the
original connection.

CONAVECTORTOKEN and CONAVECTORLEN
For TYPE=CACHE or TYPE=LIST with list monitoring
structures, a vector token and vector length used to identify
the user's local vector. Use the new vector token from
IXLCONN REBUILD after the rebuild process is complete.
However, if the rebuild process is stopped, use the vector
token returned on the original IXLCONN request.

See the IXLYCONA macro in OS/390 MVS Data Areas, Vol 3 (IVT-RCWK).

The connector that allocates the new structure receives an indication in the
IXLCONN answer area (CONACONNALLOC field). Subsequent connectors receive
an indication that they are connected to the new structure through the
CONAREBUILD field of the answer area.

The event exit for the connector might receive Rebuild Existing Connection events
before the IXLCONN REBUILD request for the new connection completes.

For cache or unserialized list structures, the event exit for existing connectors might
receive Rebuild New Connection events after the IXLCONN REBUILD request for
the new connection completes. Users of cache and unserialized list structures can
rebuild information into the new structures as soon as the IXLCONN REBUILD
request completes. Thus, list and cache users are able to access the original and
new structure before they receive the Rebuild Connects Complete event in their
event exits. (The Rebuild Connects Complete event indicates that all users have
issued IXLCONN REBUILD for a structure rebuild. The Rebuild Connects Complete
event is not presented to users who have issued IXLCONN REBUILD for a
duplexing rebuild.)

List and cache users can perform copy or read operations for cache or list data in
the original structure to help with rebuilding; however, IBM recommends that you do
not change data in the original structure during the rebuilding process. In the event

 Chapter 5. Connection Services 5-83

of a REBUILD STOP request, you will need to use the original structure once
again.

Reconstructing the New Coupling Facility Structure
As soon as users have successfully issued IXLCONN REBUILD, they can begin to
reconstruct the data in the new coupling facility structure. There are several ways to
reconstruct the data, depending on the application's protocol.

� Do no reconstruction, but allow the data to repopulate the structure strictly
through normal use of the structure after the rebuild completes.

� Reconstruct the data in the structure from in-storage control blocks or data
buffers.

� Explicitly move the data from the old structure to the new structure.

Explicitly moving data from the old structure to the new structure is entirely the
responsibility of the user. Not only must data be moved to the new structure, but
also such components as:

 � Adjunct data.

� List control information that you have set for list headers, such as list
descriptions or list limits on entries/elements.

Note that if your new structure contains different numbers of entries/elements
than your old structure did because of different structure attributes that took
effect on IXLCONN REBUILD, you may want to set your list limits differently in
the new structure to take these changes into account.

� List monitoring interest. (You must re-register.)

� Locks. (You must re-obtain.)

Delivery of the Rebuild Connects Complete Event
When all connected users have issued IXLCONN REBUILD, the system reports the
Rebuild Connects Complete event to the event exits of all connected users. The
system indicates the number of active connections at the time all connections
attempted to do a rebuild connect and the number of connections that successfully
did a rebuild connect to the structure. You are not required to respond to this event.
Depending on user protocol, connected users can stop the rebuilding process if
they determine that the number of connected users to the new structure is not
sufficient.

If a connector or the operator has stopped the rebuild process during this phase,
the Rebuild Stop event will supersede any Rebuild Connects Complete event that
has not yet been delivered.

The Rebuild Connects Complete event is presented only to connectors rebuilding a
structure and not to connectors duplexing a structure.

Completing the Rebuild Connect Phase
When connected users have performed the necessary processing to propagate (or
reconstruct) data into the new structure, they must:

1. Complete all outstanding requests to the structure
2. Prevent new structure requests like IXLCACHE, IXLLIST, IXLLOCK, or IXLRT
3. Issue IXLREBLD REQUEST=COMPLETE.

5-84 OS/390 V2R8.0 MVS Sysplex Services Guide

If this is a structure rebuild, as each connector issues IXLREBLD
REQUEST=COMPLETE, the system invalidates both the temporary and the original
connect tokens to prevent access to either structure. The reason you are not
allowed access to both the old and the new structure between the time you issue
the IXLREBLD REQUEST=COMPLETE and the time you receive the Rebuild
Process Complete event is because there is still the possibility of the rebuild
processing being stopped. If that occurs, the new structure would be deallocated
and normal processing would continue using the old structure. When the system
has received IXLREBLD REQUEST=COMPLETE from all connectors, the Rebuild
Complete sync point is reached and processing continues with the Rebuild Cleanup
phase. See “Completing the User-Managed Rebuild Process” on page 5-87.

If this is a duplexing rebuild, when the system has received IXLREBLD
REQUEST=COMPLETE from all connectors, the Rebuild Duplex Established sync
point is reached and processing continues with the Duplex Established phase.

Working with Structures in the Duplex Established Phase
While a structure is in the Duplex Established phase, connectors will continue to
receive notification through their event exits of new or existing connections and
connection failures. Connectors receive event notification for both structure
instances while both structures are allocated. Fields in IXLYEEPL identify the
duplexed state of the structure.

New connectors to the old and new structures are allowed while in the Duplex
Established phase. See “Handling New Connections During a User-Managed
Rebuild Process” on page 5-91 for a description of the actions a new connector
must take when connecting to a duplexed structure.

The synchronization of duplexed structures is the responsibility of the connectors
using them. In general, whatever can be done to a structure in simplex mode can
be done to a structure in duplex mode. This includes altering the structures while
they are in the Duplex Established phase. (See “Altering a Duplexed Structure” on
page 5-120.)

The propagation of data to the new structure and the subsequent synchronization
of that data through duplexing mainline operations to both structures is a matter of
user protocol and solely the responsibility of the user. It is also the user's
responsibility to handle failure scenarios, such as one of the duplexed structures
reaching a “structure full” condition. MVS will handle failures such as loss of
connectivity or failure of one of the structure instances, but the user should be
prepared to handle other situations.

Understanding the Duplex Established Phase
During the Duplex Established phase:

1. The Rebuild Duplex Established event is delivered.

2. Connectors operate in duplex mode accessing both old and new structures. It
is the connector's responsibility to keep the duplexed structure synchronized
and to handle any failure conditions that occur while attempting to maintain this
synchronization.

3. The connector or operator can decide to stop the Duplex Established phase
and fall back to the old structure or forward complete (switch) to the new
structure.

 Chapter 5. Connection Services 5-85

� When connectors indicate completion of their switch to the new structure,
the Rebuild Cleanup phase is entered.

� When connectors indicate completion of their stop processing to fall back to
using the old structure, they return to simplex mode through Rebuild Stop
processing. Once the system has accepted the request to stop structure
duplexing processing in a particular direction, a request to stop it in the
opposite direction will be rejected.

Delivery of Rebuild Duplex Established Event
As soon as all connectors participating in the duplexing process have issued
IXLREBLD REQUEST=COMPLETE to confirm that the rebuild of the duplexed
structure is complete, the connectors are notified through the Rebuild Duplex
Established event. The users do not need to respond to this event, but continue
with their mainline use of both structures in a duplexed fashion.

If a connector or the operator has stopped the duplexing process prior to this
phase, the Rebuild Stop event will supersede any Rebuild Duplex Established
event that has not yet been delivered.

The Duplex Established phase can last indefinitely, or at least until either an
operator command or a macro invocation is received requesting that the duplexing
be stopped or until a failure condition affecting one of the structure instances
causes MVS to stop duplexing. At that point, all connectors to the structure must
quiesce their use of both structures in preparation for either falling back to use the
old structure or switching to use the new structure. The system waits for all
connectors to confirm that they have completed their duplexing operations by
issuing either IXLREBLD REQUEST=DUPLEXCOMPLETE to switch to the new
structure or IXLEERSP EVENT=REBLDSTOP to fall back to the old structure
before returning to simplex mode. See “Stopping a User-Managed Rebuild Process”
on page 5-89 for a description of how the duplexing process is stopped to fall back
to using the old structure.

Stopping a Duplexing Rebuild Process to Forward Complete
Once a stop to switch to the new structure has been accepted, a stop to fall back
to the old structure will be rejected.

Understanding Rebuild Stopduplex Processing to Forward
Complete
The following list summarizes the events for a stop duplexing request to complete
processing and use the new structure:

1. Stop duplexing initiated through SETXCF STOP,REBUILD,DUPLEX or
IXLREBLD REQUEST=STOPDUPLEX with KEEP=NEW.

2. The system reports Rebuild Switch event to the event exit.

3. Connector stops duplexing, performs cleanup, and issues IXLREBLD
REQUEST=DUPLEXCOMPLETE to respond to the Rebuild Switch event.

4. When all responses are received, the system reports the Rebuild Cleanup
event to event exit.

5-86 OS/390 V2R8.0 MVS Sysplex Services Guide

Delivery of Rebuild Switch Event
Once a request to stop duplexing and forward complete (switch) to the new
structure is received, XES presents the Rebuild Switch event to each event exit.
This event requires that when connectors have quiesced their use of the old
structure and completed their switch to the new structure, they must issue
IXLREBLD REQUEST=DUPLEXCOMPLETE.

Responding to the Rebuild Switch Event
Before providing a response to the Rebuild Switch event, connectors must quiesce
their use of the old structure. See “Completing Outstanding Structure Requests” on
page 5-75 for information about quiescing the use of a structure. New connectors
who connect while the switch is in progress are notified through the Connect
answer area and are expected to participate by connecting to the new structure.
See “Handling New Connections During a User-Managed Rebuild Process” on
page 5-91. As connectors respond to the Rebuild Switch event with the IXLREBLD
REQUEST=DUPLEXCOMPLETE request, the system invalidates both their old and
new tokens used to access the structure. When all connectors have responded to
the Rebuild Switch event, the system enters the Rebuild Cleanup phase to
complete the rebuild process.

Completing the User-Managed Rebuild Process
For rebuild and duplexing rebuild, the completion of the process results in
connectors using the new structure, which is accessed through the old (original)
connect token.

Understanding the Rebuild Cleanup Phase
During the Rebuild Cleanup phase:

1. The Rebuild Cleanup event is delivered.

2. Connectors notify the system when cleanup is completed by responding to the
Rebuild Cleanup event.

3. The Rebuild Process Complete event is delivered.

4. Connectors continue processing with the remaining structure.

Delivery of Rebuild Cleanup Event
The Rebuild Cleanup phase is entered as the result of the connector's indication
that rebuild processing is complete:

� IXLREBLD REQUEST=COMPLETE while in the Rebuild Connect phase for
structure rebuild.

� IXLREBLD REQUEST=DUPLEXCOMPLETE while in the Duplex Established
phase for duplexing rebuild.

Once all connected users have indicated that the rebuild process is complete, MVS
presents the Rebuild Cleanup event to each event exit. This event requires a
confirmation using IXLEERSP with EVENT=REBLDCLEANUP.

 Chapter 5. Connection Services 5-87

Responding to the Rebuild Cleanup Event
Before providing a response to the Rebuild Cleanup event, all connectors should
clean up information related to the structure that will be deallocated. Connectors
discard the temporary connect token and the old vector token (if applicable). Note
that the vector token returned on the IXLCONN REBUILD is not a temporary token
like the connect token. The vector token returned must be used to access the
structure after the rebuild has completed. (Users do not have the option to stop the
rebuild process at this point. See “Stopping a User-Managed Rebuild Process” on
page 5-89.)

In certain instances, XES must quiesce the activity of user exits in order to perform
cleanup processing. For example, when a connector provides an event exit
response for the Rebuild Cleanup event, XES will force to completion any user
exits that are executing on behalf of that user's connection to BOTH the original
and the new structures issuing a PURGEDQ against the appropriate units of work.
No new events will be presented to the user exits on behalf of the original structure
(as it is being discarded). Normal user exit processing will resume for the rebuilt
structure upon completion of the rebuild process.

A user exit must be sensitive to conditions that can occur as a result of actions
taken by XES and must be able to handle these as appropriate. For example, if a
user exit has suspended itself, when the PURGEDQ is issued the system abends
the user exit's unit of work with a retryable X'47B' abend and gives control to the
user exit's recovery routine. (Note that although the recovery routine can retry, the
user exit can not re-suspend itself because the system will fail any request to
suspend a unit of work that has been the target of a PURGEDQ.) If the recovery
routine percolates back to the system, its associated connection is terminated.

The rebuild process is actually complete when the Rebuild Process Complete event
has been presented to the event exit. From the time that all connectors have issued
the IXLREBLD REQUEST=COMPLETE or REQUEST=DUPLEXCOMPLETE and
XES begins notifying each connector of the Rebuild Cleanup event until the Rebuild
Process Complete event is presented, the rebuild process cannot be stopped and a
new rebuild request for the structure cannot be started.

� If a REBUILD REQUEST=STOP request is initiated, the request is rejected with
reason code IXLRSNCODEINCLEANUP indicating that the rebuild process
cannot be stopped during the cleanup phase.

� If a REBUILD REQUEST=START request is initiated, the request is rejected
with reason code IXLRSNCODEALREADYREBUILDING indicating that a
rebuild request already is in progress.

XES notifies connectors of structure failure and/or loss of connectivity to the new
structure that occur during the time between when the IXLREBLD
REQUEST=COMPLETE is issued and the Rebuild Process Complete event is
issued after the event is presented.

Completing the Rebuild Cleanup Phase
After cleaning up information about the old structure, each connector confirms the
completion of its cleanup with IXLEERSP EVENT=REBLDCLEANUP. When the
system has received the IXLEERSP confirmations from all connectors, the Rebuild
Cleanup sync point is reached, the original contoken has been revalidated for each
connector, and the Rebuild Process Complete event is delivered to all connectors.

5-88 OS/390 V2R8.0 MVS Sysplex Services Guide

Delivery of the Rebuild Process Complete Event
After each user receives the Rebuild Process Complete event, the user can access

| the new structure. The users do not need to respond to this event. When the
rebuild process is complete, the system deletes the original structure.

When the rebuild process is complete, the system issues an ENF event code 35 so
that connectors who were denied access to the structure during the rebuild can
retry their connect request.

Stopping a User-Managed Rebuild Process
The user-managed rebuild process can be stopped through either the SETXCF
STOP command or the IXLREBLD macro. Stopping a rebuild implies that the new
structure (the one in rebuild processing) is to be discarded and that processing is to
continue with the old (or original) structure. For duplexing rebuild however, a
request to stop the rebuild processing requires the identification of which structure
should remain — the old structure or the new structure. Depending on which is
selected, duplexing rebuild processing will either fall back to use the old structure or
switch to use the new structure. For duplexing rebuild, a request to stop the rebuild
processing can be made when there are no active connections to the structure.

Note that you cannot stop a rebuild that was initiated as a rebuild with a macro
invocation or operator command that specifies a duplexing rebuild; nor can you
stop a rebuild that was initiated as a duplexing rebuild with a macro invocation or
operator command that specifies a rebuild.

Rebuild stop is initiated through the SETXCF STOP,REBUILD command or
IXLREBLD REQUEST=STOP. Stopping a duplexing rebuild to fall back to the old
structure can be initiated through the SETXCF STOP,REBUILD,DUPLEX command
or IXLREBLD REQUEST=STOPDUPLEX with KEEP=OLD. See “Stopping a
Duplexing Rebuild Process to Forward Complete” on page 5-86 for information
about stopping a duplexing rebuild process to use the new structure. Note that you
cannot issue a STOPDUPLEX request for a structure that is already being stopped
for a switch to the new structure.

Users can stop the rebuild process for a structure up until the time the rebuild
enters the Cleanup Phase. At that point all connectors have issued IXLREBLD
REQUEST=COMPLETE and the system passes the Rebuild Cleanup event to
event exits of the users. After that event, rebuild stop requests fail.

Reasons for stopping a rebuild process can include:

� Loss of connectivity to the either the original structure or the new structure
� Failure of either original structure
� User-specified reason code
� An operator-initiated command.

MVS stops the rebuild process for the new structure:

� If there are no active connections to the structure being rebuilt. The system
releases resources used during the rebuilding process. (This does not apply to
a structure in the Duplex Established phase, which is allowed to exist with no
active connectors.)

� If the structure being rebuilt fails. The system indicates the reason in the event
exit.

 Chapter 5. Connection Services 5-89

The system also issues ENF event code 35 when rebuild stop is complete.

Understanding Rebuild Stop Processing
The following list summarizes the events for a stop rebuilding request:

1. Stop rebuilding initiated through a SETXCF operator command or an
IXLREBLD macro invocation.

2. The system reports Rebuild Stop event to the event exit. Connection must
issue IXLEERSP to respond to the event.

3. Connection stops activity to the new structure, performs cleanup, and issues
IXLEERSP EVENT=REBLDSTOP.

4. When all IXLEERSP responses are received, the system reports the Rebuild
Stop Process Complete event to the event exit.

Delivery of Rebuild Stop Event
Once a request to stop a rebuild is received, XES presents the Rebuild Stop event
to each event exit. This event requires a confirmation using IXLEERSP with
EVENT=REBLDSTOP.

A Rebuild Stop event may supersede some other rebuild events. For example, if a
connector has quiesced his use of the old structure and is waiting for the system to
report the Rebuild Connect event, the system might instead report a Rebuild Stop
event indicating that another connector or the operator has stopped the rebuild
process. Similarly, a connector might receive a Rebuild Stop event instead of a
Rebuild Quiesce event if another connector or the operator stopped a rebuild
before all connectors have been notified about the pending rebuild.

The following rebuilding events can be superseded by a Rebuild Stop event:

 � Rebuild Quiesce
 � Rebuild Connect
� Rebuild Connects Complete
� Rebuild Duplex Established

Responding to a Rebuild Stop Event
The system reports the Rebuild Stop event and the reason to the event exit of all
the connections. When connections receive the Rebuild Stop event, they must:

� Complete any outstanding requests to both the old and new structure. See
“Completing Outstanding Structure Requests” on page 5-75 for complete
information about handling outstanding requests.

� Before providing a response to the event, all connectors should clean up
information related to the new structure, stop using the temporary connect
token and the new vector token, and be prepared to resume using the old
structure.

� Issue IXLEERSP with EVENT=REBLDSTOP to respond to the event.

When all connections have confirmed the Rebuild Stop event, the system reports
that rebuilding has stopped (Rebuild Stop Process Complete event) to the event
exit. If the original structure is not in a failed state, users can access the original
structure using the original contoken and vector token. Otherwise, users might
have to disconnect from the structure, or initiate another rebuild.

5-90 OS/390 V2R8.0 MVS Sysplex Services Guide

Handling New Connections During a User-Managed Rebuild Process
How new connections are handled differs substantially between rebuild and
duplexing rebuild.

 � Rebuild

The system permits new connections to the original structure up until all
responses for the Rebuild Quiesce event have been received. (The system
must receive IXLEERSP responses from all connected users that are
participating in rebuilding before it reports a Rebuild Connect event.)

The system informs the new connection that rebuild is in progress by returning
reason code IXLRSNCODESPECIALCONN from the IXLCONN invocation. The
new connector can find information about the rebuild in the IXLCONN answer
area. CONAREBUILDINFO contains information about the reason for the
rebuild, failed-persistent connectors, the percent loss of connectivity associated
with an MVS-initiated loss of connectivity rebuild, and flags to indicate whether
rebuild is in progress (CONAREBUILD) or rebuild stop is in progress
(CONAREBUILDSTOP).

– If rebuild is in progress, the new connection can participate by first stopping
activity to the original structure and then providing an IXLEERSP response

| with EVENT=REBLDQUIESCE. XES will monitor this required response.

– If rebuild stop is in progress, the new connection must provide an
| IXLEERSP response with EVENT=REBLDSTOP. XES will monitor this
| required response. See “Stopping a User-Managed Rebuild Process” on

page 5-89.

Connections can listen for ENF event code 35 to determine when rebuilding is
complete.

Note that for structure rebuild, a new connector can connect to the structure
only up until the Rebuild Quiesce sync point is reached.

 � Duplexing Rebuild

New connectors to the old structure when the structure is in the Rebuild
Quiesce, Rebuild Connect, or Duplex Established phases, are allowed with the
following qualifications:

– Rebuild Quiesce Phase

A new connector to the old structure who requests to connect to a structure
during the Rebuild Quiesce phase receives a valid CONTOKEN from
IXLCONN for accessing the old structure. The connector's event exit does
not receive a Rebuild Quiesce event, but the connector should examine the
connect answer area to determine the state of the rebuild (such as
CONAREBLDFLAGS to determine whether duplexing is in progress and
CONAREBLDPHASE to determine the phase in which the connect
occurred). The connector is expected to provide an IXLEERSP
EVENT=REBLDQUIESCE confirmation, at which time the original

| CONTOKEN is invalidated. XES will monitor the required response to this
| event.

– Rebuild Connect Phase

A new connector to the old structure who requests to connect to a structure
during the Rebuild Connect phase receives a CONTOKEN from IXLCONN
that is not valid yet for accessing the old structure. The connector's event

 Chapter 5. Connection Services 5-91

exit does not receive a Rebuild Quiesce event, and the connector is neither
expected to return an IXLEERSP EVENT=REBLDQUIESCE confirmation,
nor will it receive a Rebuild Connect event. However, the connector is
expected to issue an IXLCONN REBUILD to connect to the new structure,
at which time the original CONTOKEN will be validated and a new
CONTOKEN will be returned from IXLCONN REBUILD. From that point on,
the new connector is expected to participate in the duplexing process by
propagating data to the new structure and comfirming its completion with

| IXLREBLD REQUEST=COMPLETE. XES will monitor the required
| responses to these events.

– Duplex Established Phase

A new connector to the old structure who requests to connect to a structure
during the Duplex Established phase receives a valid CONTOKEN from
IXLCONN for accessing the old structure. The connector's event exit does
not receive a Rebuild Quiesce event, and the connector is neither expected
to return an IXLEERSP EVENT=REBLDQUIESCE confirmation nor will it
receive a Rebuild Connect event. However, the connector is expected to
issue an IXLCONN REBUILD that will return a valid CONTOKEN with

| which to access the new structure. XES will monitor for the required
| IXLCONN REBUILD invocation. From that point on, the new connector is

expected to participate in the duplexing rebuild process as are the other
connectors.

If a switch to the new structure is in progress when the connection
completes (CONAREBUILDSWITCHINPROGRESS indicator), the
connector is expected to participate in the switch by first issuing IXLCONN
REBUILD to connect to the new structure and then IXLREBLD

| REQUEST=DUPLEXCOMPLETE when appropriate. XES will monitor the
| required responses to this event.

Handling Disconnections During Rebuilding
Users can normally disconnect from the structure during any stage of the rebuilding
process. The system frees both original and new structure resources for the
disconnected user. Existing connections receive a Disconnected or Failed
Connection event in their event exits. This event reports whether the subject
connection is connected to both the old and the new structures.

Handling Failed Connections During Rebuilding
If a connection fails or disconnects abnormally (REASON=FAILURE) during
rebuilding, the system frees any resources for the user and reports the failed event
to the event exit of all connected users. Existing connections must develop
protocols to determine if they should continue to rebuild the structure.

If the failed user specified CONDISP=KEEP at connect time, the connection
becomes failed-persistent. Existing peer connections might also need to develop
special processing to handle this situation.

In some instances, the system allows a peer connector to respond on behalf of a
failed connector before all responses have been received. See “Providing a
Response for a Failed Connector” on page 5-93. After all existing connections have
responded to the failed event through the event exit, the system also handles any
outstanding event response that the failed connection needed to provide.

5-92 OS/390 V2R8.0 MVS Sysplex Services Guide

When connections rely on each other to coordinate rebuilding, they must coordinate
how to respond when one of them fails. For example, connection A and B are each
responsible for completing the rebuilding of a structure. Connection A rebuilds its
share of the data into the new structure, but connection B fails before it can rebuild
its data into the structure. The following occurs:

� Connection A responds to the failed event of connection B by issuing
IXLEERSP with EVENT=DISCFAILCONN. Connection B has
CONDISP=DELETE and is deleted.

� The system reports a Rebuild Cleanup event to the event exit of connection A

At this point, connection A cannot stop the rebuilding process, and the new
structure does not contain data updates from connection B.

To avoid this scenario, connection A can

� Stop the rebuild process prior to responding to the disconnect/failed event

� Issue the IXLEERSP response to delete connection B

� Perform recovery for connection B

� Initiate another rebuilding operation

If connection A is able to perform processing for connection B, connection A could
also complete rebuilding the structure and then issue IXLEERSP to respond to the
failed event. Thus, the structure can be rebuilt with the necessary data.

If all connections to the structure fail prior to the Rebuild Cleanup phase, the rebuild
is stopped and the new structure is deallocated. If all connections fail during the
Rebuild Cleanup phase, the rebuild is completed and the old structure is
deallocated. ENF event code 35 is issued in either case when the structure is
deallocated.

Providing a Response for a Failed Connector
The system permits a connector to respond on behalf of a failed peer connector in
two instances:

� If the connector failed with an outstanding response to
EVENT=REBLDCLEANUP

� If the connector failed with an outstanding response to EVENT=REBLDSTOP

and not all event responses have been received.

With the capability to provide a response on behalf of a failed connector, the
previous rebuilding scenario could result as follows:

� Connection B fails with an outstanding response for a Rebuild Cleanup event.

� Connection A is notified of the Disconnected or Failed Connection event.

� Connection A responds to the Rebuild Cleanup event for Connection B using
the PROXYRESPONSE=YES parameter.

� The rebuild process completes.

� Connection A responds to the Disconnected or Failed Connection event.

Note that the connector issuing IXLEERSP with the PROXYRESPONSE=YES
keyword is responsible for following any protocols that the application uses during

 Chapter 5. Connection Services 5-93

its rebuild cleanup or rebuild stop processing. For example, suppose an application
uses two structures — a cache structure and a lock structure. When the rebuild of
the lock structure enters the rebuild complete phase, the application updates the
cache structure. If a connector fails at this point, and a peer connector decides to
respond for the failed connector with the PROXYRESPONSE keyword, that
connector has to ensure that the updates to the corresponding cache structure are
performed. The updates could be performed immediately by the active connector
that issued the PROXYRESPONSE confirmation, or could be done during the
processing of the DISCFAILCONN event.

Handling Rebuild Connect Failures
When an IXLCONN REBUILD is issued from a task different from the original
connecting task and the task fails before the IXLCONN REBUILD completes, all
peer connections are notified of the REBUILD connect failure in their event exits.
The peer connections must respond to the event with IXLEERSP
EVENT=REBLDCONNFAIL or with an IXLYEEPL response. The IXLCONN
REBUILD may be attempted again after all rebuild connect failure responses have
been received, provided that rebuild is still in the phase where REBUILD connects
are permitted. If REBUILD connects are not permitted, the original connection
should disconnect or stop the rebuild.

Handling Failures during Duplexing Rebuild
This section summarizes how MVS handles certain failures during phases of the
duplexing rebuild process. The failures discussed are:

� Loss of connectivity to one or more structures

� Failure of a structure

� Failure of a connection

Handling Loss of Connectivity during Duplexing Rebuild
The way in which the system handles loss of connectivity to a structure that occurs
while duplexing rebuild is in progress depends on:

� The rebuild phase in which the loss of connectivity occurs, and

� Which of the structures experienced the loss of connectivity.

Before the Duplex Established Phase: Before duplexing is established, there is
the possibility of both a new and an old structure existing, but not all connectors
have issued IXLREBLD REQUEST=COMPLETE.

� If a loss of connectivity to the old structure occurs, MVS presents the Lossconn
Percentage Notification (LOSSCONNPCTNOTIFY) event to all active
connectors to the structure. The event indicates the percentage loss of
connectivity. It is the connectors' responsibility to devise a protocol for
respondiing to the percentage value. Depending on the amount of lost
connectivity as specified by the lossconn percentage, the connectors might or
might not be able to continue their processing to establish duplexing.

� If a loss of connectivity to the new structure occurs, MVS presents the Loss of
Connectivity (LOSSCONN) event to all active connectors to the structure and
immediately initiates a fallback to the old structure. Connectors can decide to
attempt duplexing again if appropriate.

5-94 OS/390 V2R8.0 MVS Sysplex Services Guide

During the Duplex Established Phase

� If a loss of connectivity to the old structure occurs, MVS presents the
LOSSCONN event to all active connectors and automatically initiates a switch
to the new structure.

� If a loss of connectivity to the new structure occurs, MVS presents the
LOSSCONN event to all active connectors and initiates a fallback to the old
structure.

After the Duplex Established Phase

� If a loss of connectivity occurs to the old structure, MVS does not present the
LOSSCONN event. Once the switch has completed, the old structure will be
deallocated and the former new structure will not have experienced a loss of
connectivity. If appropriate, another duplexing rebuild might occur.

� If a loss of connectivity occurs to the new structure after a switch has been
requested, MVS defers presenting the LOSSCONN event until after the switch
to the new structure is complete. At that time, the policy will determine whether
another duplexing rebuild should be attempted.

If another duplexing rebuild is not automatically initiated, the deferred
LOSSCONN event might indicate to delay action, and if so, MVS will later
present either an XES Recommended Action event or, for an MVS-initiated
structure rebuild based on REBUILDPERCENT, a Rebuild Quiesce event.

If another duplexing rebuild is automatically initiated, the deferred LOSSCONN
event will be presented after the Rebuild Process Complete event, followed by
a Rebuild Quiesce event indicating that MVS is initiating a duplexing rebuild.
Those connectors who had lost connectivity to the former new structure are not
able to participate in the duplexing and will receive a LOSSCONN event. The
system delivers the Lossconn Percentage Notification event indicating the
percentage loss of connectivity, to all active connectors. The connectors'
protocol determines how the percentage is handled.

Handling Structure Failure
How the system handles the failure of a structure during the structure duplexing
process again depends on the rebuild phase in which the structure failed, and
which of the structure instances failed.

Before the Duplex Established Phase

� If the old structure fails before the Duplex Established phase, MVS presents the
STRFAIL event for the old structure to all connectors and then stops the
duplexing rebuild to fall back to the old structure. Connectors might need to
disconnect, or can attempt to rebuild the structure, if possible.

� If the new structure fails before the Duplex Established phase, MVS stops the
duplexing rebuild to fall back to the old structure and notifies connectors
through the STOPDUPLEX reason code that they should attempt to duplex the
structure. MVS does not present the STRFAIL event for the failure of the new
structure.

During the Duplex Established Phase

� If the old structure fails during the Duplex Established phase, MVS presents the
STRFAIL event for the old structure to all connectors and then initiates a switch

 Chapter 5. Connection Services 5-95

to the new structure. At the completion of switch processing, connectors or
MVS can attempt to duplex the structure again.

� If the new structure fails during the Duplex Established phase, MVS initiates a
fallback to the old structure, at the completion of which, connectors or MVS can
attempt duplexing again. MVS does not present the STRFAIL event.

After the Duplex Established Phase

� If the old structure fails after a switch to the new structure has been requested,
the failure is ignored. MVS does not present the STRFAIL event for the old
structure because it is in the process of being deallocated. At the completion of
switch processing, connectors or MVS can attempt to duplex the structure
again.

� If the new structure fails after a switch to the new structure has been
requested, MVS allows the switch to complete before presenting the STRFAIL
event to the connectors. It is not possible to duplex the structure because the
single instance of the structure has failed.

Handling Connection Failure
When all active connections to a structure that is in the duplexing process fail or
disconnect, the actions taken by MVS depend on the duplexing phase in which the
last connector disconnects.

Before the Duplex Established Phase: Only the old structure is viable at this
point, so MVS stops the duplexing to fall back to the old structure.

During the Duplex Established Phase: The following applies to the duplexed
structure before a request to switch to the new structure is made:

� If the failure involves all connections to the structure and all systems using the
CFRM active policy, MVS stops the duplexing rebuild to switch to the new
structure.

� If the failure involves all connections to the structure, but does not include the
failure of all systems using the CFRM active policy, MVS allows the structure to
remain in its duplexed state with no active connections.

During Switch Processing and the Cleanup Phase: MVS completes the switch
to the new structure.

During Stop Processing: If the structure was in the Duplex Established phase,
and the failure involves all connections to the structure and all systems using the
CFRM active policy, MVS stops the duplexing rebuild to switch to the new
structure.

In all other cases, MVS stops the duplexing rebuild to fall back to the old structure.

MVS-Initiated Rebuild Processing
MVS provides the support that allows the installation to specify through its policy
information whether or not a coupling facility structure should be rebuilt when a loss
of connectivity to the coupling facility occurs. Loss of connectivity to a coupling
facility can occur because of a failure of a coupling facility attachment or because
of certain types of failures of the coupling facility itself. Depending on the scope of

5-96 OS/390 V2R8.0 MVS Sysplex Services Guide

the failure, the appropriate action for MVS to take might be to initiate rebuild of a
structure.

When a loss of connectivity from a system to a coupling facility occurs, MVS
detects the failure on one or more systems in the sysplex. Each system on which
the loss of connectivity is detected will execute an algorithm to determine what
action should be taken. The algorithm is executed for each coupling facility
structure affected by the loss of connectivity. Based on the results of the algorithm,
MVS determines if policy action should be taken and notifies each connected user
of the loss of connectivity event.

To allow MVS to initiate this structure rebuild, the installation must do the following:

1. Have a structure for which all active connections support structure rebuild.

2. Specify a REBUILDPERCENT value in your CFRM policy for each structure
that MVS is to evaluate for rebuild, or allow it to default to 100.

3. Optionally, have in place an active SFM policy that supports the use of system
weight values for performing recovery actions in the event of loss of
connectivity between systems. (An active SFM policy is required for a sysplex
made up of systems at OS/390 Release 2 or lower or a sysplex without
OW30814 installed, if you want MVS to initiate a structure rebuild.)

How MVS Determines Whether to Initiate Structure Rebuild
Processing
When MVS detects a loss of connectivity, MVS determines the viability of rebuilding
each structure affected by the connectivity loss.

If MVS determines that there is an active SFM policy in the sysplex:

� MVS verifies that the SFM policy data is at the same level on all systems.

� MVS checks the active CFRM policy to see if a rebuild percent value has been
specified for affected structures, or takes the default rebuild percent value of
100.

� MVS calculates the percentage of lost connectivity using the system weights
specified in the active SFM policy:

– A = the total value of systems on which there exists a user of a coupling
facility structure that resides in the coupling facility to which connectivity
has been lost.

– B = the total value of systems that have lost connectivity to the coupling
facility and on which there exists a user of a structure in that coupling
facility.

Note that if there are multiple users of a coupling facility structure on one MVS
system, that system weight is added to each total only once.

� MVS calculates the total system weight of (A) all systems containing at least
one active connection to the structure in the coupling facility that have lost
connectivity, and (B) all systems containing at least one active connection to a
structure in the coupling facility for which lost connectivity has been recognized.
Note that if there are multiple users of a structure on one system, that system
weight is counted only once.

For example, if a structure has one connection per system and all systems are
of equal weight 10, then in an eight-system sysplex if one system lost

 Chapter 5. Connection Services 5-97

connectivity, the value of A (total system weight of all systems containing an
active connection that have lost connectivity) is 10 and the value of B (total
system weight of all systems containing an active connection) is 80.

� MVS determines what action is to be taken and informs connected users
through event exit processing.

The determination is arrived at by dividing A by B, multiplying by 100, and then
comparing the result with the rebuild percent value for the structure in the
active CFRM policy.

– If the result is greater than or equal to REBUILDPERCENT, then MVS
initiates a structure rebuild.

– If the result is less than REBUILDPERCENT, MVS does not initiate a
rebuild.

In the example above, (10/80)*100 would be the value compared to the
REBUILDPERCENT value. If the value of REBUILDPERCENT was 13 or
higher, a rebuild would not be initiated.

If MVS determines that there is not an active SFM policy in the sysplex:

� MVS verifies that rebuild is supported for the structure.

� MVS initiates the structure rebuild for any loss of connectivity affecting the
structure, regardless of the REBUILDPERCENT specification, if structure
rebuild is supported.

If the determination was to initiate a structure rebuild, MVS defers that action until
one of the following occurs:

� The percentage of lost connectivity reaches 100%.
� The internal time value used by MVS expires.

Once it initiates the rebuild processing, MVS notifies all connected users of the
percentage of loss of connectivity through the event exit parameter list
(EEPLREBUILDPCTLOSSCONN). This field is passed on all rebuilding events
except Rebuild Complete and Rebuild Stop Complete. See Figure 5-17 on
page 5-130 for more information about data passed to the event exit. Based on the
percentage of lost connectivity, users can decide whether to allow the rebuild
process to continue.

Reporting Policy-Based Actions to Connectors
Connectors that are informed of the loss of connectivity event can examine the
EEPLLOSSCONNDELAYACTION field in the IXLYEEPL to determine if MVS is
initiating policy-based actions. EEPLLOSSCONNDELAYACTION is a bit that
indicates the following:

� ON — MVS is taking policy-based actions, and will subsequently be reporting
one of two actions to the event exit.

– A Rebuild Quiesce event will be presented if MVS determines that rebuild
processing is to be initiated.

– A XES Recommended Action event will be presented at a later time to
trigger action by the connection to disconnect from the structure.

� OFF — MVS could not process a policy action. This condition might occur for a
variety of reasons including:

5-98 OS/390 V2R8.0 MVS Sysplex Services Guide

– There is not an SFM policy that is active on ALL the systems in the
sysplex, or there is a change that is being processed for the SFM policy
across systems in the sysplex and the change has not yet been observed
by all systems in the sysplex.

– Rebuild is already in progress for the coupling facility structure.

Responding to the XES Recommended Action Event
The action that XES recommends to those connectors who have lost connectivity to
a coupling facility structure is that the connection should disconnect from the
structure. The recommendation is based on the percentage scope of lost
connectivity calculated from the weights specified in the SFM policy. The
percentage value in EEPLXESRECOMMENDACTIONPCTLOSSCONN indicates
the percentage scope of lost connectivity calculated from the weights specified in
the SFM policy, as seen by the system receiving the event. This percentage value
is valid only when EEPLXESRECOMMENDACTIONPOLICY is equal to B'1'.

 Dumping Considerations
If an SVC dump of the structure occurs during structure rebuild or duplexing, the
rebuilding phase determines whether the system returns dump information for the
original structure or the new structure:

� If SVC dump is requested during structure rebuild or duplexing, but before any
IXLCONN REBUILD request has allocated the new structure, dump information
is provided for the original structure only.

� If SVC dump is requested during structure rebuild or duplexing after an
IXLCONN REBUILD request has allocated the new structure but before the
Rebuild Cleanup sync point is reached, dump information is provided for both
the original and the new structure.

� If SVC dump is requested during structure rebuild or duplexing after the
Rebuild Cleanup sync point has been reached, dump information is provided
for the new structure only.

� If SVC dump is requested during structure rebuild or duplexing up until the
Rebuild Stop sync point is reached, dump information is provided for the old
structure only.

Summary of User-Managed Structure Rebuild Processing
“User-Managed Rebuild Timeline” on page 5-100 summarizes the phases
associated with the user-managed structure rebuild process.

The following list summarizes that process:

1. Rebuild for a structure is initiated through SETXCF START,REBUILD or
| IXLREBLD REQUEST=START or internally by MVS.

2. System reports Rebuild Quiesce event to each connector's event exit.

3. Connector stops activity to original structure and issues IXLEERSP
EVENT=REBLDQUIESCE to respond to the event.

4. When all IXLEERSP responses are received, the system reports Rebuild
Connect event to each connector's event exit.

 Chapter 5. Connection Services 5-99

5. Connector issues IXLCONN REBUILD for the structure. If the first to issue
IXLCONN, the connector allocates the new structure; otherwise, the connector
connects to the new structure.

6. At any time after successfully connecting to the new structure, the connector
issues IXLCACHE, IXLLIST, IXLLOCK, IXLRT and other coupling facility
macros to rebuild data for the structure.

7. When all connectors issue IXLCONN REBUILD, the system reports the Rebuild
Connects Complete event to the connectors' event exits.

8. When the rebuild is complete, each connector issues IXLREBLD
REQUEST=COMPLETE.

9. When all connectors have issued IXLREBLD REQUEST=COMPLETE, the
system reports Rebuild Cleanup event to event exit.

10. Each connector cleans up references to original structure and issues
IXLEERSP EVENT=REBLDCLEANUP.

11. When all IXLEERSP responses are received, the system reports the Rebuild
Process Complete event to event exits.

12. Connector resumes normal processing with the new structure.

User-Managed Rebuild Timeline

5-100 OS/390 V2R8.0 MVS Sysplex Services Guide

Rebuild Rebuild Rebuild Process
 Connect Connects Cleanup Complete
 event Complete event event
 presented event presented presented
 to all presented to all to all
 Start connectors to all connectors connectors
Rebuild (Sync Point) connectors (Sync Point) (Sync Point)
: : : : :

 : : +---+ : :
 : : : : :
<-->
 : : : :

: -Event exits driven : -Each connector issues : -Each connector :
: with Rebuild : IXLCONN with the : invokes IXLEERSP :
: Quiesce event. : REBUILD keyword : to provide an :
: : to allocate/connect to : event exit response :
: -Each connector : the new structure. : for the Rebuild :

 : quiesces activity : : CleanUp event. :
: on the structure : -Each connector rebuilds : :
: and invokes IXLEERSP : information into the : :
: to provide an event : new structure. : :
: exit response for the : : :
: Rebuild Quiesce event. : -Connectors to cache, : :
: : list and serialized : :
: : list structures can : :
: : access the old structure : :
: : during the rebuild : :

 : : process. : :
 : : : :

: : -As each connector : :
 : : completes rebuild : :
 : : processing, each : :
 : : connector invokes : :
 : : IXLREBLD COMPLETE. : :
 : : : :

"--New IXLCONNs permitted-! : "-------------->
 : : : :

: -CONA indicates rebuild : : : -IXLCONNs
 : in progress. : : : permitted

: -Connector must either : : : -Rebuild Start
: disconnect or invoke : : : requests
: IXLEERSP to provide : : : permitted
: an event exit response : : : again
: for the Rebuild Quiesce: : :

 : event. : : :
 : : : :
 : : : :
 : : : :

"- Stop Rebuild requests permitted -------------------! :
 : : : :
 : : : :
 : : : :
 ---- Old structure allocated ---|:
 : : : :

: : |- New structure allocated ----------------------->
 : : : :
 : : : :
 - SVC Dump dumps Old structure -------------| : :

: : SVC Dump dumps :
: : |-- old and new structure --------|-New structure->

 : : : :

Figure 5-14. User-Managed Rebuild Timeline

 Chapter 5. Connection Services 5-101

Summary of User-Managed Duplexing Rebuild Process
User-managed duplexing rebuild is available only for cache structures.
“User-Managed Duplexing Rebuild Timeline” on page 5-103 summarizes the
phases associated with the user-managed duplexing rebuild process.

The following list summarizes that process:

1. Duplexing rebuild for a structure is initiated through SETXCF
| START,REBUILD,DUPLEX or IXLREBLD REQUEST=STARTDUPLEX. or
| internally by MVS.

2. The system reports the Rebuild Quiesce event to connector's event exit.

3. Connector stops activity to the original structure and issues IXLEERSP
EVENT=REBLDQUIESCE to respond to the event.

4. When all IXLEERSP responses are received, the system reports the Rebuild
Connect event to the connector's event exit.

5. Connector issues IXLCONN REBUILD for the structure. If the first to issue
IXLCONN, the connector allocates the new structure; otherwise, the connector
connects to the new structure. The system revalidates the token to access the
old structure and provides a new token to access the new structure.

6. Connectors propagate data to the new structure to synchronize both structures
and issue IXLREBLD REQUEST=COMPLETE when finished.

7. When all IXLREBLD REQUEST=COMPLETE requests are received, the
system reports the Duplex Established event to each connector's event exit.

8. Connectors continue in duplexed mode until a request is received to stop the
duplexing and either fall back to the old structure or forward complete (switch)
to the new structure.

9. If a fall back to the old structure is requested, the system reports the Rebuild
Stop event to connector's event exit. See “Summary of Rebuild and Duplexing
Rebuild Stop Processing” on page 5-104.

� Connector quiesces use of both structures, completes any necessary
processing for the new structure, and issues IXLREBLD
REQUEST=DUPLEXCOMPLETE.

� When all connectors have issued IXLREBLD
REQUEST=DUPLEXCOMPLETE, the system reports a Rebuild Cleanup
event to each connector's event exit. Connector must issue IXLEERSP to
respond to the event.

10. If a switch to the new structure is requested, the system reports a Rebuild
Switch event to connector's event exit.

� Connector cleans up references to the old structure. The original token is
used to access the new structure.

� When all IXLEERSP responses are received, the system reports a Rebuild
Process Complete event to each connector's event exit.

11. Connector resumes processing with the remaining structure.

5-102 OS/390 V2R8.0 MVS Sysplex Services Guide

User-Managed Duplexing Rebuild Timeline
 Rebuild Rebuild Rebuild Rebuild

Connect Duplex Cleanup Process
 event Established event Complete
 presented event presented event
 Start to all presented to all presented
 Duplexing connectors to all connectors to all
 Rebuild (Sync Point) connectors (Sync Point) connectors
 : : (Sync Point) : (Sync Point)
 : : : : :
<--->

: : : : :
: : : -Connectors : -Connectors cease :
: -Event exits driven : -Each connector issues : operate in : processing for old structure:
: with Rebuild : IXLCONN with the : duplex mode. : :
: Quiesce event. : REBUILD keyword : : -Each connection :
: : to allocate/connect to : -Duplexing can be : invokes IXLEERSP :
: -Each connector : the new structure. : stopped to fall : to provide an :
: quiesces activity : : back to old str. : event exit response :
: on the structure : -New contoken provided; : : for the Rebuild :
: and invokes IXLEERSP : old contoken revalidated.: -Duplexing can be : Cleanup event. :
: to provide an event : : stopped to switch : :
: exit response for the : -Each connector propa- : to new structure. : -Original contoken :
: Rebuild Quiesce event. : gates data to the new : WHEN SWITCHING: : revalidated to :
: : structure to establish : -CONA indicates : access new :
: - Old contoken : duplexing. : switch-in-progress. : structure. :

 : invalidated. : : : :
: : -Rebuild Connects : -Connectors receive : :
: : Complete event NOT : Rebuild Switch : :
: : presented to connectors : event. : :
: : during the rebuild : : :
: : process. : -Connectors quiesce : :

 : : : duplexing and : :
 : : : invoke IXLREBLD : :

: : -As each connector : DUPLEXCOMPLETE. : :
: : completes its data : : :
: : propagation, each : -Old and new : :

 : : connector invokes : contokens : :
 : : IXLREBLD COMPLETE. : invalidated. : :

"--New IXLCONNs permitted---|: :
: : : : :
: -CONA indicates rebuild : -CONA indicates : -CONA indicates : : -IXLCONNs
: in progress and phase. : rebuild in progress : rebuild in progress : : permitted.

 : : and phase. : and phase. : :
: -New connectors owe : : : : -Rebuild Start
: IXLEERSP for Rebuild : -New connectors issue : -New connectors use : : requests
: Quiesce event. : IXLCONN REBUILD to : IXLCONN REBUILD to : : permitted
: : connect to new str, : connect to new str, : : again.
: : propagate data, and : then participate in : :

 : : invoke IXLREBLD : duplexing (or : :
 : : COMPLETE. : switch, if : :
 : : : requested) : :

"- Stop Rebuild requests permitted ---|: :
: : : : :
: : : : :
: : : : :

 ---- Old structure allocated --:-----------------------|:
: : : : :
: : |- New structure allocated -->
: : : : :
: : : : :

 - SVC Dump dumps old structure -------------| : : :
: : SVC Dump dumps :
: : |-- old and new structure -----------------------|-> SVC Dump dumps

 : : : : |-------new structure

Figure 5-15. User-Managed Duplexing Rebuild Timeline

 Chapter 5. Connection Services 5-103

Summary of Rebuild and Duplexing Rebuild Stop Processing
The steps for stopping a structure rebuild to continue processing with the old
structure are identical to the steps for stopping a duplexing rebuild to continue
processing with the old structure.

1. Connector or operator requests that the rebuild or duplexing rebuild process be
stopped and processing continues with the old structure.

2. The system reports a Rebuild Stop event to connector's event exit. Connector
must issue IXLEERSP to respond to the event.

3. Connectors quiesce use of the new structure, perform cleanup, and respond to
the Rebuild Stop event with IXLEERSP EVENT=REBLDSTOP.

4. When all IXLEERSP responses are received, the system reports a Rebuild
Stop Process Complete event to event exit.

5. Connector resumes processing with the old structure.

| Overview of System-Managed Rebuild Processing
| System-managed rebuild processing provides a means for rebuilding a structure
| with minimal participation from connectors to the structure. During a
| system-managed process, connectors receive events that delineate the period
| during which the structure is unavailable for requests. During that time, the system
| defers accesses to the structure, manages the old and new structure instances that
| exist during the process and propagates data to the new structure. At the
| conclusion of the system-managed process, connectors receive one or more events
| notifying them of any changes to the structure.

| System-managed processing can function as long as the old structure remains
| viable and there is at least one system in the sysplex capable of performing the
| required system-managed processing. Connectors can specify that they support
| system-managed processing even if they do not support user-managed rebuild or
| duplexing.

| During a system-managed rebuild process, the system defers any requests that are
| submitted while the structure is unavailable. The requests will be processed after
| the rebuild process has completed or been terminated. In a system-managed
| rebuild, connectors are not required to cease their operations against the structure
| before responding to the event signifying that the structure is unavailable. However,
| IBM recommends that they do so to minimize the system resources required to
| quiesce activity against the structure.

| System-managed rebuild is supported only for planned reconfiguration. When the
| coupling facility or the structure has failed, or when any active connectors have lost
| connectivity, system-managed rebuild will not be used to rebuild the structure.

| System-managed rebuild has the following requirements:

| � The structure must be allocated in a coupling facility of CFLEVEL=8 or higher.

| � The CFRM couple data set must have been formatted with the ITEM
| NAME(SMREBLD) NUMBER(1) statement and be active as the primary CFRM
| couple data set. In order to activate the CFRM couple data set, all systems
| using the CFRM couple data set must be at OS/390 Release 8 or higher.

5-104 OS/390 V2R8.0 MVS Sysplex Services Guide

| � A list structure or lock structure with record data must have been allocated by a
| system at OS/390 Release 8 or higher in order for system-managed rebuild to
| occur.

| Requesting System-Managed Rebuild Processing
| As with user-managed rebuild processing, an operator can initiate the rebuild
| process by issuing the SETXCF START,REBUILD command or an authorized
| program can initiate the process by issuing the IXLREBLD REQUEST=START
| macro. Unlike user-managed rebuild, the reason specified for starting the rebuild
| process cannot be loss of connectivity to the coupling facility or structure failure.

| Role of CFRM in the System-Managed Rebuild Process
| The system uses the values from the CFRM active policy as with user-managed
| rebuild with the following exceptions:

| � The system does not automatically initiate system-managed rebuild based on
| REBUILDPERCENT calculations. The specification of REBUILDPERCENT in a
| CFRM policy structure description applies to the percentage of connections that
| lost connectivity to the structure. System-managed rebuild is not supported for
| lost connectivity.

| � If there is a pending CFRM policy change that modifies the structure SIZE or
| INITSIZE, and all connectors specified IXLCONN ALLOWALTER=YES, the
| system will allocate the new structure using the sizes from the pending policy,
| subject to the requirement that the resulting size be large enough to contain the
| data to be copied from the old structure. In some cases, the resultant structure
| size may be larger than the maximum structure SIZE specified in the CFRM
| policy

| � If there is a pending CFRM policy change that modifies the structure SIZE or
| INITSIZE, and not all connectors specified IXLCONN ALLOWALTER=YES, the
| policy changes will remain pending after the system-managed rebuild.

| Phases for System-Managed Rebuild
| The rebuild process involves a series of phases, during which the system
| coordinates all activities required to rebuild the structure. MVS is responsible for
| managing the structure and its contents. While MVS is managing the rebuild
| process, it will perform actions on behalf of the connector while running in the
| connector's address space and perform system-based processing from the XCF
| address space to reconstruct the new structure from the old structure.

| The connector is responsible for recognizing three events — Structure Temporarily
| Unavailable, Structure State Change, and Structure Available — and must respond
| to the Structure Temporarily Unavailable event before MVS assumes responsibility
| for managing the subsequent rebuild process.

| The system-managed rebuild phases are:

| � Startup
| � Quiesce
| � Allocate
| � Attach
| � Copy
| � Cleanup

 Chapter 5. Connection Services 5-105

| Note that if there are no active connectors to the structure, the Startup, Quiesce,
| Attach, and Cleanup phases will not be driven.

| The rebuild process transitions through these phases but a response from the
| connector is only required during the Startup phase for the Structure Temporarily
| Unavailable event. The other system-managed rebuild phases are not externalized
| to the connector tharough event exit events, but are handled internally by MVS.
| The IXCQUERY and DISPLAY XCF messages provide information about the
| structure during the entire rebuild process.

| A brief description of each of the system-managed rebuild phases follows.

| Startup Phase
| During the Startup phase, the system will notify connectors of the impending
| system-managed rebuild through the Structure Temporarily Unavailable event.
| Connectors are required to respond to this event.

| Quiesce
| When all responses to the Structure Temporarily Unavailable event have been
| received from active connectors, the system will notify XES on behalf of all
| connectors of the request to rebuild the structure through the Rebuild Quiesce
| event. XES responds to this event on behalf of the connector.

| The system will quiesce activity to the structure after all responses to the Rebuild
| Quiesce event have been received.

| Allocate
| During this system-based process, one system is responsible for allocating a new
| instance of the structure.

| Attach
| Systems with active connections will perform system-based attach to connect the
| active connections to the new structure.

| Copy
| Systems with connectivity to both the old and the new structure will perform
| system-based copy. This phase is further divided into subphases based on the type
| of structure being rebuilt.

| Cleanup
| During the system-managed Cleanup phase, the system will notify all connectors of
| the Structure State Change event, deallocate the old instance of the structure, and
| resume access to the structure so that the queued requests can be driven against
| the new structure. Connectors do not need to respond to the Structure State
| Change event.

| At the conclusion of the Cleanup phase, the system delivers the Structure Available
| event to all connectors and may also deliver the Alter Begin and Alter End events
| as well.

5-106 OS/390 V2R8.0 MVS Sysplex Services Guide

| System-Managed Events Presented to an Active Connector
| If the system has determined that system-managed rebuild is to occur, during the
| course of the rebuild the system will present events to the event exits of all active
| connectors to the structure. The events notify the connected users of the progress
| of the rebuild and of changes to the structure that might occur as a result of the
| rebuild.

| The following list summarizes the events that the system reports about the
| system-managed rebuild process to the event exit and the responses expected by
| the event exits:

| Structure Temporarily Unavailable
| Indicates the start of the system-managed rebuild process, during which the
| structure is unavailable for processing coupling facility requests. Response
| is required via IXLYEEPL or IXLEERSP.

| Structure State Change
| Describes changes to the structure or the coupling facility in which the
| structure resides. These changes might have occurred as a result of the
| system-managed rebuild process. Response is not required.

| Structure Available
| Indicates the end of the system-managed rebuild process. The structure is
| available for coupling facility requests. Response is not required.

| In addition, if the structure connectors allow structure alter, the following events
| may be presented to inform the connectors about structure object count changes
| that occurred as a result of the system-managed rebuild.

| Alter Begin
| Indicates the start of alter processing associated with the system-managed
| rebuild process. If all connectors had specified ALLOWALTER=YES, both
| the Alter Begin and Alter End events are delivered. Response is not
| required.

| Alter End
| Indicates the end of alter processing associated with the system-managed
| rebuild process. Response is not required.

| XES Monitoring of Active Connector Event Responses
| XES monitors the Structure Temporarily Unavailable event to ensure that
| connected users respond in a timely manner. If a response is not received in a
| timely manner, XES issues a message for each connector owing an expected
| response that is overdue. These messages can then be analyzed by the system
| programmer, operator, or automation package for the appropriate action to be taken
| so that processing can continue. See “XES Monitoring of Event Responses” on
| page 5-138.

| Using the IXLREBLD Macro for System-Managed Processes
| Assuming that all other requirements are met (see “Initiating a Structure Rebuild”
| on page 5-65, issue the IXLREBLD macro:

| � To start a system-managed rebuild (REQUEST=START).

| � To stop a system-managed rebuild (REQUEST=STOP).

 Chapter 5. Connection Services 5-107

| Starting the System-Managed Rebuild Process
| The system presents the Structure Temporarily Unavailable event to the event exits
| of active connectors to communicate the start of the system-managed rebuild. To
| determine why the structure is temporarily unavailable, examine the IXLYEEPL. If
| EEPLSTRAVAILABILITYPROCESS=EEPLSYSMANAGEDREBUILD, then the
| structure is unavailable because of a system-managed rebuild request.

| � To allow the rebuild to continue, the connector must respond to the event.

| � If you do not wish to be connected to the new instance of the structure that will
| be created by the rebuild, you can either stop the rebuild by issuing IXLREBLD
| REQUEST=STOP or disconnect from the structure. However, connectors that
| are supporting system-managed rebuild are unlikely to disallow the rebuild from
| continuing.

| Responding to the Structure Temporarily Unavailable Event
| Before responding to the Structure Temporarily Unavailable event, connections
| should consider quiescing their use of the structure. This is not required for
| system-managed rebuild, because the system will defer any incoming requests until
| the structure is again available. However, IBM does recommend that once the
| Structure Temporarily Unavailable event is received, connectors refrain from issuing
| coupling facility requests against the affected structure. This minimizes system
| resources required to quiesce operations during the rebuild and improves overall
| system performance.

| To respond to the Structure Temporarily Unavailable event, either set the return
| code in IXLYEEPL (EEPLRETCODE=IXLRCEVENTEXITRESPONSE) or issue
| IXLEERSP EVENT=STRTEMPUNAVAIL.

| In a system-managed rebuild, the system does not invalidate the connector's
| connect token as it does in a user-managed rebuild.

| After the system receives all responses to the Structure Temporarily Unavailable
| event, the system quiesces activity against the structure. While structure activity is
| quiesced, the system handles exit routines as follows:

| � The system does not drive the contention, complete, or notify exits.

| � The system disables the list transition exit for a structure that is undergoing a
| system-managed rebuild.

| Suspending Work Units during System-Managed Rebuild
| Processing
| At connect time, connectors must specify the IXLCONN SUSPEND parameter to
| indicate whether the connection wants the system to suspend work units that issue
| coupling facility requests against a structure while the structure is undergoing a
| system-managed process, regardless of the MODE specified on the request.

| � Specifying SUSPEND=YES directs the system to override a request's MODE
| specification when possible, and suspend the requestor. This permits the
| system to limit the number of incoming requests by suspending the work units
| that otherwise would be submitting them, and thus minimize the system
| resources required to quiesce activity against the structure that is undergoing
| the system-managed rebuild process.

5-108 OS/390 V2R8.0 MVS Sysplex Services Guide

| When the system overrides the MODE parameter and suspends the requestor,
| upon completion of the request, the system:

| – Resumes the requestor

| – Notifies the requestor of request completion as specified by the original
| MODE value.

| - If the MODE requested that the system attempt to complete the request
| synchronously (for example, MODE=SYNCEXIT), the requestor will
| receive a return code indicating synchronous completion.

| - If the MODE requested asynchronous processing (for example,
| MODE=ASYNCEXIT), the requestor will receive a return code
| indicating asynchronous completion and will be notified of the results of
| the request through the mechanism specified by the MODE parameter
| (for example, the Complete exit).

| � Specifying SUSPEND=NO indicates to the system that the connector cannot
| tolerate suspension of work units that have submitted coupling facility requests
| against a structure, except as noted on the IXLLIST or IXLCACHE MODE
| parameter. The system will honor the requests' MODE specification in
| completing the request and will use suspend/resume processing only when
| MODE=SYNCSUSPEND is specified by the work unit. The system will quiesce
| all other activity to the structure undergoing system-managed rebuild by
| deferring requests internally until the rebuild completes or is terminated.

| Note that the SUSPEND keyword does not affect coupling facility requests that
| specify MODE=SYNCFAIL. If the system receives a MODE=SYNCFAIL request
| while the target structure is unavailable because of system-managed rebuild
| processing, the request is not deferred. Instead, the system fails the request with
| the IXLRSNCODENODELAY reason code, regardless of the value specified by the
| IXLCONN SUSPEND keyword.

| Creating a New Structure during System-Managed Rebuild
| During a system-managed rebuild, the system creates a new instance of the
| structure, connects users to the structure, and populates the new instance of the
| structure with data from the old structure. The sequence of events is:

| 1. One of the systems in the sysplex allocates a new instance of the structure.

| 2. Each system in the sysplex connects users from that system to the new
| instance of the structure.

| 3. One or more of the systems in the sysplex copies data from the old instance of
| the structure to the new instance.

| Allocating the New Structure
| The system determines the location of the new structure using the following
| guidelines:

| � If the request to start the rebuild specified POPULATECF, only the specified
| coupling facility is a valid rebuild target.

| � If the request to start the rebuild specified LOCATION=OTHER or there is no
| pending policy change, the new structure will not be allocated in the same
| coupling facility as the original structure.

 Chapter 5. Connection Services 5-109

| � The new structure will not be allocated in the same coupling facility as the
| original structure unless one of the following is true:

| – There is a pending policy change that does not involve a change to the
| structure SIZE or INITSIZE.

| – There is a pending policy change that affects SIZE or INITSIZE, and all
| active or failed-persistent connectors specified IXLCONN
| ALLOWALTER=YES.

| � The allocating system allocates the structure in the first coupling facility in the
| preference list that meets the standard allocation requirements, with the
| following additional requirements.

| – The coupling facility must have sufficient available storage to allocate a
| new structure that will be large enough to contain all the data to be copied
| from the old structure.

| – The coupling facility must be at a CFLEVEL sufficient to support the
| system-managed rebuild process. System-managed rebuild requires a
| coupling facility of CFLEVEL=8 or higher.

| – The CFLEVEL must be as least as high as the CFLEVEL reported to
| connectors when they connected to the original structure.

| – All systems in the sysplex with active connectors to the structure
| undergoing system-managed rebuild must have connectivity to the coupling
| facility.

| The system stops the rebuild process if there is no coupling facility that meets the
| allocation requirements.

| Connectors do not have the option of changing structure attributes during a
| system-managed rebuild. In the new structure, the attributes that can be specified
| on IXLCONN will be identical to those of the old structure, with the following
| possible exception:

| � If there is a pending CFRM policy change that modifies the structure SIZE or
| INITSIZE, and all active and failed-persistent connectors specified IXLCONN
| ALLOWALTER=YES, the system will allocate the new structure using the sizes
| from the pending policy, subject to the requirement that the resulting size must
| be large enough to contain the data to be copied from the old structure. In this
| case, resulting structure attributes such as entry-to-element ratios may differ
| from the values originally specified by connectors.

| Whether or not structure attributes change during a system-managed rebuild, if
| all connectors specified IXLCONN ALLOWALTER=YES the system will present
| Alter Begin and Alter End events to the event exits of active connectors at the
| conclusion of system-managed rebuild processing (after the Structure Available
| event has been delivered).

| Considerations for Cache Structures during System-Managed Rebuild: When
| the system is attempting a system-managed rebuild for a cache structure, additional
| coupling facility considerations apply. If there is no coupling facility with sufficient
| storage to copy all data that must be copied from the old structure to the new
| structure, the rebuild process will attempt to allocate the new structure big enough
| to copy all appropriate data other than registration data. See “Populating the New
| Structure” on page 5-111 for additional information about the implications of not
| copying registration data.

5-110 OS/390 V2R8.0 MVS Sysplex Services Guide

| Connecting Users to the New Structure
| After the new structure is allocated, the system attempts to connect (Attach phase)
| active connectors to the new structure. The system-managed rebuild process does
| not require participation by the connectors; specifically, they do not issue IXLCONN
| REBUILD to connect to the new structure, as would be required in user-managed
| rebuild processing.

| If the system is unable to connect a connector to the new structure, the rebuild
| process stops. See “Handling Loss of Connectivity during System-Managed
| Rebuild” on page 5-114.

| Failed-persistent connectors are attached to the new structure at the beginning of
| the Copy phase.

| Populating the New Structure
| After the system has connected all active users to the new structure, one or more
| systems in the sysplex cooperate to populate the new structure by copying data to
| it from the old structure. Both the old and the new structure must remain viable and
| accessible to the systems copying the data during this process.

| The system attempts to copy the contents of the old structure to the new structure.
| The data copied includes:

| � Cache structures

| – Registration of interest in cache data, with the following exceptions.

| Cache structures contain information about users' interest in data items
| stored in the structure. Users track the validity of their local copies of the
| cached data items by registering interest in particular data items. Under
| most circumstances, the rebuild process copies this registration for all
| entries in the structure, preserving the validity of all entries that are in the
| users' local caches. information along with all the other However, the
| rebuild process will not attempt to copy registration data, for any entries, if
| there is no suitable coupling facility with sufficient storage to contain both
| the registration data and all other structure data that must be copied, but at
| least one coupling facility has sufficient storage to copy all the
| non-registration data.

| Not having the registration data copied can have a short-term impact on
| application performance after the rebuild completes. In this case, the
| system indicates in the connectors' local cache vectors that all local copies
| of cached data items are not valid. Users must therefore refresh their local
| buffers, possibly by reading from the cache structure. Registrations will
| gradually be reestablished through normal cache reference.

| – All directory entries, if registrations are being copied. If registrations are not
| being copied, then only the directory entries accompanying changed or
| castout locked entries are copied.

| – All changed data (if applicable), with adjunct data (if applicable). Changed
| data includes entries that are locked for castout. Unchanged data is not
| copied.

| – Castout class and storage class definitions, including the assignment of
| entries to castout classes and storage classes, and including the storage
| class statistics for all storage classes.

 Chapter 5. Connection Services 5-111

| � List structures

| – All list entries and associated data, with adjunct data (if applicable). All list
| entry attributes, such as names, keys, entry IDs, and version numbers, are
| preserved, as is the ordering of entries on all lists in the structure.

| – Lock table entries (if applicable (serialized lists))

| – Registered monitoring interest in lists, sublists, and event queues (if
| applicable), as well as the event queues themselves.

| � Lock structures

| – Lock table entries. Resource status (contention status, global management,
| resource queues, for example) remains unchanged across the rebuild.

| – Record data (if applicable), including the entry IDs associated with the
| record data.

| Understanding the Cleanup Phase
| Once the rebuilt structure has been populated with the data from the old structure,
| and the system determines that the structure is viable, the old structure can be
| deallocated and connected users can be notified of the new instance of the
| structure. The Structure State Change event marks the transition from the old to the
| new structure.

| Completing the System-Managed Rebuild Process
| When the rebuild process commits to using the new structure, connectors receive
| the Structure State Change event. The purpose of this event is to alert connected
| users to any structure characteristics that might have changed during the course of
| the system-managed rebuild. EEPLSTRSTATECHANGEINFO contains information
| about the coupling facility in which the new structure has been rebuilt and specifies
| the structure's physical version numbers.

| No response is required for the Structure State Change event. It simply provides an
| opportunity for connected users to evaluate the new structure's attributes based on
| the coupling facility containing the structure and take any action deemed
| appropriate.

| To communicate the end of a system-managed process, the system presents the
| Structure Available event to the event exits of the active connectors to the
| structure. No response is required for this event. Its purpose is to inform connectors
| that had previously quiesced their activity against the structure that they may now
| resume their coupling facility requests.

| Whether or not the structure's size or object counts were modified during the
| system-managed process, Structure Alter Begin and Structure Alter End events are
| presented to the event exits of the active connectors to the structure if all
| connectors specified ALLOWALTER=YES.

| Stopping the System-Managed Rebuild Process
| To stop a system-managed structure rebuild, use either the SETXCF
| STOP,REBUILD command or the IXLREBLD macro. Users can stop the rebuild
| process for a structure up until the time the Cleanup phase is entered. After that
| point, requests to stop the rebuild will fail.

5-112 OS/390 V2R8.0 MVS Sysplex Services Guide

| When the stopping of a system-managed rebuild is complete, the system presents
| the Structure Available event to the event exits of all active connectors. Upon
| receipt of the Structure Available event, connectors who had quiesced activity
| against the structure can resume submitting coupling facility requests, and requests
| that were deferred during the system-managed process are redriven.

| Handling Connection Changes During System-Managed Rebuild
| During a system-managed rebuild, the system does not allow new connections to
| the structure. However, existing connectors are allowed to disconnect from the
| structure. Failed connectors are handled as having disconnected from the structure.

| New Connections
| The system will fail an IXLCONN invocation for a new connection during
| system-managed rebuild with return code (X'0C'), reason code
| IXLRSNCODECONNPREVENTED (X'xxxx0C09').

| Existing Connections
| The system allows connectors to disconnect from a structure during any phase of
| the system-managed process. The system frees the user-related resources
| associated with both the old and the new structures. Remaining existing
| connections to the structure receive a Disconnected or Failed (DISCFAILCONN)
| event in their event exits. Processing for this event is as follows:

| � The remaining connections must confirm the DISCFAILCONN event before the
| disconnect can complete. When designing an application, consider the effect of
| requiring surviving connectors to perform any operation that requires structure
| access before confirming the DISCFAILCONN event. Access to the structure is
| quiesced during a system-managed rebuild, and therefore attempts to access
| the structure could cause completion of the disconnect to be delayed until the
| system-managed rebuild completes.

| � Even though structure access might be required to confirm the DISCFAILCONN
| event, surviving connectors must not attempt to defer confirmation of the event
| until after the system-managed rebuild completes. Instead, connectors should
| initiate recovery processing when they receive the DISCFAILCONN event, even
| if the Structure Temporarily Unavailable event has also been received.

| The following scenario describes why connectors should not defer peer
| recovery processing when they receive a Structure Temporarily Unavailable
| event. A connector could fail early enough during the system-managed rebuild
| that the system will have presented a Structure Temporarily Unavailable event
| to the failing connector, but before that connector was able to respond. The
| rebuild cannot continue until the system receives a response to the Structure
| Temporarily Unavailable event from all connectors, including the failing one.
| The peer connectors must proceed with failure recovery because they cannot
| know whether the failing connector had responded to the Structure Temporarily
| Unavailable event before failing, and must assume that the failing connector did
| not respond.

| – If the failing connector had not responded to the Structure Temporarily
| Unavailable event, the system-managed rebuild could not have proceeded
| to the point at which coupling facility requests for the structure would be
| quiesced. Any structure access required before confirmation of the
| DISCFAILCONN event would complete normally, assuming no other
| failures. Only after the peer connectors confirm the DISCFAILCONN event

 Chapter 5. Connection Services 5-113

| does the system implicitly confirm the Structure Temporarily Unavailable
| event on behalf of the failing connector. If the peer connectors had deferred
| their response to the DISCFAILCONN event, the system-managed rebuild
| would have hung.

| – If the failing connector had responded to the Structure Temporarily
| Unavailable event, and all other connectors had responded as well, the
| system would defer until completion of the rebuild any structure requests
| submitted by peer connectors to perform recovery. Eventually the rebuild
| would complete, peer recovery would finish, and the disconnection of the
| failing connector would complete.

| � If the disconnecting user is the last connection to a non-persistent structure
| (STRDISP=DELETE was specified on IXLCONN), the disconnect will cause
| deallocation of the structure and will stop the rebuild. However, if the
| disconnecting user is the last connection to a persistent structure, the
| system-managed rebuild will continue to completion with no active connectors.

| Failed Connections
| During a system-managed rebuild, failure of a connector is similar to the disconnect
| of a connector. Although connectors do not actively participate in the rebuilding of
| the structure, peer connectors must do whatever recovery processing is appropriate
| for the failing connector. The surviving connectors can respond to the
| DISCFAILCONN event without impacting the progress of the rebuild.

| Handling Loss of Connectivity during System-Managed Rebuild
| System-managed rebuild is designed primarily for use in a planned reconfiguration
| environment. It provides only limited capability for recovery for loss of connectivity.
| The following sections describe how a connector's loss of connectivity to a structure
| is handled during key points in the system-managed rebuild process:

| � Before system-managed rebuild is initiated

| � Before the system commits to the new structure

| � After the system commits to the new structure

| � During the stop of system-managed rebuild

| Loss of Connectivity Before System-Managed Rebuild Is Initiated
| System-managed rebuild will not be initiated if, at the time of the rebuild start
| request, any active or terminating connector has lost connectivity to the target
| structure. (A terminating connector is one that has disconnected but whose peer
| connectors have not yet responded to the Disconnect event.)

| System-managed rebuild will not be initiated in response to a loss of connectivity.
| An IXLREBLD request to start a system-managed rebuild cannot specify
| STARTREASON=LOSSCONN, nor will the specification of REBUILDPERCENT in
| the CFRM policy automatically imply the initiation of system-managed rebuild.

| Loss of Connectivity Before the System Commits to the New
| Structure
| The presentation of the Structure State Change event (Cleanup phase) is the point
| at which the system-managed process commits to the new structure. When a loss
| of coupling facility connectivity occurs prior to this point, a system-managed rebuild
| will continue across the loss of connectivity to the old or the new structure only if

5-114 OS/390 V2R8.0 MVS Sysplex Services Guide

| the failure does not affect systems on which there are active connectors to the
| structure being rebuilt. A loss of connectivity might force the system to select other
| systems to carry out system-managed processing that was disrupted by the failure.

| � When a connector loses connectivity to the old structure before the
| system-managed rebuild commits to the new structure, the rebuild is stopped.
| After stop processing is complete, and after the Structure Available event is
| presented, LOSSCONN events are presented for the connectors that lost
| connectivity. The affected connectors must disconnect in response to this
| event.

| � When a connector loses connectivity to the new structure before the
| system-managed rebuild commits to the new structure, the rebuild is stopped.
| No LOSSCONN events are presented because the connectors knew nothing
| about the new structure and because the structure never actually came into
| use.

| Loss of Connectivity After the System Commits to the New
| Structure
| Once the system-managed rebuild process has committed to the new structure, the
| rebuild cannot be stopped even if connectivity to the old or the new structure is lost.

| � When a connector loses connectivity to the old structure after the
| system-managed rebuild commits to using the new structure, the loss of
| connectivity is not reported to the affected connectors because the connectors
| cannot go back to the old structure.

| � When a connector loses connectivity to the new structure after the
| system-managed rebuild commits to using the new structure, the loss of
| connectivity is reported for the affected connectors when the system-managed
| rebuild completes and after the Structure Available event is presented. The
| affected users must disconnect in response to the LOSSCONN event.

| Loss of Connectivity During the Stop of System-Managed
| Rebuild
| The system will accept a request to stop a system-managed rebuild up until the
| Structure State Change event (Cleanup phase) is presented.

| � When a connector loses connectivity to the old structure while a
| system-managed rebuild is being stopped, the loss of connectivity is reported to
| each connector after the Structure Available event. The affected connectors
| must disconnect in response to the LOSSCONN event.

| � When a connector loses connectivity to the new structure while a
| system-managed rebuild is being stopped, the loss of connectivity is not
| reported to the connector because all connectors are reverting to the old
| structure.

| Handling Structure Failure during System-Managed Rebuild
| As with the loss of connectivity scenarios, how the system handles structure failure
| during a system-managed rebuild depends on when in the process the failure
| occurs and which of the structures failed.

| � Failure of the Old Structure Once the system has committed to the new
| structure (Cleanup phase), failure of the old structure is irrelevant. No
| STRFAILURE events are reported to any active connectors. If the system has
| not yet committed to the new structure (prior to the Cleanup phase), failure of

 Chapter 5. Connection Services 5-115

| the old structure is reported to active connectors with the Structure Available
| event followed by the STRFAILURE event. Users should respond to this event
| by disconnecting from the structure with REASON=FAILURE.

| � Failure of the New Structure Once the system has committed to the new
| structure (Cleanup phase), failure of the new structure is reported to active
| connectors with the Structure Available event followed by the STRFAILURE
| event. Users should respond to this event by disconnecting from the structure
| with REASON=FAILURE. If the system has not yet committed to the new
| structure (prior to the Cleanup phase), active connectors receive the Structure
| Available event to indicate that the old structure can be used.

| Dumping Considerations during System-Managed Rebuild
| The structure instances contained in an SVC dump taken during a
| system-managed rebuild are as follows:

| � If the new structure has not yet been allocated, the dump contains only the old
| structure.

| � If the new structure has been allocated and the old structure has not yet been
| deallocated, the dump contains both instances of the structure.

| � If the old structure has been deallocated, the dump contains only the new
| structure.

| If the dump serialization interferes with coupling facility operations generated by the
| system when the system is allocating the new structure, connecting users to it, or
| performing other system processing in support of the rebuild, the system will stop
| the rebuild. However, if dump serialization is held during the copying of the
| structure data from the old to the new structure, system-managed rebuild will
| continue.

| Summary of System-Managed Rebuild Processing
| Figure 5-16 on page 5-117 illustrates the sequence of events during a
| system-managed rebuild.

| The following list summarizes that process:

| 1. Rebuilding for a structure is initiated through SETXCF START,REBUILD or
| IXLREBLD REQUEST=START.

| 2. System reports Structure Temporarily Unavailable event to all active
| connector's event exits.

| 3. Connector responds to the STRTEMPUNAVAIL event with either IXLEERSP or
| IXLYEEPL.

| 4. When all responses are received, the system quiesces activity to the structure
| for access requests.

| Requests that are already in progress are completed. New requests are
| queued.

| 5. When all connectors are quiesced, the system allocates a new structure
| instance.

| 6. The system connects all active users of the old structure to the new structure.

| 7. One system attaches all failed-persistent users to the new structure.

5-116 OS/390 V2R8.0 MVS Sysplex Services Guide

| 8. The system copies structure objects from the old structure to the new structure.

| 9. The system reports the Structure State Change Notification event to all
| connectors and deallocates the old structure instance.

| 10. The system unquiesces access to the structure and drives all queued requests
| against the new structure.

| 11. The system delivers the Structure Available event to all connectors.

| 12. The system delivers the Alter Begin and Alter End events to all connectors.

| All
| connectors Structure Structure
| respond to state change available
| structure event event
| Start temporarily presented presented
| System-Managed unavailable to all to all
| Rebuild event connectors connectors
| | (synch point)
| | | | |
| --
| | - Event exits driven | - System quiesces all | | - System resumes processing
| | with structure | structure requests | | structure requests
| | temporarily | | |
| | unavailable event | - New structure allocated | | - Connectors resume normal
| | | | | structure operations, if
| | - Connectors optionally | - All connectors connected | | applicable
| | quiesce structure | to new structure | |
| | activity | | | - Alter begin event
| | | - Data copied to new | | presented to all
| | - All connectors respond | structure | | connectors (if structure
| | to structure | | | size or ratio change)
| | temporarily | | |
| | unavailable event | | | - Alter end event
| | | | | presented to all
| | | | | connectors (if structure
| | | | | size or ratio change)
	------------- Stop rebuild requests permitted --------------		
	-------------------------- Old structure allocated --------------------		
			--------- New structure allocated ------------------------>
	--SVC dump dumps old structure --	-------- SVC dump dumps old ---------	-- SVC dump dumps -->
		and new structures new structure	

| Figure 5-16. Sequence of Events During System-Managed Rebuild

Altering a Coupling Facility Structure
The structure alter function allows a coupling facility structure to be reconfigured
with minimal disruption to connectors. Structure alter provides for the expansion or
contraction of the size of a structure, the reapportionment of the entry-to-element
ratio of the structure's storage, and the alteration of the percentage of structure
storage set aside for event monitor controls (EMCs). The structure being altered is
not deallocated and then re-allocated; it is altered in place.

 Chapter 5. Connection Services 5-117

All functions of structure alter can be initiated by an authorized program; structure
size only can be initiated by an operator command. Both methods are supported

| on an SP 5.2 and higher system. It is highly recommended that applications
| support the structure alter protocol, especially those application using structures
| that support system-managed processes (IXLCONN ALLOWAUTO=YES).

Overview of Structure Alter Processing
Structure alter is a non-disruptive process to connectors to the structure being
altered. The structure alter function requires the following combination of hardware
and software support:

� The structure alter function requires a coupling facility with CFLEVEL=1 or
higher. You must add one or more coupling facilities with CFLEVEL=1 or higher
to the structure's preference list in the CFRM policy. This enables XES to
allocate the structure in a coupling facility that supports structure alter.

Note that event monitor controls are supported only for keyed list structures
allocated in a coupling facility of CFLEVEL=3 or higher. For this type of
structure:

– When allocated in a coupling facility of CFLEVEL=3, only the size and the
entry-to-element ratio can be altered.

– When allocated in a coupling facility of CFLEVEL=4 or higher, the size,
entry-to-element ratio, and the percentage of EMC storage can be altered.

� The structure alter function requires that MVS SP 5.2 or higher be running on
all systems on which applications plan to use the function. All connectors to the
structure must have specified ALLOWALTER=YES on the IXLCONN macro.

Limiting the Scope of Structure Alter

Connectors that specify ALLOWALTER=YES have the ability to limit the changes
that can be made to a structure during structure alter processing.

� The RATIO keyword indicates whether the connector allows the
entry-to-element ratio to be changed. Specifying RATIO=NO prevents changes
to the entry-to-element ratio and also prevents the structure from being
contracted to less than its minimum size. The entry-to-element ratio could
change if the structure were reduced in size to less than its minimum.

The RATIO keyword also indicates whether the connector allows the
percentage of EMC storage to be changed. Specifying RATIO=NO prevents
changes to the percentage of EMC storage.

See “Specifying the Structure Size” on page 5-13 for information about how the
size of a structure is determined.

� The MINENTRY and MINELEMENT keywords allow the connector to specify
minimum threshold levels for entries and elements allocated in the structure.
The MINEMC keyword allows the connector to specify the minimum threshold
level of EMCs allocated in the structure. The values specified for MINENTRY,
MINELEMENT, and MINEMC are percentage values, used by the system when
a structure alter is initiated either to contract a structure or to reapportion the
structure's ratio of entries to elements or its percentage of storage available for
allocation of EMCs.

– The values specified for MINENTRY and MINELEMENT are percentage
values of entries and elements that are to be available at the completion of

5-118 OS/390 V2R8.0 MVS Sysplex Services Guide

structure alter processing — for a list structure, the percentage of “currently
in-use” entries and elements and for a cache structure, the percentage of
“currently in-use and changed” entries and elements. The connector thus is
able to maintain a buffer of available entries and elements for subsequent
use.

– The value specified for MINEMC is a percentage value of EMCs that are to
be available at the completion of structure alter processing — for a keyed
list structure, the percentage of “currently-in-use” EMCs. The connector
thus is able to maintain a buffer of available EMCs for subsequent use.

If the reapportionment of the structure would decrease the amount of storage
available for entries, elements, or EMCs, the MINENTRY, MINELEMENY, and
MINEMC values are used to prevent the alter from making the structure
unusable to the application. If the alter processing tries to contract or
reapportion more free space than specified by these percentage values, the
system stops the alter.

The system does not use the MINENTRY, MINELEMENT, or MINEMC values
during requests to expand the structure or during reapportion requests that will
increase the amount of storage available for the particular set of entries,
elements, or EMCs.

Determining a Structure's Composite Values

Before performing a structure alter, XES determines “composite values” for a
structure, based on structure attributes specified at connect time. The composite
values provide a limit on how the system can alter the structure. Each connection
can specify an ALLOWALTER, RATIO, MINENTRY, MINELEMENT, and MINEMC
value, and each connection could specify different values. XES merges the values
from each connection. XES determines the most restrictive requirements and uses
these as the composite values to limit the changes to the structure for the structure
alter request.

For instance:

� If any connection specifies ALLOWALTER=NO, the alter request is rejected.

� If any connection specifies RATIO=NO, a request to change the
entry-to-element ratio or percentage of EMC storage is rejected.

� For MINENTRY, MINELEMENT, and MINEMC values, the most restrictive
value is the highest percentage of in-use elements that must be available upon
completion of structure alter. Therefore, the highest percentage value set by
any connection is used to limit the structure alter request.

Changing the Structure Size
The structure alter function can expand or contract a structure within the range of
its maximum and minimum size. The maximum size of a structure is set by the
installation (with the SIZE parameter) in the CFRM policy. The minimum size is set
by the coupling facility, and is determined by calculating the minimum amount of
space required for the coupling facility to allocate the structure with the specified
entry-to-element ratio. See “Specifying the Structure Size” on page 5-13 for a
discussion about the maximum and minimum structure size.

Structure alter cannot change the maximum size of a structure. However, the
minimum structure size could change if you reapportion the structure with an

 Chapter 5. Connection Services 5-119

entry-to-element ratio that is different from the previous ratio or with an EMC
storage percentage that is different from the previous percentage.

For example, when allocating the structure, the coupling facility determines the
marginal structure size — the true minimum size at which the structure can be
allocated. The marginal structure size is less than the minimum structure size and
does not take into consideration the entry-to-element ratio. The system will process
a request to alter a structure to the marginal structure size value only if a change to
the structure's entry-to-element ratio is permitted. When such a structure alter
occurs, the minimum structure size value also changes to the altered structure size.

Note: When contracting a structure, the composite MINENTRY, MINELEMENT
and/or MINEMC value, if applicable, might limit the extent to which the
structure can be contracted.

Changing the Structure Entry-to-Element Ratio
The number of entries and elements in a structure is a function of the attributes
specified at connect time. The structure alter function can change the ratio of
entries to elements in a structure. The request to change the entry-to-element ratio
is limited by the composite RATIO, MINENTRY, and MINELEMENT values.

A request to alter the size of a structure (expand or contract) might also result in a
change to the entry-to-element ratio of the structure. When a structure is allocated
initially, the system determines the target entry-to-element ratio and attempts to
allocate the number of entries and elements accordingly. If the target ratio cannot
be satisfied, the system maintains the current count of entries and elements along
with the original target ratio. When an IXLALTER request is received to expand or
contract the structure size, the system checks the current entry and element counts
to determine if the current entry-to-element ratio equals the original target ratio. If
the current ratio is not the same as the target ratio, the system uses the target ratio
to calculate the target entry and element counts that will be used when altering the
structure's size.

Changing the Percentage of Event Monitor Controls
The amount of available list storage set aside for EMCs in a keyed list structure is
a function of the percentage specified at connect time. The structure alter function
can change that percentage for keyed list structures allocated in a coupling facility
with CFLEVEL=4 or higher. The request to change the percentage is limited by the
composite RATIO and MINEMC values.

Altering a Duplexed Structure
A cache structure in the Duplex Established phase of a user-managed duplexing
rebuild can be altered. When the IXLALTER request is received, the alter is applied
to both instances serially. The old structure is altered first and when that is
complete, the new structure is altered. Connectors to each instance of the
structure are notified of the alter processes through their event exits.

Structure Type Considerations
The IXLALTER service imposes the following restrictions for each type of structure:

 � Cache Structure

A cache structure originally allocated with data can be altered to a structure
without data and back again. If the cache structure was originally allocated
without data, then structure alter cannot be used to create data.

5-120 OS/390 V2R8.0 MVS Sysplex Services Guide

The system rejects a request to change the EMC percentage for a cache
structure and sets the EEPLALTERENDREQEXCEPTION bit in the Structure
Alter End event information.

When a cache structure is altered, active reclaim vectors for the structure are
deactivated. The system resumes using the default reclaim algorithm that was
in effect at the start of the alter process for all storage classes.

During the alter process, the system rejects any attempt to activate a reclaim
vector for the structure with IXLCACHE SET_RECLVCTR.

When the alter process completes for the structure, connectors can once again
activate a reclaim vector. Connectors must explicitly activate any reclaim
vectors that were deactivated at the time the alter process began; the reclaim
vectors are not reactivated automatically. When reactivating the reclaim vectors,
take into account the current entry and element counts, which might have been
altered.

 � List Structure

A list structure originally allocated with data cannot be altered to a structure
without data. If the list structure was originally allocated without data, then
structure alter cannot be used to create data.

When a list structure is altered, the list limit for each list is adjusted to equal the
total number of entries or elements in the structure at the start of the alter
process in each of the following cases:

– The user has never set a list limit for the list.

– The user has set a list limit for the list which is equal to the total number of
entries or elements allocated for the structure.

List limits other than the above are left untouched. It is the user's responsibility
to set a new list limit for such lists when the alter process completes. The new
list limit should take into account the current entry and element counts for the
altered structure.

A keyed list structure allocated in a coupling facility with CFLEVEL=4 or higher
that was initially allocated without EMCs can be altered to a structure
containing EMCs. If the list structure was originally allocated with EMCs, then
structure alter can be used to change to a list structure with no EMCs.
Structure alter cannot be used to change the presence of EMCs in a keyed list
structure allocated in a coupling facility with CFLEVEL=3.

 � Lock Structure

For a lock structure, you can only change the size of the structure. The system
rejects a request to change the ratio or EMC storage percentage and sets the
EEPLALTERENDREQEXCEPTION bit in the Structure Alter End event
information.

If the lock structure was allocated initially with record data, changing the size of
the structure either increases or decreases the number of record data elements
in the structure. To change the number of lock table entries, you must use the
structure rebuild service.

 Chapter 5. Connection Services 5-121

Starting the Structure Alter Process
You can initiate structure alter processing either by using the IXLALTER macro or
by issuing the SETXCF START,ALTER command. The IXLALTER macro allows an
authorized user to request a change to the structure's size, entry-to-element ratio,
and percentage of storage allocated for EMCs. The SETXCF START,ALTER
command allows the operator to request a change only to the structure's size.
Recall, however, that a request to contract the structure's size might also affect the
entry-to-element ratio and the percentage of EMC storage.

XES determines if structure alter is supported by the current set of connectors to
the structure. XES accepts the alter request if:

� The structure to be altered is allocated in a coupling facility with the appropriate
level (CFLEVEL=1 or higher for all structures, CFLEVEL=3 or higher for keyed
list structures allocated with EMCs for which a change in size is requested, or
CFLEVEL=4 for keyed list structures allocated with EMCs for which a change in
the percentage of EMC storage is requested.

� The structure is not already in the alter or rebuild process.

� The structure is persistent with no active or failed-persistent connectors.

� The structure has active or failed-persistent connectors, all of whom specified
ALLOWALTER=YES.

� The structure is in the Duplex Established phase of user-managed duplexing
rebuild.

Notifying Connectors of Structure Alter Initiation
If the request to START structure alter is valid, all active connectors to the structure
are notified of the Structure Alter Begin event (EEPLALTERBEGIN) through their
event exit. The connectors can examine the event exit parameter list (IXLYEEPL) to
determine the requested target values, the ratio change indication, and the
composite values for the minimum percentage of entries and/or elements and EMC
storage percentage to be available. The information available in IXLYEEPL when
the Structure Alter Begin event is presented is mapped by
EEPLALTERBEGININFO.

If the request is to change the size of the structure, EEPLALTERSIZE contains the
requested size. The connector can compare this size with that returned in
IXLYCONA at connect time to determine how the size is to be altered. The
connector might want to free up any in-use or in-use and changed structure
resources to accommodate the alter process.

If the request is to alter a structure in the duplexing rebuild process,
EEPLSTRSTATEREBUILDDUPLEX is a flag that indicates duplexing rebuild is in
progress. EEPLSTRUCTUREVERSION is the structure version of the instance of
the structure for which the Alter Begin event is issued.
EEPLALTERBEGINDUPREBOLD or EEPLALTERBEGINDUPREBNEW identify the
old or new instance of the structure that is being altered.

Connectors to the structure are not required to respond to the structure alter event.

5-122 OS/390 V2R8.0 MVS Sysplex Services Guide

Initiating Alter for a Structure with No Connectors
If there are no active, failed-persistent, or disconnecting connectors, there are no
RATIO, MINENTRY, MINELEMENT, and MINEMC values from which to calculate a
composite value. Thus, a operator request to alter a structure with no connectors
might result in the structure having no available entries or elements or might
provide a ratio different from what the structure's connectors can tolerate. XES
allows this type of structure alter to be performed so that an installation can adjust
a persistent structure when it is not being used.

When the persistent structure is needed again, its connectors receive current
structure information in the connect answer area. A connector at that point could
initiate structure alter to change the structure's size and/or apportionment as
appropriate.

Initiating Alter for a Structure with Failed-Persistent Connectors
A structure with failed-persistent connectors can be altered, assuming that the
failed-persistent connector had specified ALLOWALTER=YES. The RATIO,
MINENTRY, MINELEMENT, and MINEMC specifications from each failed-persistent
connector contribute to the determination of the composite values of the structure.

Completing the Structure Alter Process
The alter processing continues until:

� The target size, ratio, or EMC storage percentage are satisfied (either
completely or to the extent possible based on current use of the coupling
facility's resources).

� XES receives a request to stop the structure alter process.

When structure alter completes, XES sets the structure size, the entry-to-element
ratio, and/or the EMC storage percentage to that achieved by the alter process at
the time the process stopped. Connectors access this information in the event exit
parameter list (EEPL).

Notifying Connectors of Structure Alter Completion
At the completion of the structure alter operation, active connectors again are
notified through their event exit. The event is the Structure Alter End event
(EEPLALTEREND). The EEPL contains the status of the structure resulting from
the alter processing. The connectors should examine the EEPL to determine:

� Whether the alter request was able to complete
� Whether the targets were met
� The achieved structure size, entry and element counts, and EMC counts for the

structure
� The minimum structure size, which might have changed from the structure's

initial allocation.

This information is mapped by EEPLALTERENDINFO.

If the Structure Alter End event indicates the completion of a structure alter for a
structure in the duplexing rebuild process, EEPLALTERENDINFO contains
information identifying the instance of the structure that was altered
(EEPLALTERENDDUPREBUILDOLD or EEPLALTERENDDUPREBUILDNEW).
When the old structure has completed the alter process, the system automatically
initiates the alter process for the new structure. Connectors therefore will receive

 Chapter 5. Connection Services 5-123

two sets of Structure Alter events for the duplexed structure, an
EEPLALTERBEGIN and EEPLALTEREND event for the old structure which is
altered first, followed by an EEPLALTERBEGIN and EEPLALTEREND event for the
new structure. Connectors can use this information to determine if they need to
change their use of the structure now that it has been altered. For example, prior to
the structure being altered, the connector might have set list controls, such as list
limits for entries and elements, for a particular list based on the currently allocated
structure. After the structure is altered, the total number of entries and elements
might have changed, and the connector might need to reset the list limits
accordingly.

Requesting that Structure Alter Be Stopped
Structure alter processing can be stopped by an authorized program invoking
IXLALTER or by an operator issuing the SETXCF STOP,ALTER command.

Structure alter processing is automatically stopped when:

� A structure failure occurs
� A non-persistent structure is deallocated
� XES receives a request to rebuild the structure
� An “old” structure during the rebuild process is deallocated
� All SP 5.2 systems in the sysplex lose connectivity to the coupling facility
� All SP 5.2 systems in the sysplex fail.

In addition, alter processing for one instance of a duplexed structure will be stopped
if the duplexing rebuild is stopped such that the instance of the structure being
altered will be deallocated at the end of the duplexing rebuild process. The alter of
the other structure instance, if it has not already been altered, will be started when
the alter of the first instance completes its stop processing. See “Alter/Duplexing
Coordination” on page 5-126.

The following scenarios describe system actions that occur when structure alter
processing cannot complete:

Structure Failure: If structure failure occurs while the structure is being altered,
XES stops the alter process. Connectors to the structure are presented with the
EEPLALTEREND event with the EEPLALTERENDSTRFAIL bit set to indicate that
structure alter did not complete due to structure failure.

If the structure failure occurs during a duplexing rebuild, the alter of the remaining
structure continues.

Connection Termination: If the last connector to a persistent structure
disconnects during structure alter, XES continues processing the structure alter
request. If the last connector to a non-persistent structure disconnects during
structure alter, XES stops the structure alter when the structure is deallocated.

If the last connector to a structure in duplexing rebuild disconnects during structure
alter, the alter process continues for both the old and new instances of the
structure.

5-124 OS/390 V2R8.0 MVS Sysplex Services Guide

System Failure: If a system failure occurs while a structure is being altered, XES
continues the alter process as long as:

� There is at least one SP 5.2 system that has connectivity to the coupling facility
containing the structure

� The structure remains allocated.

If there are no SP 5.2 systems that have connectivity to the coupling facility, the
state of the structure is set to “alter in progress”. Active connections to the
structure are presented with the EEPLALTEREND event with the
EEPLALTERENDLOSSCONN bit set to indicate that the alter did not complete due
to loss of connectivity.

Structure alter stops when the first SP 5.2 system gains connectivity to the coupling
facility where the structure is allocated.

Changes in Connectivity: If connectivity is lost to the coupling facility whose
structure is being altered, the alter process continues as long as there is one SP
5.2 system that has retained connectivity to that coupling facility and the structure
remains allocated. If all SP 5.2 systems have lost connectivity, the structure is
placed in an “alter in progress” state. Each connector to the structure is presented
with the EEPLALTEREND event with the EEPLALTERENDLOSSCONN bit set to
indicate that the alter did not complete normally.

When the first SP 5.2 system in the sysplex regains connectivity to the coupling
facility, the structure alter that was in progress is stopped.

Alter/Rebuild Coordination: When the system receives a request to rebuild a
structure during a structure alter operation, the success of the structure alter and
the timing of the EEPLALTEREND event presentation to connectors depend on the
following:

� If the structure rebuild request is received while a structure alter is in progress,
the structure alter stops when the system performing the alter recognizes that
rebuild is in progress. Whether the EEPLALTEREND event is presented
depends on when in the rebuild process the recognition occurs.

� If the structure alter is stopped before the rebuild cleanup phase is entered, the
EEPLALTEREND event is presented to the structure connectors. The EEPL
contains the EEPLALTERENDREBLD bit, which is set to indicate that the alter
ended due to a rebuild request. Depending on the timing, it is possible for the
structure alter to complete before recognizing the request to stop due to a
rebuild and the connectors will see only the EEPLALTEREND event indicating
that the alter is complete.

� If the structure alter is not stopped before the rebuild cleanup phase,
connectors will not be presented with an EEPLALTEREND event in the event
exit pertaining to the “old” structure.

� If a rebuild stop is processed, XES completes the stop for structure alter that
was requested when rebuild was started. The connectors receive the
EEPLALTEREND event with the EEPLALTERENDREBLD bit set on to indicate
that the alter ended due to a rebuild.

 Chapter 5. Connection Services 5-125

Altering a Structure in the Duplex Established Phase
A request to alter a duplexed structure is handled serially, with the old structure
completing the alter process before the alter of the new structure is started. The
same set of parameters for the alter is applied to each instance of the structure.
However, conditions in the coupling facility, such as the coupling facilities might be
of different CFLEVELs or might not have the same amount of available free
storage, might not allow both alter operations to complete with the same results.
For example, if both instances of the structure are altered to different sizes, it is the
responsibility of the connector to manage the difference — in this case, to issue
another alter request to resize the larger structure to the size of the smaller
structure. Completion of the second duplexing alter request would take less time
than the first duplexing alter request because the smaller instance of the structure
would already be at the requested size.

Alter/Duplexing Coordination: If a request to stop the duplexing process is
received while structure alter is in progress, the following general rule applies: A
structure alter is automatically stopped for the structure which will be deallocated.
Structure alter continues, if not already started or completed, for that structure
which will remain after the stop or switch. For example, a request to stop the
duplexing process is received while structure alter is in progress:

� If the old structure is being altered and a Stop Duplex request is received to
keep the old structure:

– The system issues a request to stop the alter of the new structure (which is
not yet in progress).

– All connectors receive a RebuildStop event for the new structure and
respond to it

– The new structure is deallocated.

– Structure alter completes for the old structure.

– Structure AlterBegin and AlterEnd events are not delivered for the new
structure, which has now been deallocated.

� If the old structure is being altered and a Stop Duplex request is received to
keep the new structure:

– The system issues a request to stop the alter of the old structure, and
proceeds to initiate alter of the new structure.

– All connectors receive a RebuildStop event for the old structure and
respond to it.

– The old structure is deallocated.

– Structure alter completes for the new structure.

– Structure AlterBegin and AlterEnd events are delivered for both the new
and old structures.

� If the new structure is being altered and a Stop Duplex request is received to
keep the old structure:

– The system issues a request to stop the alter of the new structure.

– All connectors receive the RebuildStop event and respond to it.

– The new structure is deallocated.

5-126 OS/390 V2R8.0 MVS Sysplex Services Guide

– AlterBegin and AlterEnd events are delivered for the new structure, which
has now been deallocated.

� If the new structure is being altered and a Stop Duplex request is received to
keep the new structure:

– All connectors receive the RebuildStop event and respond to it.

– The old structure is deallocated.

– AlterBegin and AlterEnd events are delivered for the new structure.

Information Returned in IXLYEEPL: The following IXLYEEPL flags are set
during a structure alter while a structure is in the Duplex Established phase:

� EEPLSTRUCTUREVERSION — Specifies the structure version of the structure
being altered.

� EEPLSTRSTATESTRVERSIONFLAG — Identifies whether the old or new
instance of the structure is being altered.

� EEPLALTERBEGINDUPREBLDOLD — Specifies that the values presented in
EEPLALTERBEGININFO are for the old structure.

� EEPLALTERENDDUPREBLDOLD — Specifies that the values presented in
EEPLALTERENDINFO are for the old structure.

� EEPLALTERBEGINDUPREBLDNEW — Specifies that the values presented in
EEPLALTERBEGININFO are for the new structure.

� EEPLALTERENDDUPREBLDNEW — Specifies that the values presented in
EEPLALTERENDINFO are for the new structure.

Note: If an AlterEnd event is delivered, EEPLSTRUCTUREVERSION will always
accurately identify the structure instance for which alter has completed.
However, the EEPLALTERENDDUPREBLDOLD and
EEPLALTERENDDUPREBLDNEW flags cannot be set unless both structure
instances are currently allocated. If the flags are not set, then one of the
structure instances has been deallocated. EEPLSTRUCTUREVERSION
indicates whether the AlterEnd event is for the structure that remains or the
one that was recently deallocated.

Detecting ENF Code 35 for Structure Alter
At the completion of structure alter processing, the system issues at least one ENF
signal to indicate that structure alter processing has ended.

� If the structure alter resulted in a structure with a smaller structure size
(contract request), then the system issues a generic ENF event code 35. The
ENF signal parameter list does not contain the structure name, but does imply
that additional coupling facility resources might be available because the
structure size is decreased. Connectors who have been unable to connect to a
structure can listen for this event and then attempt the connect request again.

� The system also issues an ENF event code 35 when structure alter processing
is complete. The signal does not imply that additional coupling facility resources
are available, but simply indicates that a structure alter has completed. The
ENF signal parameter list presented to an ENF listen exit will contain the name
of the structure. Connectors who have been unable to connect to a structure
can listen for this event.

 Chapter 5. Connection Services 5-127

Connectors wishing to connect to a structure can use the IXCQUERY macro to
verify that the structure alter actually has completed because ENF 35 is issued for
several different events.

Handling New Connections during Alter Processing
Structure alter processing is supported only by SP 5.2, and is available based on
connection attributes specified on IXLCONN. When a connector tries to connect to
a structure that is being altered, the following actions occur depending on whether
the connector is on a 5.1 or 5.2 system:

� SP 5.1 connector

XES rejects the IXLCONN request with return code
IXLRETCODEPARMERROR, reason code IXLRSNCODECONNPREVENTED.

� SP 5.2 connector

If the SP 5.2 connector does not allow structure alter (ALLOWALTER=NO),
XES rejects the IXLCONN request with return code
IXLRETCODEPARMERROR, reason code
IXLRSNCODESTRALTERNOTALLOW.

If the SP 5.2 connector allows structure alter, XES compares the threshold
values specified on IXLCONN (RATIO, MINENTRY, and MINELEMENT) with
the composite limits for the structure being altered:

– Connections with more restrictive limits than the current composite are
rejected with return code IXLRETCODEPARMERROR, reason code
IXLRSNCODESTRALTERRESTRICT.

– Connections with the same or less restrictive limits than the current
composite are connected to the structure. The connector must examine the
connect answer area to determine whether structure alter is in progress
(CONAALTERINPROGRESS) and if so, check CONAALTERINFO for
target and composite information.

Responding to Connection Events
Each connector to a coupling facility structure must specify the address of an event
exit. MVS communicates information about certain structure and connection events
to the event exit. These events include information about new and existing
connections to a structure (including failed-persistent connections), operations to
rebuild a structure, and changes to the structure that can affect processing (like
loss of connectivity and other events). The event exit of the connected user gets
control each time one of the events occurs. For a list of events presented to the
event exit, see “Events Reported to the Event Exit” on page 5-130.

The system describes the events through the event exit parameter list (IXLYEEPL)
for all connected users to the structure. IXLYEEPL contains the following types of
information:

� Information about the connector whose event exit has been driven

� General information about the event

� Information about the connection that is the subject of the event

5-128 OS/390 V2R8.0 MVS Sysplex Services Guide

� Event specific information, such as loss of connectivity, data about connectors
to a structure being rebuilt, user synchronization point data, and volatility
change information.

The order in which MVS reports events to a connected user is usually in the
sequence in which the events occurred. For example, a connected user would be
notified about a new connection event before the connection disconnect or failed
event. Exceptions to this ordering are:

� Rebuild Quiesce event followed by Rebuild Stop event

If the system has not notified all connected users about the Rebuild Quiesce
event and a Rebuild Stop event for the same structure occurs, only the Rebuild

| Stop event will be presented to the connected users. Note that because a
| Rebuild Stop event can supersede many of the rebuild events, some rebuild
| events might or might not be presented to the connected user prior to the
| Rebuild Stop event, depending on its timing.

� Structure Volatility State Change events

If the volatility state of a coupling facility changes (volatile or non-volatile) and
then changes back again, the timing of the event exit notification might present
only the second change. (For this reason, you should check the
CONAVOLATILE structure attribute flag in the connect answer area to
determine the volatility state.)

| � Structure Temporarily Unavailable events

| If the system has not notified all connected users about the Structure
| Temporarily Unavailable event and the system-managed process is stopped,
| only the Structure Available event will be presented to the connected users.

Some events require that the connected user provide a response. Users can
respond to events in the event exit:

� By setting a return code X'00' or X'01' in IXLYEEPL, indicating that all
necessary processing has been performed.

� By setting an IXLYEEPL return code X'08', indicating that processing will be
performed asynchronously, and that the connector will subsequently respond to
the event using IXLEERSP. (Some events require that IXLEERSP be used to
provide a response in this manner.)

Using IXLYEEPL to Provide a Response
For some events, connections can handle the event synchronously (that is, at the
time the event exit gets control) and need only set a return code in IXLYEEPL. For
example, a disconnected or failed connection event requires that all active
connectors to the structure provide an event exit response. Depending on the
protocol, users respond by setting return codes in IXLYEEPL to handle the event.
(MVS checks return codes for IXLYEEPL only if it expects a response.) If the
connection is failed-persistent and the connection is able to recover, active
connectors can set a return code X'00'. When all connectors have responded, the
failed-persistent connection can attempt to reconnect to the structure. An active
connection also can perform recovery for the failed-persistent connection and set a
return code X'01' in IXLYEEPL to delete the connection.

 Chapter 5. Connection Services 5-129

Using IXLYEEPL and the IXLEERSP macro
If asynchronous processing is required to respond to the event (that is, users need
to process the event at a later time) or if the event is a Rebuild Quiesce, Rebuild
Cleanup, or Rebuild Stop event that requires an IXLEERSP response, users must
set a return code X'08' in IXLYEEPL to indicate that they intend to provide a
response through the IXLEERSP macro. Users then issue the IXLEERSP macro in
task mode to indicate that they have handled the event.

For example, to handle a failed-persistent connection, an active connection can set
a return code X'08' in IXLYEEPL to indicate that the active connection will issue
the response to the event on IXLEERSP. At a later time, an active connection can
perform recovery for the failed-persistent connector and issue IXLEERSP in task
mode to release the failed-persistent connection. “Deleting Failed-Persistent
Connections” on page 5-62 provides information on how to handle a
failed-persistent connection event.

For events that require an IXLEERSP response, all active connectors to the
structure must set an IXLYEEPL return code to indicate that the response will be
handled by IXLEERSP.

The system expects connected users to respond to the following events. For events
marked with an asterisk (*), the user must respond with the IXLEERSP macro.
“Using IXLEERSP” on page 5-152 provides information on the IXLEERSP macro.

� Existing Connection (failed-persistent only)
� Disconnected or Failed Connection

 � Rebuild Quiesce*
� Rebuild Connect Failure

 � Rebuild Cleanup*
 � Rebuild Stop*

| � Stucture Temporarily Unavailable

Handling Outstanding Event Responses
If a connected user disconnects or fails before providing an expected response to
an event, the system informs all connected users through the Disconnected/Failed
Connection event. After all existing connections have responded to the
Disconnected or Failed Connection event, the system implicitly provides any
outstanding event responses that the failed connected user needed to provide.

| Note however, that the system does not implicitly provide these outstanding
| responses until all surviving users have themselves responded to the Disconnected
| or Failed Connection event on behalf of the failing user. If these responses from the
| surviving users are not received in a timely manner, deadlocks can occur.
| Alternatively, the surviving users can explicitly provide “proxy” responses for those
| owed by the failing connector for Rebuild Stop and Rebuild Cleanup events.

Events Reported to the Event Exit
MVS reports the following specific events to the event exit of connected users to a
structure. N/A in a column means that the information is not applicable.

For all events, connection information about the connection that is the subject of
the event is passed in IXLYEEPL. The connector information includes connect
name, connection identifier, and connection disposition.

5-130 OS/390 V2R8.0 MVS Sysplex Services Guide

Figure 5-17 (Page 1 of 7). Summary of Events Reported to the Event Exit

Event/Description

Important
Information
Passed to Event
Exit

Connections
Notified

Response Required
by Notified
Connection

Valid
IXLYEEPL
Return Codes

New Connection
EEPLNEWCONNECTION

The connection (subject of the event) is
new to the structure. Existing connected
users might receive notification of a new
connection before the IXLCONN request
for the new connection completes.

All active
connections
(except the new
connection) to
the structure

None. N/A

Existing Connection (active and
failed-persistent)
EEPLEXISTINGCONNECTION

The connection (subject of the event) is
currently defined to the structure. An
existing connection can be either active or
failed-persistent as indicated by field
EEPLSTATEACTIVE in IXLYEEPL. Each
existing connection event represents one
connected user. New connections might
receive notification of existing connections
before the IXLCONN request for the new
connection completes. The end of the list
of existing connections is indicated by a
dummy event exit parameter list.

Note: The dummy IXLYEEPL is
indicated by the
EEPLDUMMYLASTEVENT flag.
When the flag specifies that this is
the last event, the only other
information in the EEPL is the
identification of the connector
whose event exit has been driven
and general information about the
event.

Active or
failed-persistent
state of the
existing
connection,
connection
disposition,
user-specified
disconnect data.

A new
connection to the
structure

If existing connection
is active, none. If
failed-persistent, user
protocol of the new
connection
determines the
response.

rc=X'00',
X'01', or
X'08'. See
“Return
Specifications”
on
page 5-152.

Disconnected or Failed Connection
EEPLDISCFAILCONNECTION

One of the following has occurred:

� The connected user (subject of the
event) issued IXLDISC. Disconnection
reason specified on IXLDISC can be
NORMAL or FAILURE.

� End of task, address space, or
system has occurred before the
connection (subject of the event)
issued IXLDISC. Connection has
failed.

Indication of lock
resources if held
by a lock
structure.

User-specified
disconnect data.

Indication of
whether, during
rebuild, the
connection was
connected to
both the new
structure and the
old structure.

All active
connections to
the structure

Required rc=X'00',
X'01', or
X'08'. See
“Return
Specifications”
on
page 5-152.

 Chapter 5. Connection Services 5-131

Figure 5-17 (Page 2 of 7). Summary of Events Reported to the Event Exit

Event/Description

Important
Information
Passed to Event
Exit

Connections
Notified

Response Required
by Notified
Connection

Valid
IXLYEEPL
Return Codes

Loss of Connectivity to the structure
EEPLLOSSCONN

The connection has lost physical
connection to the coupling facility.

If rebuild was in
progress,
indication of
whether
connectivity was
lost to the
original structure
or to the
structure
allocated for
rebuild.

All active
connections to
the structure,
including those
connections that
have lost
connectivity.

None.

Recommended that
all connections that
have lost connectivity
issue IXLDISC with
REASON= FAILURE
or rebuild the
structure.

N/A

Structure Failure EEPLSTRFAILURE

Either a structure in the coupling facility or
the coupling facility itself has failed. New
connections are denied access.

Note that if the failure is for a single
structure rather than the entire coupling
facility, XES deallocates the failed
structure when either there are no active
connections or when the last Rebuild
Cleanup event exit has been received as
part of the rebuild process.

All active
connections to
the structure

None.

Recommended that
all users issue
IXLDISC with
REASON= FAILURE
or rebuild the
structure.

N/A

Rebuild Quiesce
EEPLREBUILDQUIESCE

The operator or program has initiated
rebuilding or duplexing for the structure
(SETXCF START,REBUILD or IXLREBLD
REQUEST=START). Connections can
participate in rebuilding the structure, stop
the process, or disconnect.

Reason for the
rebuilding or
duplexing
request

All active
connections to
the structure

If connections decide
to rebuild or duplex,
connection must

 1. Complete
outstanding
structure requests
which, if based
on a restart
token, should be
fully completed
before quiescing
use of the
structure.

2. Stop activity to
structure

 3. Prevent new
IXLCACHE,
IXLLIST,
IXLLOCK, or
IXLRT requests
to the structure.

4. Provide an event
exit response.

Event response
required through
IXLEERSP.

rc=X'08'. See
“Return
Specifications”
on
page 5-152.

5-132 OS/390 V2R8.0 MVS Sysplex Services Guide

Figure 5-17 (Page 3 of 7). Summary of Events Reported to the Event Exit

Event/Description

Important
Information
Passed to Event
Exit

Connections
Notified

Response Required
by Notified
Connection

Valid
IXLYEEPL
Return Codes

Rebuild Connect
EEPLREBUILDCONNECT

All connections have responded to the
Rebuild Quiesce event for the structure.

| To continue with the user-managed
| rebuild processing (rebuild or duplexing
| rebuild), each connection that wants to

connect to the new structure must issue
IXLCONN with the REBUILD option.
Once connected to the new structure,
connected users can perform coupling

| facility operations to the structure.

All active
connections to
the structure

| Required.

| To confirm that a
| connected user has
| completed its
| structure
| reconstruction or data
| propagation to the
| new structure, issue
| IXLREBLD
| REQUEST=COMPLETE.

N/A

Rebuild Connects Complete
EELPCONNECTSCOMPLETE

All connections eligible to rebuild-connect
to the structure have issued IXLCONN
REBUILD. The system indicates the
number of successful and unsuccessful
connections to the new structure and
identifies the connections through the
connection ids. Users can determine from
their protocol if enough connections are
available to continue rebuilding the
structure or stop rebuilding.

Indication of the
connections that
successfully
connected to the
new structure
and the
connections that
failed

Total number of
successful
connections to
the new structure

Total number of
unsuccessful
connections to
the new structure

All connections
to the structure
participating in
structure rebuild.
Connectors to a
stucture in the
user-managed
duplexing
process do not
receive this
event.

| Required. N/A

Rebuild New Connection
EEPLREBUILDNEWCONNECTION

The connection (subject of the event) to
the structure is new. Existing connected
users to the new structure might receive
notification of a new connection before
IXLCONN for the new user completes.

Connect name,
connection
identifier

All connections
to the new
structure

None N/A

Rebuild Existing Connection
EEPLREBUILDEXISTINGCONNECTION

The connection (subject of the event) is
currently connected to the new structure.
Each Rebuild Existing Connection event
represents one connected user. A new
connection might receive notification of
existing connections before IXLCONN for
the new connection completes. The end
of the list of existing connections is
indicated by a dummy event exit
parameter list. For this event, the system
reports only successful connections;
failed-persistent connections to the new
structure are not reported.

All active
connections to
the structure

None N/A

 Chapter 5. Connection Services 5-133

Figure 5-17 (Page 4 of 7). Summary of Events Reported to the Event Exit

Event/Description

Important
Information
Passed to Event
Exit

Connections
Notified

Response Required
by Notified
Connection

Valid
IXLYEEPL
Return Codes

Rebuild Connect Failure
EEPLREBUILDCONNECTFAILURE

The IXLCONN REBUILD request fails
because the task or address space of the
requestor abnormally terminated during
IXLCONN REBUILD processing and this
task is different from the task which owns
the original connection.

All active
connections to
the structure

Required.
Connections must
cleanup any control
information about a
successful rebuild
connect request that
is reported by either a
Rebuild New
Connection or
Rebuild Existing
Connection event.

Structure Duplexing Established
EEPLREBUILDDUPLEXESTABLISHED

Connectors to the duplexed structures
can begin duplexed structure operations.

All active
connections to
the structure.

None N/A

Stop Duplexing Rebuild to Switch
EEPLREBUILDSWITCH

The operator or program has requested to
stop duplexing the structure (SETXCF
STOP,REBUILD,DUPLEX command or
IXLREBLD REQUEST=STOPDUPLEX
with KEEP=NEW. Connectors should
prepare to switch to the new structure.

All active
connectors to the
structure.

Required.
Connections must
quiesce their use of
the old and new
structures and
perform the
necessary cleanup. A
confirmation is
required with
IXLREBLD
REQUEST=
DUPLEXCOMPLETE.

N/A

Rebuild Cleanup
EEPLREBUILDCLEANUP

Connections to the structure being rebuilt
have issued IXLREBLD with
REQUEST=COMPLETE to indicate that
the rebuild process is complete.

Connections to the structure being
duplexed have issued IXLREBLD with
REQUEST=DUPLEXCOMPLETE to
indicate that the duplexing process is
complete.

All active
connections to
the structure

Event response
required through
IXLEERSP.

rc=X'08'. See
“Return
Specifications”
on
page 5-152.

Rebuild Complete
EEPLREBUILDPROCESSCOMPLETE

The structure has been successfully
rebuilt. Connectors can resume normal
structure operations.

All active
connections to
the structure

None N/A

5-134 OS/390 V2R8.0 MVS Sysplex Services Guide

Figure 5-17 (Page 5 of 7). Summary of Events Reported to the Event Exit

Event/Description

Important
Information
Passed to Event
Exit

Connections
Notified

Response Required
by Notified
Connection

Valid
IXLYEEPL
Return Codes

Rebuild Stop EEPLREBUILDSTOP

The operator or program has requested to
stop rebuilding or duplexing the structure.
For duplexing, the rebuild stop event
implies KEEP=OLD.

Reason for
stopping the
rebuilding
process

All active
connections to
the structure

Connections must

 1. Complete
outstanding
structure requests
to both original
and new structure
which, if based
on a restart
token, should be
fully completed
before quiescing
use of each
structure.

2. Stop activity to
structure

 3. Prevent new
IXLCACHE,
IXLLIST,
IXLLOCK, or
IXLRT requests
to the structure.

4. Provide an event
exit response.

Event response
required through
IXLEERSP.

rc=X'08'. See
“Return
Specifications”
on
page 5-152.

Rebuild Stop Complete
EEPLREBUILDSTOPPROCESSCOMPLETE

Stop-rebuilding for the structure is
complete. Connectors can resume normal
structure operations.

All active
connections to
the structure

None N/A

User Synchronization Point
EEPLUSERSYNCPOINT

A connection has defined a new user
synchronization point. Connections can
use the IXLUSYNC macro to define
synchronization points for different
processing stages. For example, see
“Using IXLUSYNC to Coordinate
Processing of Events” on page 5-140.

Confirmation that
the processing
for the event is
complete.

Event associated
with the
synchronization
point.

Definition of next
synchronization
point if specified.

Highest
user-defined
completion code
value (or, for
connections that
disconnect or fail
while owing a
sync point
confirmation,
X'0000FFFF',
implicitly set by
XES).

All active
connections to
the structure

| Required.

| Confirmation using
| IXLUSYNC
| REQUEST=CONFIRM
| or REQUEST=
| CONFIRMSET.

N/A

 Chapter 5. Connection Services 5-135

Figure 5-17 (Page 6 of 7). Summary of Events Reported to the Event Exit

Event/Description

Important
Information
Passed to Event
Exit

Connections
Notified

Response Required
by Notified
Connection

Valid
IXLYEEPL
Return Codes

Coupling Facility Structure Volatility
State Change
EEPLVOLATILITYSTATECHANGE

The current volatility state of a coupling
facility structure has changed.

The current
volatility state

All active
connections to
the structure

None

Connection may want
to initiate a rebuild of
the structure.

N/A

XES Recommend Action
EEPLXESRECOMMENDACTION

MVS did not initiate rebuild based on the
comparison of the rebuild percent
specified for the structure and the value
calculated by MVS when a loss of
connectivity occurs. MVS uses system
weights in the active SFM policy to either
start rebuild for the loss or advise the
connections to disconnect. The receipt of
this event indicates that rebuild has not
been started and connections should
disconnect.

 Active
connections that
lost connectivity
to the coupling
facility containing
the structure.

Disconnect from the
structure or start
rebuild

N/A

Structure Alter Begin
EEPLALTERBEGIN

A request to alter the structure has been
initiated.

The requested
target values, the
composite for the
minimum
available
entries/elements
and EMCs, and
ratio change
indication
specified by the
connections.

If user-managed
duplexing is in
effect, status of
the old and new
structures.

All active
connections to
the structure.

None.

If the requested
change is to contract
the structure size,
cast out or otherwise
free up in-use
structure resources to
facilitate the structure
alter processing.

N/A

Structure Alter End EEPLALTEREND

The altering of the structure has ended.

The status of the
structure as the
result of the
structure alter
processing.

If user-managed
duplexing is in
effect, status of
the old and new
structures.

All active
connections to
the structure.

None.

Adjust any limits set
for your use of the
structure based on
the changes made to
the size and/or
apportionment of the
altered structure.

N/A

Loss of Connectivity Percentage
EEPLLOSSCONNPCTNOTIFY

The percentage
loss of
connectivity,
based on SFM
policy weights.
There is no
guarantee that all
connectors will
receive the same
value.

All active
connections to
the structure.

None N/A

5-136 OS/390 V2R8.0 MVS Sysplex Services Guide

Figure 5-17 (Page 7 of 7). Summary of Events Reported to the Event Exit

Event/Description

Important
Information
Passed to Event
Exit

Connections
Notified

Response Required
by Notified
Connection

Valid
IXLYEEPL
Return Codes

| Structure Temporarily Unavailable
| EEPLSTRTEMPUNAVAILABLE

| The structure is temporarily unavailable
| for processing coupling facility requests
| because a system-managed process such
| as rebuild has begun.

| The type of
| system-managed
| process that is
| precluding use of
| the structure.

| The event
| sequence
| number (required
| for response).

| All active
| connections to
| the structure.

| Required, either
| through IXLEERSP or
| by setting return code
| in IXLYEEPL.

| IBM recommends that
| connections prevent
| new coupling facility
| requests (IXLCACHE,
| IXLLIST, IXLLOCK,
| IXLRT, or
| IXLSYNCH) to the
| structure before
| responding to this
| event.

| rc=X'00',
| X'08'. See
| “Return
| Specifications”
| on
| page 5-152.

| Structure State Change
| EEPLSTRSTATECHANGE

| The characteristics of the structure may
| have changed as the result of a
| system-managed process such as rebuild.

| The type of
| process that
| caused the
| structure state
| change.

| Current structure
| characteristics,
| including:

| � CFLEVEL

| � CFNAME

| � Volatility
| state

| � Physical
| structure
| version
| numbers

| � Failure
| isolation
| state

| All active
| connections to
| the structure

| None. The connector
| may inspect the new
| characteristics of the
| structure and take
| appropriate action.

| N/A

| Structure Available
| EEPLSTRAVAILABLE

| A structure that had been temporarily
| unavailable for processing coupling facility
| requests because a system-managed
| process such as rebuild had begun is
| once again available for processing.
| Connections may receive notification of
| structure availability without ever having
| received a Structure Temporarily
| Unavailable event.

| The system presents the Structure
| Available event upon completion of a
| system-managed process to inform the
| connector that activity against the
| indicated structure may be resumed.

| The type of
| system-managed
| process that had
| been precluding
| use of the
| structure.

| All active
| connections to
| the structure.

| None. On receipt of
| this event,
| connections that had
| quiesced their activity
| against the structure
| in response to the
| Structure Temporarily
| Unavailable event
| may resume
| submitting requests to
| the structure.

| N/A

 Chapter 5. Connection Services 5-137

| XES Monitoring of Event Responses
| With OS/390 Release 8 (as well as Releases 3 through 7 with APAR OW20623
| installed), XES provides support for monitoring responses for certain structure
| rebuild , User Sync Point, and Disconnected or Failed Connection events. This
| support is intended to limit the extent of potential hang conditions when connectors
| do not provide an expected response to an event by notifying the operator or an
| automation package so that some action can be taken against the non-responding
| connector. When a specific response is not provided within a predetermined time
| limit, XES issues a message for each connector owing an expected response that
| is overdue indicating a connector's failure to confirm an event. The messages
| identify the connector with the outstanding response so that action can be taken.
| The action, which could be either automated or operator-initiated, could involve
| gathering connection diagnostic information about the unresponsive connector
| instance, cancelling the connector, which in turn, would allow the application or
| subsystem to continue processing.

| Installations should be aware that an expected response that is not received in a
| timely manner does not necessarily indicate that the connector is hung, but could
| mean that because of environmental conditions, the connector is simply taking a
| long time to respond. It is highly recommended that before cancelling the
| connector, the system programmer, operator, or automation program used for
| message handling, should examine some diagnostic data to confirm that the
| connector truly is hung.

| “Events Monitored by XES” lists the events for which XES monitoring is in effect.

| Events Monitored by XES
| To improve sysplex availability, XES monitors the following events to ensure that
| the indicated responses are received from all structure connectors in a timely
| manner.

| Figure 5-18 (Page 1 of 2). Events Monitored by XES

| Event| Required Response

| Rebuild Quiesce| IXLEERSP EVENT=REBUILDQUIESCE

| Rebuild Connect| IXLCONN REBUILD and

| IXLREBLD REQUEST=COMPLETE

| Rebuild Switch| IXLREBLD REQUEST=DUPLEXCOMPLETE

| Rebuild Cleanup| IXLEERSP EVENT=REBLDCLEANUP

| Rebuild Stop| IXLEERSP EVENT=REBLDSTOP

| Structure Temporarily
| Unavailable
| IXLEERSP EVENT=STRTEMPUNAVAILABLE or

| IXLYEEPL return code

| Disconnected or
| Failed Connection
| IXLEERSP EVENT=DISCFAILCONN or

| IXLYEEPL return code

| Rebuild Connect
| Failure
| IXLEERSP EVENT=REBLDCONNFAIL or

| IXLYEEPL return code

| User Sync Point| IXLUSYNC REQUEST=CONFIRM or

| IXLUSYNC REQUEST=CONFIRMSET

5-138 OS/390 V2R8.0 MVS Sysplex Services Guide

| Information Provided by XES Event Monitoring: XES issues either message
| IXL040E or IXL041E when a required response to an event has not been received
| from a particular structure connector within a predetermined time interval. Each
| message identifies the connector, jobname, and ASID of the non-responder, the
| event for which the response is required, and the name of the affected structure.
| The message also identifies the XES process that is unable to continue because
| the required response has not been received and the time that the system started
| waiting for the response.

| The purpose of the message is to alert the operator, system programmer, or
| automation package of a potential hang condition caused by the connector who is
| not responding in a timely manner. Before taking any overt actions to remove the
| connector, the installation should use diagnostic procedures to verify whether the
| connector is truly in a hang condition or is simply slow to respond. Only after it is
| established that the connector is in a hang condition can a decision be made as to
| whether to cancel or shut down the connector.

| XES also records a symptom record in the logrec data set at the time that an
| IXL040E or IXL041E message is issued. The symptom record contains the same
| information as is contained in the message.

| The messages remain on the operator console screen until either the required
| response is received or becomes no longer expected. A required response is no
| longer expected once the connector fails, disconnects, or when system failure
| cleanup processing completes the removal of the failed system on which the
| connector is running. Once a response is no longer expected, the system DOMs
| message IXL040E or IXL041E, and issues message IXL042I or IXL043I.

| Connection Considerations with XES Event Monitoring: XES event monitoring
| is also in effect when a connector attempts to connect to a structure during
| structure rebuild processing that is user-managed or User Sync Point processing. In
| each of these processes, the connector is required to provide an explicit response
| as part of participating in the ongoing rebuild or user sync point process that is

| Figure 5-18 (Page 2 of 2). Events Monitored by XES

| Event| Required Response

| Connecting during
| Rebuild Quiesce
| phase

| IXLEERSP EVENT=REBLDQUIESCE

| Connecting during
| Rebuild Connect
| phase

| IXLCONN REBUILD and

| IXLREBLD REQUEST=COMPLETE

| Connecting during
| Duplex Established
| phase

| IXLCONN REBUILD

| Connecting during
| Rebuild Switch
| process

| IXLCONN REBUILD and

| IXLREBLD REQUEST=DUPLEXCOMPLETE

| Connecting during a
| User Sync Point
| IXLUSYNC REQUEST=CONFIRM or

| IXLUSYNC REQUEST=CONFIRMSET

| Connecting during
| Rebuild Stop process
| IXLEERSP EVENT=REBLDSTOP

 Chapter 5. Connection Services 5-139

| active for the structure. If the response is not received within the predetermined
| time frame, XES will issue a message to the operator indicating the connector's
| failure to confirm this in a timely manner.

| Discontinuing XES Event Monitoring: XES discontinues event monitoring for
| expected responses when either the expected response is received or the required
| response becomes no longer expected from connectors because they have failed,
| disconnected, or reside on a system that terminated. Additionally, the following
| events can trigger the discontinuation of XES monitoring for certain events:

| � Rebuild Stop event

| Causes the monitoring of the Rebuild Quiesce, Rebuild Connect, and Rebuild
| Connect Failure events to be discontinued.

| Causes the monitoring of connector(s) that connected during the Rebuild
| Quiesce, Rebuild Connect, and Duplex Established phases to be discontinued.

| � Disconnected or Failed Connection Event

| Causes the monitoring of the Rebuild Connect Failure event to be discontinued.

| � Structure Available event

| Causes the monitoring of the Structure Temporarily Unavailable event to be
| discontinued.

| Any outstanding operator messages that were issued for the events being
| discontinued are deleted from the console and the followup message, IXL042I or
| IXL043I, is issued.

Using IXLUSYNC to Coordinate Processing of Events
User synchronization points are used to provide synchronization of processing
among connectors to a structure. The IXLUSYNC service and the User Sync Point
Event work together to synchronize processing.

IXLUSYNC allows connections

� To define a value for a synchronization point associated with a specific event
(REQUEST=SET).

� To confirm that a connection has reached a synchronization point
(REQUEST=CONFIRM).

� To confirm the completion of the current event and define a synchronization
point for the next event (REQUEST=CONFIRMSET).

The User Sync Point event is presented to connectors when a new synchronization
point is set successfully and when all connectors confirm that a synchronization
point has been reached. The User Sync Point event does not require an event exit
response.

5-140 OS/390 V2R8.0 MVS Sysplex Services Guide

Overview of IXLUSYNC Processing
Using IXLUSYNC, you can define a value for a synchronization point that is
associated with an event. When a synchronization point value is defined by a
connected user for an event, the system reports the synchronization point value to
the event exit of all connected users. Connected users must establish protocols to
handle the event associated with the synchronization point. When each connector
completes processing associated with the event, the connector uses IXLUSYNC to
confirm that its processing for the event is complete. The connector can also set a
user-defined completion code when confirming with IXLUSYNC.

When all confirmations have been received, the system passes the synchronization
point confirmation to the event exit of all connected users. The information includes
the highest completion code value set by any connector when confirming the sync
point.

For connectors that disconnect or fail while owing a confirmation for a sync point,
the system implicitly confirms the sync point and sets a completion code of
X'0000FFFF' for the disconnected or failed connector. Note that if a given user
completion code is to take precedence over this completion code, it must be higher
that X'0000FFFF' or, if the implicit completion code is to take precedence over a
given user completion code, it must be less than X'0000FFFF'.

You also have the option to define a new synchronization point value to be
associated with another event (REQUEST=CONFIRMSET) at the same time you
confirm the current event. This allows users to construct “chains” of synchronized
events to be processed in sequence. (The last connected user to confirm a
synchronization point defines the new synchronization point. Users who attempt to
CONFIRMSET, but who are not the last connected user, will have the CONFIRM
accepted, but the system rejects the SET with reason code
IXLRSNCODENOTLASTCONFIRMATION.) The system reports the new value to
the event exit of all connected users for confirmation. Only one synchronization
point value can be defined at a time by the entire set of connected users of a
structure.

Information Returned in IXLYEEPL
The following chart illustrates the user sync point values in the event exit parameter
list for the user sync point event. “Request=Set” information is received after a user
sync point is successfully set. “Request=Confirm” or “Request=ConfirmSet”
information is received after all confirmations have been received for a user sync
point.

 Chapter 5. Connection Services 5-141

Figure 5-19. IXLYEEPL Data for IXLUSYNC

REQUEST
=SET

REQUEST
=CONFIRM

REQUEST
=CONFIRMSET

EeplCompletedUserEvent 0 Value of
USEREVENT

Value of USEREVENT

EeplNextUserEvent Value of
USEREVENT

0 Value of NEXTUSEREVENT from
the IXLUSYNC
REQUEST=CONFIRMSET
invocation

EeplCompletedUserState 0 Value of
USERSTATE when
first set

Value of USERSTATE when first
set

EeplNextUserState Value of
USERSTATE or 0

0 Value of USERSTATE from the
IXLUSYNC
REQUEST=CONFIRMSET
invocation

EeplCompletedUserCompCode 0 Highest completion
code set by any
confirming user. Note
that a completion
code of
X'0000FFFF' is set
by XES when a user
who has not provided
a confirmation either
disconnects or fails.

Highest completion code set by
any confirming user. Note that a
completion code of X'0000FFFF'
is set by XES when a user who
has not provided a confirmation
either disconnects or fails.

| XES Monitoring of User Sync Point Event Responses
| XES monitors the time required by the connector to respond to the user sync point
| event. If a response with either IXLUSYNC REQUEST=CONFIRM or IXLUSYNC
| REQUEST=CONFIRMSET is not received in a timely manner, XES issues a
| message for each connector owing a response to the event so that the system
| programmer or operator can take actions to allow processing to continue. See “XES
| Monitoring of Event Responses” on page 5-138.

Handling Connection Failures during Synchronization
Whenever a connection terminates, the system informs all connected users through
the Disconnected or Failed Connection event. If the connection terminates while a
user event is set, two options are available.

� An active connector confirms any outstanding user event confirmations on
behalf of the disconnected or failed connection using PROXYRESPONSE=YES
before all connectors have responded to the Disconnected or Failed
Connection event.

� The system confirms all outstanding user event confirmations for the
disconnected or failed connection as soon as all connectors have responded to
the Disconnected or Failed Connection event.

Before responding to the Disconnected or Failed Connection event, the other
connected users have an opportunity to complete the failed user's processing for
the user event and respond to the event, if required. An example of when this might
be most useful is when the CONFIRMSET option is used. If the failed user was the
last connector to issue IXLUSYNC and had specified CONFIRMSET, the next event

5-142 OS/390 V2R8.0 MVS Sysplex Services Guide

might not have been set before the user terminated. In such a case, one or more of
the peer connectors could issue a SET to define the next event.

To confirm a user event on behalf of a failed user, the active connector must
provide the connect token of the failed user. The system makes this token available
when reporting the Disconnected or Failed Connection event.

If all connections terminate, the system resets the user event.

“Connecting to a Structure when a Synchronization Point Is Set” on page 5-55
describes XES processing when new connectors connect to a structure while a
user synchronization point is set.

Disconnecting from a Coupling Facility Structure
A connected user can disconnect from a coupling facility structure when you no
longer require access to the structure or when you recognize a failure such as loss
of connectivity. Once disconnected, you cannot access the structure through any
XES services.

Overview of Disconnect Processing
Users disconnect from a coupling facility structure either for normal processing or
because of a failure. The system invalidates the disconnecting user's connect token
and notifies other connectors connected to the structure about the disconnect
event. When all connections to the structure have acknowledged the disconnect
request through the event exit or IXLEERSP, the disconnect is complete.

Coding the IXLDISC Macro
The IXLDISC macro allows you to disconnect from a structure. You can disconnect
from only one structure at a time. If you wish to disconnect from multiple structures,
issue IXLDISC once for each structure.

IXLDISC requires that you provide the connect token (CONTOKEN) that XES
returned when the initial connection to the structure was made with IXLCONN. You
also must invoke IXLDISC from the same task that issued IXLCONN for the
connection. During the rebuild process, if a connection disconnects during rebuild
and a rebuild connect is issued from a different task, the subsequent disconnect
must be done from the task that did the original connect.

The IXLDISC macro allows you to specify the reason (either NORMAL or
FAILURE) for your disconnection. If you do not specify a reason, the system
assumes this is a normal disconnection. You can also communicate information
about your disconnection to surviving peer connectors by using the DISCDATA
keyword. This eight bytes of data is passed to the event exits of surviving peers
when you disconnect.

For the complete syntax of the IXLDISC macro, see OS/390 MVS Programming:
Sysplex Services Reference.

 Chapter 5. Connection Services 5-143

Disconnect Events and the Event Exit
When a connected user disconnects from a coupling facility structure, other users
connected to the structure receive notification of the event through their event exits.
The other users must respond to the Disconnected or Failed Connection event,
either by setting a return code in the event exit parameter list (IXLYEEPL) or by
issuing the IXLEERSP macro. The system does initial cleanup of the connection
before notifying the other connected users, but does not complete processing of the
disconnect until all connected users have provided an event exit response. The
disconnected or failed connection remains in the disconnecting or failing state while
the system waits for the event exit responses.

Before responding to the event, the other connected users have the responsibility
of cleaning up all references to the disconnected or failed connection and
performing recovery processing, if necessary. This cleanup might include handling
locks that the connection held or setting and/or confirming a user synchronization
point event. Other connected users determine what type of recovery is necessary
by examining the IXLYEEPL, which indicates how the user terminated (either
normally or abnormally) and what the persistence attribute of the connection is.

Retrieving Information from IXLYEEPL
The following fields in IXLYEEPL provide pertinent information for the Disconnected
or Failed Connection event:

EEPLCONNINFOSUBJECT
General information about the connection that is the subject of the
Disconnected or Failed Connection event.

EEPLTERMINATEDABNORMAL
Type of termination — Did the connection terminate normally or abnormally?

EEPLSUBJDISPOSITIONKEEP
Persistence — Is the connection persistent or non-persistent?

EEPLDISCWITHLOCKRESOURCES
For lock user (lock or serialized list structure) — Was disconnection made with
locks still held?

EEPLSUBJDISCDATA
Did the disconnecting user provide any disconnect-time data when invoking the
IXLDISC macro?

Responding to a Disconnected or Failed Connection Event
You can respond to the Disconnected or Failed Connection event either by
specifying that XES is to complete its cleanup of the connection or that XES is to
complete its cleanup and also release the failed-persistent connection. Specifying
that XES is to release the failed-persistent connection implies that you have done
whatever recovery processing is necessary for the failed connection. You respond
to the event either by setting a return code in IXLYEEPL or by invoking the
IXLEERSP macro.

In IXLYEEPL, the return codes are:

IXLRCEVENTEXITRESPONSE
XES is to complete its cleanup of the connection.

5-144 OS/390 V2R8.0 MVS Sysplex Services Guide

IXLRCEVENTEXITRELEASECONN
XES is to complete its cleanup of the contention and also release the
failed-persistent connection.

IXLRCEVENTEXITLATERESPONSE
You will respond to the event at a later time using the IXLEERSP macro.

To respond with IXLEERSP, the parameters are:

EVENT=DISCFAILCONN,RELEASECONN=NO,...
XES is to complete its cleanup of the connection.

EVENT=DISCFAILCONN,RELEASECONN=YES,...
XES is to complete its cleanup of the contention and also release the
failed-persistent connection.

| XES Monitoring of Disconnected or Failed Connection Event
| Responses
| XES monitors the time required by the connector to respond to the
| DISCFAILCONN event. If a response is not received in a timely manner, XES
| issues a message for each connector owing a response to the event so that the
| system programmer or operator can take actions to allow processing to continue.
| See “XES Monitoring of Event Responses” on page 5-138.

 Persistence Considerations
Both connection and structure persistence are defined at connect time with the
IXLCONN macro. CONDISP=KEEP and CONDISP=DELETE specify whether a
connection is to remain defined after a failure; STRDISP=KEEP and
STRDISP=DELETE specify whether a structure is to become not-defined after all
users have disconnected.

 Normal Disconnection
A connected user who disconnects from a structure because normal structure
processing is complete specifies REASON=NORMAL on IXLDISC. The system
releases the connection to the structure when normal disconnection occurs. (The
connection disposition refers only to processing that is to occur if a failure occurs;
therefore, whether the connected user specified CONDISP=KEEP or
CONDISP=DELETE on IXLCONN, the connection is released.)

Note: If a connected user disconnects with REASON=NORMAL on IXLDISC while
still holding locks, XES treats the disconnect as if the user had specified
REASON=FAILURE on IXLDISC.

Disconnection Because of Failure
In an error recovery situation, you can disconnect with REASON=FAILURE. If you
had defined CONDISP=KEEP on IXLCONN and disconnect with
REASON=FAILURE, your connection will be placed in a failed-persistent state
when all peer connections respond to the Disconnected or Failed Connection event.
To determine how to handle failed-persistence, see “Deleting Failed-Persistent
Connections” on page 5-62.

If CONDISP=DELETE, the failed connection will be placed in the not-defined state
when all peer connections respond to the Disconnected or Failed Connection event.

 Chapter 5. Connection Services 5-145

Handling Resources for a Disconnection
After all active users have disconnected from the structure and all failed-persistent
connections are released, XES either deletes (STRDISP=DELETE) or retains
(STRDISP=KEEP) the structure depending on the structure disposition specified on
IXLCONN. See “Defining the Structure Attributes” on page 5-4.

Whether the disconnection is normal or the result of an error, MVS cleans up
resources depending on the type of structure (cache, list, or lock) and whether the
connection is being made failed-persistent or not.

 � Cache structure

– The local cache vector is released.
– Cast-out locks held by the terminating connection are reset.

- For castout locks held by the terminating connection in the
read-for-castout state (that is, as the result of a CASTOUT_DATA
request), the cast-out lock and cast-out lock state are reset to zero, the
change bit for the entry is set to one to overindicate the “changed” state
for the entry, and the parity is reset to the null value.

- For cast-out locks held by the terminating connection in the
write-with-castout state (that is, as the result of a WRITE_DATA
CHANGED=NO GETCOLOCK=YES request), the entry is deleted from
the cache structure along with all data and registered interest.

– Registered interest in named directory entries is cleaned up.

� List and serialized list structure

– List monitoring interest, if registered for, is released.
– Event queue monitoring interest, if registered for, is released.
– The user's event queue and all event monitor controls objects used to

monitor sublists, if applicable, are released.
– For a serialized list structure, if the connection is being made

failed-persistent, the lock resources are kept. If the connection is being
made not-defined, the lock resources are released.

 � Lock structure

– XES releases locks held by the failed connector when all responses are
received for the Disconnected or Failed Connection event. If the connection
is being made failed-persistent, the record data associated with the failed
connector is kept. If the connection is being made not-defined but still has
associated record data, the record data is released.

If the disconnected structure is a lock or a serialized list, the system leaves the
XCF group that it joined when the user first issued the IXLCONN request.

In certain instances, XES must quiesce the activity of user exits in order to perform
cleanup processing. For example, when a user disconnects or abnormally
terminates, XES will force to completion any user exits executing on behalf of that
user by issuing a PURGEDQ against the appropriate units of work. Note that if a
connector terminates while a rebuild is in progress, any exits pertaining to both the
original and the new structures will be forced to completion. In addition to forcing
the currently executing user exits to completion, XES will also prevent any new
invocations of these exits by cancelling any events that are pending presentation.

5-146 OS/390 V2R8.0 MVS Sysplex Services Guide

A user exit must be sensitive to conditions that can occur as a result of actions
taken by XES and must be able to handle these as appropriate. For example, if a
user exit has suspended itself, when the PURGEDQ is issued the system abends
the user exit's unit of work with a retryable X'47B' abend and gives control to the
user exit's recovery routine. (Note that although the recovery routine can retry, the
user exit can not re-suspend itself because the system will fail any request to
suspend a unit of work that has been the target of a PURGEDQ.) If the recovery
routine percolates back to the system, its associated connection is terminated.

 Dumping Considerations
If the last user disconnects from a structure that has an SVC dump associated with
it, the system will not delete the structure (regardless of the STRDISP of the
structure) until the dump is successfully written out to a dump data set.

� If STRDISP=DELETE, deallocation of the structure remains pending until after
the structure dump is deleted. If a new connection connects to the structure, a
new instance of the structure will be allocated.

� If STRDISP=KEEP, the structure is not deallocated. If a new connection
connects to the structure, it is connected to the current instance of the
structure.

Successful Completion of a Disconnection
The system invalidates the user's connect token before returning control to the user
who issued the IXLDISC macro. This ensures that the user cannot issue additional
XES mainline requests. If the user does use the invalidated token to issue a
request for XES services, the request fails with reason code
IXLRSNCODEBADCONTOKEN.

The system considers the disconnection complete when all connected users to the
structure have acknowledged the disconnection. Active connections to the structure
respond to the disconnect event through their event exits. Connections that have
failed before responding to the event are handled by XES cleanup processing.
(XES implicitly confirms on behalf of the failed connections, with an implied
RELEASECONN=NO.)

Upon successful disconnect from a structure, ENF event code 35 is issued.

Forcing the Deletion of a Coupling Facility Object
The IXLFORCE service forces the deletion of objects in the coupling faclility. The
objects may be coupling facility structures, connections to a structure, a structure
dump associated with a structure, or the structure dump serialization for a structure
dump associated with a structure.

| The IXLFORCE service is intended to be used for clean-up purposes. For that
| reason, issuers of the IXLFORCE macro do not have to be connected XES users.
| Note that forcing a structure without understanding how the structure is being used
| might cause loss of data or data integrity.

To determine which coupling facility objects are candidates for deletion, use the
IXCQUERY macro. IXCQUERY returns information about the status of a structure,
the state of structure connection, and whether or not a structure dump is associated

 Chapter 5. Connection Services 5-147

with a structure. The DISPLAY XCF operator command also can be used to display
this structure information.

Deleting a Coupling Facility Structure
A persistent structure can be deleted only if there are no active or failed-persistent
connections to the structure, no failed-persistent connections pending reconciliation
into the CFRM active policy, and no structure dump associated with the structure.
Deallocation of the structure occurs as follows:

� If there is no connectivity to the coupling facility in which the structure is
allocated, deallocation of the structure remains pending until connectivity to the
coupling facility is established.

� If there is a structure dump associated with the structure, deallocation of the
structure remains pending until the structure dump is deleted. This normally
occurs upon completion of the SVC dump that created the structure dump,
although you can also delete the structure dump using the IXLFORCE service.

You cannot delete a structure while the rebuild process is in effect for the structure.

Deleting a Coupling Facility Connection to a Structure
You can delete one or more failed-persistent connections to a coupling facility
structure with the IXLFORCE service. An active connection cannot be deleted.
Once the last connection to a non-persistent structure has been deleted, the
structure also is deleted. Deletion of a failed-persistent connection occurs as
follows:

� All connectors active at the time that the failed-persistent connection terminated
must have provided an event exit response acknowledging the termination of
the failed-persistent connector.

� When multiple failed-persistent connections to a structure are to be deleted with
one invocation of IXLFORCE, each failed-persistent connection is treated as a
single IXLFORCE request.

You cannot delete a connection to a structure while the rebuild process is in effect
for the structure. However, you can delete a failed-persistent connection to a
structure in the Duplex Established phase of user-managed duplexing rebuild, as
long as a request to switch or stop the duplexing rebuild is not in progress.

Deleting a Structure Dump
You can delete a structure dump associated with either an active coupling facility
structure or a structure pending deallocation. Identify the structure dump by
specifying the structure dump ID. A structure dump ID of zero designates the
structure dump(s) associated with an active instance of the structure. This includes,
for a structure being rebuilt, any dumps associated with the rebuild old structure,
the rebuild new structure, or both. A non-zero structure dump ID designates the
structure dump whose structure dump ID matches the specified value.

Requests to delete a structure dump for structures that are pending deallocation will
not be processed unless a non-zero structure dump ID is specified.

If SVC Dump was in the process of capturing information into the structure dump at
the time of the IXLFORCE request, the dump will not include any information
pertaining to that structure. If SVC Dump was in the process of writing the captured

5-148 OS/390 V2R8.0 MVS Sysplex Services Guide

information to the dump data set from the structure dump, the dump will be
truncated for that structure.

Deleting Structure Dump Serialization
You can delete structure dump serialization for a structure dump associated with an
active structure. This includes, for a structure being rebuilt, any dumps associated
with the rebuild old structure, the rebuild new structure, or both. Release of dump
serialization for a structure pending deallocation is not supported because the
structure would have no active connectors to be impacted by dump serialization.
Identify the structure dump for which serialization is to be released by specifying
the structure dump ID.

When serialization for the structure dump is released, the structure dump that was
in progress for the structure will be truncated. If SVC Dump was in the process of
capturing information into the structure dump at the time of the IXLFORCE request,
SVC Dump does not capture any additional data, but all the captured information is
written to a dump data set. If SVC Dump was in the process of retrieving entry data
serialized, the entry data will be included in the dump, but it may change as it is
being written to the dump data set.

Authorizing the Use of IXLFORCE
The security administrator may want to protect the integrity of the data contained in
coupling facility structures. The default processing for IXLFORCE is to allow all
force requests; the security administrator can override this default with the use of
RACF or another security product. See “Authorizing Coupling Facility Requests” on
page 5-3.

Forcing a Structure with Failed-Persistent Connections
A non-persistent structure is deleted when the last connection to the structure is
deleted. If, however, the connection to the structure has failed, the connection must
be deleted before the system can delete the structure. Consider your environment
when deciding how to delete structures with failed-persistent connections:

� In a production environment where data integrity is important, you might restart
the application to cleanup or reconnect the failed-persistent connections and
use the applications' normal shut down procedure to cause the application to
disconnect and stop using the structure. Once there are no longer any
connections in the active or failed-persistent state, you can issue the SETXCF
FORCE command to force the deletion of the structure.

� In a test environment or when data integrity is not important, use the SETXCF
FORCE command to delete each individual failed-persistent connection. When
no active or failed-persistent connections remain, you can use the SETXCF
FORCE command to force the deletion of the structure.

Coding Exit Routines for Connection Services
All three structure types require both an event exit and a complete exit. The event
exit requirements are described here; requirements for the complete exit are
described with each of the structure services.

 Chapter 5. Connection Services 5-149

Coding the Event Exit
The event exit receives control in SRB mode with an event exit parameter list
(IXLYEEPL) that describes the event being reported. Some events reported by the
event exit require that you respond to the event, by setting a return code in
IXLYEEPL. One return code that you can set specifies that you intend to do
additional asynchronous processing and respond to the event at a later time, using
the IXLEERSP macro.

Upon return from the event exit, the connected user no longer can access
IXLYEEPL. However, IXLYEEPL contains information that will be required by
IXLEERSP if that is the method by which you are responding. You must ensure
that you copy the relevant IXLYEEPL data into a control block of your own for
subsequent use by IXLEERSP.

Exit Routine Environment
The event exit receives control in the following environment:

Authorization: Supervisor state and PSW key 0
Dispatchable unit mode: SRB
Cross memory mode: PASN = HASN = SASN. The primary address space equals

the primary address space of the caller of IXLCONN.
Amode: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held

 Exit Recovery
Routines that require recovery must establish their own. If SDWA recording is
necessary for the recording of failure information, the exit's recovery routine must
provide it. If an SVC dump is required, the recovery routine must also provide for
that. Be aware that if the event exit fails for any reason and the XES recovery
routine receives control before the exit's recovery routine (or the exit's recovery
routine percolated to the XES recovery routine), the XES recovery routine will
terminate the connector with a X'026' abend.

Exit Routine Processing
The system reports events to the event exit as they occur so it is possible that the
exit of a connected user can receive control before the IXLCONN macro for the
connection that is the subject of the event has completed. Therefore, ensure that
before you issue IXLCONN, you have the event exit established along with any
control structures necessary to complete the exit's processing.

The system passes information to the event exit routine in a parameter list and in
registers.

 Processing Considerations
Consider the following when writing an event exit routine:

� The event exit routine must be a reentrant program.

� If a connection can perform required processing for an event synchronously in
the event exit (that is, the user can respond to the event at the time it occurs),
exit processing should not be long-running and should not suspend the event
exit SRB. As long as the event exit is running, the connection cannot receive

5-150 OS/390 V2R8.0 MVS Sysplex Services Guide

information about other events as they occur because XES serializes its
invocations of the event exit on a connection basis.

� It is advisable to check the connection level of the subject of the event. If you
are in an environment with connectors of mixed connection levels, it is possible
that you might be notified of an event that your event exit has not provided for
(because you are processing at a “lower level” of MVS). If that situation
occurs, you should set the EEPLRETCODE to X'00' and return to MVS, rather
than to treat the unknown or unexpected event as an error.

Macro Instructions and Restrictions: The following restriction applies to the
event exit routine:

� Because the event exit runs in SRB mode, the event exit routine cannot issue
any macros that issue an SVC or that require the caller to be in task mode.

Input Register Information
On entry to the event exit routine, the general purpose registers (GPRs) contain:

Register Contents

0 Does not contain any information for use by the event exit

1 Address of a fullword that contains the address of the event exit
parameter list (IXLYEEPL)

2-12 Does not contain any information for use by the event exit

13 Address of a 72-byte work area for use by the event exit routine. The
exit routine does not have to save or restore registers in this work area.
The exit routine can use this work area in any way it chooses.

14 Return address

15 Entry point address

When the event exit receives control, the access registers (ARs) contain no
information for use by the event exit.

Output Register Information
When control returns to XES, there are no requirements for the GPRs or ARs to
contain any particular value.

Parameter List Contents: The parameter list that the system passes to the event
exit routine is mapped by the IXLYEEPL mapping macro. GPR 1 contains the
address of a fullword that points to IXLYEEPL. The parameter list is addressable
from the primary address space in which the event exit routine runs, and includes
the following:

� Information about the connection whose event exit gets control

 � Event code.

� Event sequence number.

� Event exit return codes set by the user during exit processing. See “Return
Specifications” on page 5-152.

� Console ID and command-and-response token (CART) for operator-initiated
events.

� Information about the connection that is the subject of the event.

 Chapter 5. Connection Services 5-151

� Information about the specific event.

When control returns to the program from the event exit, the connected user can no
longer access IXLYEEPL. If the user intends to respond to the event using
IXLEERSP, the user must save the following IXLYEEPL information to provide to
the IXLEERSP macro:

 � Event type
� Event sequence number
� CONTOKEN for the connection that is the subject of an existing connection

event
� SUBJCONTOKEN for the Disconnected or Failed Connection event and the

Rebuild Connect Failure event.

 Return Specifications
Return to XES with the address that was in register 14 upon entry to the event exit.

Depending on the event, set the following return codes in the EEPLRETCODE field
in IXLYEEPL:

Return code Meaning

0 The connected user confirms the event reported to its event exit.

1 The connected user confirms the Existing Connection event or the
Disconnected or Failed Connection event and requests that the
system release the connection if it is failed-persistent.

8 The connected user does not confirm the event, but intends to
issue the IXLEERSP macro to provide a response at a later time.

For information about IXLYEEPL, see OS/390 MVS Data Areas, Vol 3 (IVT-RCWK).

 Using IXLEERSP
The IXLEERSP macro allows a connected user to provide a response to an event.
IXLEERSP must be issued in task mode and can be used to respond
asynchronously to events. The connected user should perform the necessary
processing for the reported event before issuing the IXLEERSP macro.

A connected user responds to the following events using IXLEERSP:

� A disconnected or failed connection.

The user can confirm that recovery for the connection is complete and if the
connection is failed-persistent, release the failed-persistent state of the
connection. Or the user can request that the system continue processing for
the failed connection, in which case the connection disposition is not affected.

� An existing connection that is failed-persistent.

The user can inform the system to release a connection in a failed-persistent
state.

 � Rebuild Quiesce

| The user is participating in the user-managed structure rebuild process (rebuild
| or duplexing rebuild) for the structure and has completed the necessary
| processing to quiesce activity to the structure.

� Rebuild Connect Failure

5-152 OS/390 V2R8.0 MVS Sysplex Services Guide

The user must clean up any control information about a successful rebuild
connect request that was reported by a Rebuild New Connection event or a
Rebuild Existing Connection event.

 � Rebuild Cleanup

The user has cleaned up all information about the original structure.

 � Rebuild Stop.

| The user confirms the request to stop the user-managed structure rebuild
| process (rebuild or duplexing rebuild).

| � Structure Temporarily Unavailable.

| The user is not required to take any action before responding to the Structure
| Temporarily Unavailable event, but may optionally quiesce activity against the
| structure before responding. IBM recommends that connectors quiesce
| structure activity when presented with the Structure Temporarily Unavailable
| event to minimize system resources consumed during the system-managed
| process.

The following data (saved from the IXLYEEPL) must be provided on the IXLEERSP
invocation:

 � Event type
� Event sequence number
� CONTOKEN for the connection that is the subject of an existing connection

event.

The following table shows the synchronous IXLYEEPL return code response to a
Disconnected or Failed Connection event or an Existing Connection event and how
a user accomplishes the same response asynchronously using IXLEERSP:

Figure 5-20. Comparison of IXLYEEPL and IXLEERSP

Event
IXLYEEPL
return code IXLEERSP keyword

Event
response

Disconnected
or Failed
Connection

0 For a failed connection:

EVENT=DISCFAILCONN
RELEASECONN=NO

User confirms
the event;
connection
disposition
unaffected.

Disconnected
or Failed
Connection

1 For a failed connection that is
failed-persistent:

EVENT=DISCFAILCONN
RELEASECONN=YES

User confirms
the failed
connection
and releases
the
connection.

Existing
Connection

1 For an existing connection that
is failed-persistent

EVENT=EXISTINGCONN
RELEASECONN=YES

User confirms
the failed
connection
and releases
the
connection.

 Chapter 5. Connection Services 5-153

5-154 OS/390 V2R8.0 MVS Sysplex Services Guide

Chapter 6. Using Cache Services (IXLCACHE)

This chapter discusses the cache structure, the IXLCACHE macro, and its services.
It describes how to use the cache services to access and manage the cache
structure and storage. In addition to IXLCACHE, other services are available to
users for managing and using a cache structure. (See “Other Services Used with
IXLCACHE” on page 6-53.)

Benefits of Using Cache Services
A cache structure and its related services provide sysplex users with data
consistency and high-speed access to data. Data consistency means that users
can use cache services and develop protocols to ensure the validity of the data that
they share. High-speed access means that users can use cache services to
develop data sharing programs and protocols with improved performance.

 Data Consistency

You can store data to be shared among multiple users in the cache structure
on the coupling facility. You can also use the cache structure to keep track of
data that resides in permanent storage and in local storage but is not stored in
the cache structure itself.

However you store data that multiple users share, each user of the cache
structure is expected to maintain a local cache buffer to contain a copy of the
data. Through the use of a directory in the cache structure and a mechanism
called “cross-invalidate” to inform users of changes to data, each MVS system
in the sysplex can keep track of whether locally cached copies of the data are
valid (that is, whether the copies contain the latest changes).

The directory allows you to refer to named data items that you can store in the
cache structure itself or in local storage. Cross-invalidate processing involves
setting an indicator in a local cache vector for each of the users to indicate
whether the locally cached copy of the data is valid. Users must test the
indicator to determine the validity of their copy, and if the data is no longer
valid, users must read the data (either from the coupling facility or permanent
storage) to obtain the most current copy.

High-speed Access to Shared Data

You can use the cache structure to store and access data that users can
share, or to keep track of shared data that users maintain in their local cache
buffers. Accessing data stored in the local cache buffer is the quickest way for
a user to access the shared data. However, if the system has invalidated the
local copy because another user has updated the data, you must gain access
to the data in another way. Accessing data from the cache structure in the
coupling facility is the next fastest way for the user to access the shared data.

Data in the cache structure is directly accessible to any system in the sysplex
that has access to the structure. If you do not store the data in the cache
structure, you must read the data from permanent storage (like DASD), which is
not as fast as accessing the data from the local cache buffer or from the cache
structure in the coupling facility.

 Copyright IBM Corp. 1994, 1999 6-1

Elements of A Cache System
A cache system consists of four major elements:

 � Cache structure
 � Permanent storage
� Local cache buffers
� Local cache vector

Figure 6-1 shows the four elements and their relationship to each other.

CACHE
STRUCTURE

PERMANENT
STORAGE

CONNECTION B

Local Cache
Vector

Local Cache
Buffers

CPC 2

CONNECTION A

Local Cache
Vector

Local Cache
Buffers

CPC 1

Figure 6-1. Elements of a Cache System

Each piece of shared data, referred to as a “data item” throughout this chapter, can
be stored in different locations within the cache system. Copies of shared data
items are stored in the local cache buffers (fastest access) belonging to each cache
user. The shared data also resides either in the cache structure on the coupling
facility (next fastest access), on permanent storage (slower access to the data than
from either the local cache or cache structure) or both the cache structure and

6-2 OS/390 V2R8.0 MVS Sysplex Services Guide

permanent storage. In general, how quickly you can access the data depends on
where it is stored.

A description of each element of a cache system follows:

� Local cache buffers — Local cache buffers are storage buffers that users
allocate in their own storage area. They contain copies of data that is shared
among cache users. Users read data from permanent storage or from the
cache structure to their local cache buffers, and write data from their local
cache buffers to permanent storage, to the cache structure, or to both
locations. Each user who accesses the cache structure must have a set of local
cache buffers to accommodate the data items to be shared.

� The cache structure — The cache structure is a structure in the coupling
facility that contains:

– A directory to keep track of named data items that are shared among
cache users

– Optionally, data entries that hold data items

Users who are connected to the cache structure can use cache services to
access and manage shared data.

� Permanent storage — Permanent storage is storage that is the final repository
for the data that users share, and might be on a direct access storage device
(DASD). Users can read the data from permanent storage to local storage
buffers for their use, and then either write the data to the cache structure and
maintain the data there, or maintain the data in the local buffers and use the
“directory-only” caching method to track the validity of the data. After users
make updates to the locally-cached data, they are responsible for ensuring that
the changes are made to the permanent storage copy of the data. They make
these changes to permanent storage either immediately after the update or at a
later time, depending on the cache protocol.

� Local cache vector — The local cache vector is a user-defined vector that
provides a way for cache users to determine the validity of data in their local
cache buffers. There is one local cache vector per user of the cache. Each
vector is divided into separate entries with each entry corresponding to a local
cache buffer. Each vector entry contains an indicator that the system sets to
indicate whether the data in the corresponding local cache buffer is valid. Users
must test the indicator to determine the validity of the data in their local cache
buffers.

Because the local cache vector is in system storage and not directly
addressable by the user, the system provides the IXLVECTR service.
IXLVECTR allows the user to test the entries in the vector to determine
whether the corresponding local cache buffer is valid, and to dynamically
change the number of entries in the vector.

Elements of a Cache Structure
A cache structure consists of the following major elements:

� A directory consisting of one or more directory entries
� Optional data entries consisting of one or more data elements
� Optional adjunct areas

 Chapter 6. Using Cache Services (IXLCACHE) 6-3

Figure 6-2 on page 6-4 shows the elements of a cache structure. Two different
users on separate processors (CPCs) in the sysplex access the cache structure in
the coupling facility. A description of each of the cache structure elements follows
the figure.

CACHE STRUCTURE

ENTRY m

ENTRY n

Directory

ENTRY 1
Data

Entry 1
ADJ
Data

1

Data
Entry m

ADJ
Data

m

ADJ
Data

n

CONNECTION B

Local Cache Vector

CPC 2

CONNECTION A

Local Cache Vector

CPC 1

Figure 6-2. Major Elements of a Cache Structure

� Directory — The directory is a directory for the cache structure where the
system keeps control information about data items shared among cache users.
There is one directory entry for each data item that users share. Data items
can be stored in the cache structure, maintained in each user's local cache
buffers, or maintained in both locations.

If a directory entry exists in the cache for a data item (that is, the system has
assigned a directory entry to the data item), the data item is said to be
“identified” to the cache structure, whether the data item is stored in the cache
structure or not. When a data item is identified to the cache structure, each
user receives notification through the local cache vector about the validity of the
data item. The data item does not need to reside in the cache structure for the
system to indicate through the local cache vector whether the data item has
been changed. As long as the data item is identified by a directory entry, the
system can indicate to users that the data item associated with the directory
entry has been changed and is therefore no longer valid. A cache structure that
contains directory entries but no data items is referred to as a “directory-only”
cache.

For a complete list of the information contained in a directory entry, see
“Format of Returned Directory Information” on page 6-118.

� Data entry — A data entry is storage in the cache structure where the system
stores a data item that a user writes to the cache structure. (For a
“directory-only” cache, the data is not actually stored in the cache structure, so
the cache structure contains directory entries but no data entries.) For a data
item that exists in the cache structure, the data entry for the data item can
consist of from 1 to 16 data elements for a cache structure allocated in a
coupling facility of CFLEVEL=0, from 1 to 255 for a cache structure allocated in
a coupling facility of CFLEVEL=1 or higher, or from 0 to 255 for a cache
structure allocated in a coupling facility of CFLEVEL=4 or higher. Each data

6-4 OS/390 V2R8.0 MVS Sysplex Services Guide

element is of a fixed length (from 256 to 4096 bytes). The fixed size of each
data element is defined when the structure is allocated and cannot be changed
for the life of the structure.

When a user writes a data item to the structure for the first time, the user
specifies the number of data elements that are associated with the data entry.
(1 to 16 for CFLEVEL=0, 1 to 255 for CFLEVEL=1 or higher, or 0 to 255 for
CFLEVEL=4 or higher.) If the data entry is subsequently overwritten, you can
increase or decrease the number of data elements associated with the data
entry. You specify the maximum number of data elements that a data entry in
the cache structure can support on the MAXELEMNUM keyword of the
IXLCONN macro.

� Adjunct area — An adjunct area is storage that is separate from the data entry
to which users can write data and from which users can read data. Adjunct
areas are optional. If you specify adjunct areas, the system provides one
64-byte adjunct area for each allocated directory entry. Users can provide
additional data for data entries in the adjunct area or extend the user-data
fields of associated directory entries.

Figure 6-3 summarizes characteristics of data entries, data elements, and adjunct
areas.

Figure 6-3 (Page 1 of 2). Data Entry, Data Element, and Adjunct Area Characteristics

Component Size
When Attributes Are
Determined

When Attributes Can Be
Changed

Data element 256, 512 1024,
2048, or 4096
bytes

The first user to connect to the
structure determines the fixed
element size.

Element size is fixed for the life
of the list structure.

Data entry Each user designates the
number of data elements as
part of each write operation.

Each user can change the
number of data elements each
time the user writes data to the
cache structure.

0 to 16 elements;
CFLEVEL=0

The first connector to the
structure specifies the actual
maximum number of data
elements per data entry (16 or
less) using the MAXELEMNUM
parameter of the IXLCONN
macro

0 to 255
elements
CFLEVEL=1 or
higher

The first connector to the
structure specifies the actual
maximum number of data
elements per data entry (255
or less) using the
MAXELEMNUM parameter of
the IXLCONN macro

0 to 255
elements
CFLEVEL=4 or
higher

With a coupling facility of
CFLEVEL=4 or higher, the user
can specify that 0 elements are
to be allocated when writing
data to the cache structure only
when CHANGED=NO is
specified on the WRITE_DATA
request.

 Chapter 6. Using Cache Services (IXLCACHE) 6-5

Figure 6-3 (Page 2 of 2). Data Entry, Data Element, and Adjunct Area Characteristics

Component Size
When Attributes Are
Determined

When Attributes Can Be
Changed

Adjunct area 64 bytes The first user to connect to the
structure determines whether
the cache structure has adjunct
areas.

The presence or absence of
adjunct areas is fixed for the life
of the cache structure.

 Important Terms
The following is a list of terms that you need to understand. These terms describe
basic concepts important to the understanding of the cache structure and cache
services.

Figure 6-4 (Page 1 of 2). Terms for Caching

Term Definition

cast out/casting out Process of writing changed data that is in the cache structure to permanent
storage. Casting out is implemented through the association of data items
with cast-out classes .

cast-out class Class assigned to a data item used with cast-out processing. Users of the
store-in method of caching must assign data items in the cache structure to
cast-out classes . Cast-out class assignments simplify the cast-out process
by grouping data items together with similar characteristics. Users must also
develop their own cast-out algorithms that make use of these cast-out
classes when they cast out data.

cast-out lock Lock used with a data item for cast-out processing. The user must obtain the
data item's cast-out lock to serialize the update to permanent storage.
When the cast-out lock is held for a data item, the data item is said to be
locked for cast-out . When a data item is locked for cast-out, the cast-out
lock (composed of the connection identifier of the holder of the cast-out lock
and, optionally, the process identifier of the task or process that holds the
lock) is part of the directory entry for the data item. Any user can still make
updates to the data item even when the data item is locked for cast out.

changed data (changed data item) A data item in the cache structure that is an updated version of the same
data item on permanent storage. When a user updates the copy of a data
item in the local cache buffer and then writes the updated data to the cache
structure, the data item is considered changed data. If a user has written to
the cache structure but has not yet cast out the data to permanent storage,
the data in the cache structure is said to be changed . A data item that is
locked for cast-out processing is also considered changed until the update is
made to permanent storage and the cast-out lock is released.

An unchanged data item is a data item in the cache structure that is the
same as the version on permanent storage.

data item A single unit of information that is referred to by a single name in local cache
buffers, the cache structure, and on permanent storage. If a data item is in
the cache structure, it is contained in a data entry . A user will keep a copy
of a data item in a local cache buffer. Wherever copies of the same data item
exist, that data item is referred to by a single name.

deregistration/deregistering interest A way to indicate to users information about the validity of a data item.
Users with registered interest in a data item can have their interest
deregistered if the data item has changed and the local copy of the data is
no longer valid. When a shared data item is updated, the system indicates to
interested users, through the users' associated local cache vector entry, that
the data item has been changed. The copy of the data item in users' local
cache buffer is then considered not valid . This process is also referred to as
invalidation of local cache copies of data items.

6-6 OS/390 V2R8.0 MVS Sysplex Services Guide

Figure 6-4 (Page 2 of 2). Terms for Caching

Term Definition

directory-only cache A cache structure that contains directory entries but not data items. Contrast
with store-in and store-through cache . See “Directory-only Cache” on
page 6-9.

invalidation See deregistration/deregistering interest .

reclaim The management of resources in the cache structure. When a user writes a
data item to the cache structure and a resource like a directory entry or data
entry is unavailable, the system attempts to reclaim an existing directory
entry or data entry to satisfy the request. Not all resources are available for
reclaim. For example, a data entry containing changed data cannot be
reclaimed. Reclaim is implemented through the association of data items with
storage classes . Users can define a reclaim vector and use IXLCACHE to
control reclaim processing. Otherwise, a system default for reclaim is in
effect.

registration/registering interest A way to indicate to users information about the validity of a data item.
Users that use the cache structure can register interest in a data item. When
a user registers interest in a data item, an association is formed between the
local cache vector entry associated with the user's local copy of the data item
and the directory entry for the data item in the cache structure. When interest
has been registered, the system uses the local cache vector entry to indicate
the validity or invalidity of the data in the user's local cache buffer. If a user
has registered interest in a data item, the copy of that data item in the user's
local cache buffer is considered valid .

storage class Class assigned to a data item in the cache structure used in the reclaim
process. Each data item that is defined to the cache structure (either through
a directory-only cache structure or a cache structure that contains both
directory entries and data entries) must be assigned to a storage class .
Storage class assignments simplify the reclamation of resources by
grouping together data items with similar characteristics.

store-in cache A cache structure in which data items are stored in data entries. Users of a
store-in cache write changed data to the cache structure but not to
permanent storage at the same time. Users perform an independent cast-out
process after the updates have been made and then make the changes to
permanent storage. Contrast with store-through cache and directory-only
cache . See “Store-in Cache” on page 6-8.

store-through cache A cache structure in which data items are stored in data entries. Users of a
store-through cache write changed data to the cache structure and to
permanent storage at the same time, that is, under the same serialization.
Contrast with store-in cache and directory-only cache . See “Store-through
Cache” on page 6-9.

valid data The state of data in a user's local cache buffer. If a user's copy of a data
item is valid , the copy contains the latest changes. If a data item copy is
not valid , it does not reflect the latest changes. See also
registration/registering interest .

validation See registration/registering interest .

Using the Cache Structure
There are three ways to use the cache structure in a cache system:

� As a store-in cache

� As a store-through cache

� As a directory-only cache

 Chapter 6. Using Cache Services (IXLCACHE) 6-7

Before you use the cache services, evaluate the different characteristics of each
method as they apply to your data sharing application.

 Store-in Cache
Store-in cache users store data in the cache structure on the coupling facility. The
data can be changed data (different from the data on permanent storage) or
unchanged (the same as data on permanent storage). What distinguishes the
store-in method from other cache methods is that store-in cache users write
changed data to the cache structure but do not at the same time write the data to
permanent storage (called hardening the data). This means that at any time, the
data in the cache structure might contain changes not yet stored (or hardened) in
permanent storage. Store-in users must periodically read the changed data from
the cache structure and write, or “cast-out” the changed data to permanent storage.

Accessing the Data
The store-in cache user needs to access permanent storage less frequently than do
the users of the other methods.

� Reading a data item - Users read from permanent storage as a “last resort.”
First, they check the local cache buffer to determine if the local buffer contains
a valid copy of the data. If the data item is not valid in the local cache buffer
(that is, the system indicates that the data is not valid as a result of an action
taken by another user of the data), they next read the cache structure for the
data item. If the data item is not in the cache structure, users finally read the
data from permanent storage.

� Writing a data item - Users write the changed data to the cache structure.
Periodically, they must cast out the data to permanent storage.

Casting out Data from the Cache Structure
The store-in user must develop a protocol for casting out changed data to
permanent storage. This protocol includes assigning data items to cast-out classes
and developing a cast-out algorithm. (For information, see “CASTOUT_DATA:
Casting Out Data from a Cache Structure” on page 6-79.)

Assigning Storage Classes
The store-in user must assign data items to storage classes to direct the system in
reclaiming resources, such as data entries and directory entries, from the cache
structure. (For information, see “Assigning and Using Storage Classes” on
page 6-29.)

 Recovery
Your program must provide recovery of data in the cache structure. Because the
latest changes to data might exist only in the cache structure on the coupling
facility, recovery of the data is crucial if the coupling facility or structure fails. When
you use the IXLCONN macro to connect to the structure, you might also consider
specifying that the cache structure be allocated in a non-volatile coupling facility.

6-8 OS/390 V2R8.0 MVS Sysplex Services Guide

 Store-through Cache
Store-through cache users also store changed or unchanged data in the cache
structure. Unlike the store-in method, the store-through user writes changed data to
the cache structure and to permanent storage at the same time and under the
same serialization so that at any time, the data in the cache structure matches the
data in permanent storage.

Accessing the Data
The store-through user generally needs to access permanent storage more
frequently than the store-in user:

Reading a data item - Reading a data item for the store-through cache is the
same as reading a data item for the store-in cache. See Store-in Cache
considerations above.
Writing a data item - To write a data item, most store-in users write to the
cache structure and permanent storage at the same time every time a data
item is written.

Casting out Data from the Cache Structure
Because the data is hardened to permanent storage at the same time it is updated
in the cache, most store-through users do not need to develop a protocol for
casting out changed data to permanent storage or assign data items to cast-out
classes.

Assigning storage Classes
All store-through users must assign data items to storage classes to direct the
system in reclaiming resources, such as data entries and directory entries, from the
cache structure.

 Recovery
The store-through method provides improved data availability in comparison to the
store-in method because users store data to permanent storage and the cache
structure simultaneously. Failure of the coupling facility or the cache structure does
not result in lost data; therefore, there is less need to keep data on a non-volatile
coupling facility than there is with the store-in method.

 Directory-only Cache
Directory-only cache users do not store data in the cache structure. The
directory-only users use the cache structure and cache structure services only to
maintain the consistency of data in their local caches.

Accessing the Data
The directory-only user needs to access permanent storage more frequently than
the users of the other cache methods:

Reading a data item - Users check the local cache vector entry that
corresponds to the data item to determine if the copy of the data is valid. If the
local cache buffer does not contain a valid copy, users must read from
permanent storage.

Writing a data item - Users must write to permanent storage and use
cross-invalidation to invalidate other users' local copies of the data item.

 Chapter 6. Using Cache Services (IXLCACHE) 6-9

Casting out Data from the Cache Structure
Directory-only users do not need to develop a protocol for casting out changed data
to permanent storage or assign data items to cast-out classes.

Assigning Storage Classes
Directory-only users must assign data items to storage classes to direct the system
in reclaiming resources, specifically, directory entries from the cache structure.

 Recovery
Because users store data to permanent storage only, the directory-only method
provides improved data availability in comparison to the store-in method. Failure of
the coupling facility or the cache structure does not result in lost data; therefore,
there is less need to keep data on a non-volatile structure than there is with the
store-in method.

Sizing the Structure
The directory-only cache structure might be very small compared to the other
methods because there are no data entries in it.

Focus of this Chapter

The remainder of this chapter focuses on how a store-in cache user uses cache
structure services. Unlike the store-through or directory-only cache users, the
store-in user tends to use all available cache services. When the use of a
service or function depends on the cache method being used, the text provides
an appropriate explanation for each of method.

Summary of IXLCACHE Requests
To request cache services, you issue the IXLCACHE macro. You identify the
service you want by specifying the name of the service on the REQUEST keyword.
Figure 6-5 identifies, for various IXLCACHE services, how to code the REQUEST
keyword, and indicates the cache methods that typically use the service. An “X”
indicates the request is typically used with the corresponding cache method. Where
necessary, notes provide additional clarification. The table also provides references
to the topics where the individual requests are discussed in detail.

Figure 6-5 (Page 1 of 3). Description of IXLCACHE Services

To request a service to: Code REQUEST=
Store-
in

Store-
through

Directory-
only Page

Define and write a new data item to
the cache structure, and register
interest in the data item.

WRITE_DATA X X 6-53

Write a changed data item to the
cache structure and invalidate any
copies of the data item that are in
other users' local cache buffers.

WRITE_DATA X See
note 1

 6-53

Read a data item from a cache
structure to your local cache buffer
and register interest in the data item.

READ_DATA X X 6-65

6-10 OS/390 V2R8.0 MVS Sysplex Services Guide

Figure 6-5 (Page 2 of 3). Description of IXLCACHE Services

To request a service to: Code REQUEST=
Store-
in

Store-
through

Directory-
only Page

Define a directory entry for a new
data item to the cache structure and
register interest in that data item.

READ_DATA X 6-65

Register interest in a list of data
items .

REG_NAMELIST See note 3 X X X 6-71

Lock a data item for cast-out and
read the data item from a cache
structure to your local cache buffer for
the purpose of writing the data to
permanent storage. Also mark the
data item as unchanged.

CASTOUT_DATA X 6-79

Unlock cast-out locks that you
previously obtained.

UNLOCK_CASTOUT X X 6-84

Unlock a single cast-out lock that
you previously obtained.

UNLOCK_CO_NAME X X 6-91

Invalidate other user's local copies of
a data item.

CROSS_INVAL X 6-103

Delete one or more data items from
a cache structure and deregister all
users' interest.

DELETE_NAME X X X 6-95

Delete one or more data items from
a cache structure and deregister all
users' interest.

DELETE_NAMELIST X X X 6-100

Activate, deactivate, or change a
reclaim vector .

SET_RECLVCTR X X See note 2 6-105

Mark as recently referenced one or
more data items , and move the data
item(s) to the end of the storage class
queue as most recently used.

PROCESS_REFLIST X X See note 2 6-112

In the associated directory entry for
the specified data item(s) in the cache
structure, indicate as not recently
referenced and return a count of the
number of data entries that currently
have the reference bit set.

RESET_REFBIT X X X 6-114

Read directory information for one
or more data items.

READ_DIRINFO X X X 6-116

Read cast-out class information for
one or more data items.

READ_COCLASS X 6-120

Read cast-out class statistics for
one or more cast-out classes.

READ_COSTATS X 6-124

 Chapter 6. Using Cache Services (IXLCACHE) 6-11

Figure 6-5 (Page 3 of 3). Description of IXLCACHE Services

To request a service to: Code REQUEST=
Store-
in

Store-
through

Directory-
only Page

Read storage class statistics for a
specified storage class.

READ_STGSTATS X X See note 2 6-129

Notes:

1. Store-in users mark the data as changed. Store-through users mark the data as unchanged because they intend to
immediately update the data on permanent storage.

2. Directory-only users might use the request to manage reclamation of directory storage.

3. REG_NAMELIST users can also use the request to define a directory entry for a new data item and register interest in the
data item, as with a READ_DATA request.

Cache Structure Allocation and Connection
Before each user can use the cache structure, the user needs to issue the
IXLCONN macro to connect the user's instance or image of the application to the
structure. When the first user connects to the cache structure, the system allocates
resources for the structure and assigns structure characteristics. The coupling
facility resource management (CFRM) policy defines the names of cache structures
to the systems in the sysplex. The CFRM policy also defines, among other
structure characteristics, the maximum amount of coupling facility storage that you
can allocate to a structure.

Note: If the amount of storage requested for the structure is not available, the
system allocates as much storage as is available and issues messages to
indicate how much storage has been allocated.

When the user connects to a cache structure, the user identifies the structure by
name. The name must be defined in the active CFRM policy. If a structure by that
name is already allocated, the system connects the user to the structure. If the
structure has not been allocated, and if coupling facility resources are available, the
system allocates coupling facility resources for the structure, connects the first user
to the structure, and assigns attributes for the structure and the connection
specified on the IXLCONN macro. Once a structure is defined, other users can
connect to the structure.

� Defining Structure and Connection Characteristics for Cache

Characteristics that the user can specify on the IXLCONN macro for the
structure include:

 – Structure disposition

 – Structure size

– Amount of storage available for the directory and for data expressed as a
ratio of directory entries-to-data elements

– Maximum number of data elements per data entry and the data element
size

– Whether the structure supports adjunct areas

– Maximum number of storage classes and cast-out classes available to the
structure

6-12 OS/390 V2R8.0 MVS Sysplex Services Guide

– Whether the structure supports user data field (UDF) queues for each
cast-out class for the structure (requires CFLEVEL=5 or higher).

| – Whether the structure supports the logical grouping of name classes. Name
| classes can be used in conjunction with the NAMECLASSMASK specified
| on IXLCONN for more efficient use of some cache requests (requires
| CFLEVEL=7 or higher). See “Using Name Classes in a Coupling Facility”
| on page 6-97 for additional information.

Structure characteristics remain fixed for the life of the cache structure (that is,
as long as the structure remains allocated.) Whenever a user connects to a
previously existing cache structure, the user cannot change the structure
characteristics. However, a user is able to change some of the structure
characteristics by rebuilding or altering the structure. For information, see the
IXLCONN and IXLREBLD macros.

Characteristics that the user can specify on the IXLCONN macro for the
connection to a cache structure include:

 – Connection name
 – Connection disposition

– Size of the local cache vector

With the exception of the size of the local vector, connection characteristics
remain fixed for the life of the connection (that is, as long as the user remains
connected to the structure). Other users can connect to an existing structure
and define their own connection characteristics. To change the vector size,
users can issue the IXLVECTR at any time during the connection.

For More Information

For more information about defining a CFRM policy and about allocating
and connecting to a cache structure, see:

� OS/390 MVS Setting Up a Sysplex
� Chapter 5, “Connection Services” on page 5-1

� Specifying the Appropriate CFLEVEL

When you connect to a cache structure, you should be aware of your
application's CFLEVEL requirements. Different levels of coupling facility control
code (CFCC) support different coupling facility functions. For example, if your
application is going to use the IXLALTER service to change the structure size,
you should specify CFLEVEL=1 or higher on your IXLCONN invocation.

� Defining the Local Cache Vector

When you connect to a cache structure, one of the characteristics you specify
is the length of the local cache vector. The local cache vector is a mechanism
for determining if your locally cached data is valid. Each cache structure user
must have a local cache vector allocated. The user of IXLCACHE services
needs one vector entry for each local cache buffer. Or, put another way, the
vector length needs to be the same as the maximum number of data items that
you intend to have concurrently available in your private storage.

The amount of storage available for local cache vectors is finite. Therefore,
you need to define a vector length that is only as large as the length you
actually need. If you need to change the storage for the vector (for example, at
some point you might need to keep track of more or fewer data items), you can
use the IXLVECTR macro to increase or decrease the size of the vector.

 Chapter 6. Using Cache Services (IXLCACHE) 6-13

For More Information

For more information about local cache vectors and the IXLVECTR macro,
see “Maintaining Data Consistency” on page 6-19. For information about
the IXLVECTR macro keywords, see “Using the IXLVECTR Macro” on
page 9-3.

Accessing and Managing Data Within a Cache System
When you initially allocate a cache structure using the IXLCONN macro, the
structure contains no user-defined data. If you plan to use a store-in or
store-through cache method, you store the data in the cache structure. First, you
read the data from permanent storage to your local cache buffers. Next, you use
the IXLCACHE macro to write the data from the local cache buffers to the cache
structure. (See Figure 6-5 on page 6-10 for a summary of IXLCACHE request
types and services to use with the cache structure.)

Providing the Connect Token (CONTOKEN)

Each user must issue any IXLCACHE request in the connector's address
space, that is, from the address space where the IXLCONN macro for the
connection is issued. To identify the connection, your IXLCACHE request
MUST include the CONTOKEN keyword. (CONTOKEN must contain the
connect token that the system returns to the answer area of IXLCONN when
the user issues the IXLCONN macro to establish the connection to the cache
structure. The system returns the connect token in the CONACONTOKEN field
of the answer area for IXLCONN.)

Providing a Request Identifier (REQID)

To identify your request, you can optionally use the REQID keyword. Coding
REQID is useful for recovery routines, or for developing protocols to use with a
resource manager that needs to purge coupling facility requests from the
system through the use of the IXLPURGE macro. One way to use IXLPURGE
is to purge only those requests for a specified connect token (that is, requests
associated with a specified connector to the cache.) Specifying the REQID
keyword on an IXLCACHE request provides a means for the resource manager
to further limit or filter the set of requests that it purges to include only requests
for both the specified connect token and the REQID. Users of each connection
are responsible for establishing protocols for the use of the REQID keyword
and the IXLPURGE macro.

Managing Local Cache Buffers
You are responsible for maintaining local cache buffers for data items. To refer to
the data items and allow the system to track the data in the local cache buffers,
you need to define a local vector entry index. You assign an index value to
correspond to each data item in a local cache buffer. By using the local vector
index value for the data item on IXLCACHE requests to the cache structure, the
system can communicate to all users whether a user registers interest in the data
item and whether the data in the local cache buffer for the data item is valid.

The number of local cache buffers that you define depends on how many data
items you want to have concurrently available in your private storage. You can use
one local cache buffer to share one data item concurrently among users, two
buffers to share two data items, and so forth.

6-14 OS/390 V2R8.0 MVS Sysplex Services Guide

You can change the local cache buffers for a data item. As a result, you need to
indicate that change to the cache structure. For example, if you assign a buffer for
data item A to a new local cache buffer called data item B and plan to use the
same local vector entry index to refer to the data, you need to deregister interest in
data item A and register interest in data item B in the cache structure. IXLCACHE
provides an OLDNAME keyword to allow you to deregister interest on read, write,
or cast-out requests. If you plan to reassign the local vector entry index for a data
item to another data item, you also need to reflect that change so the system can
invalidate the local vector entry index value for the original data item.

Note that with a coupling facility of CFLEVEL=2 or higher, you can control the
processing of a WRITE_DATA request by specifying VECTORINDEX on the
WRITE_DATA,WHENREG=YES request. If you have not already registered interest
in the data item, or if the VECTORINDEX does not match the local vector index
with which you previously registered interest, the WRITE_DATA request will fail
with reason code IXLRSNCODENOENTRY.

For More Information

For more information about managing the local cache buffers, see:

� “Selecting a Data Buffer For a Request” on page 6-38
� “Design Considerations for Choosing the Buffer Format” on page 6-41
� “Specifying the Vector Entry Index on IXLCACHE Requests” on page 6-47

For information about IXLVECTR, see “Using the IXLVECTR Macro” on
page 9-3.

Identifying a Data Item to the Cache Structure
If a data item is in the cache structure, it is said to be “identified” to the cache. A
data item is identified to the cache structure when a user allocates a directory entry
for the data item. (For the directory-only cache method, the data item itself does not
reside in the cache structure.)

When you identify a data item to the cache structure, you assign the data item a
name. This name identifies the data item to the cache structure. All references to
the data item must be by the assigned data item name.

Reading, Writing, or Registering Interest in a Data Item
You can identify a data item to the cache structure by writing the data item to the
structure, reading the data item from the structure, or registering interest in a list of
data items with a REG_NAMELIST request. You can use the WRITE_DATA
request on IXLCACHE to write the data item to the cache structure. (The data item
can be new or changed.) If a directory entry for a named data item does not exist
in the cache structure, you can use a READ_DATA request or a REG_NAMELIST
request on IXLCACHE to allocate a directory entry for the data item(s) in the cache
structure. (The READ_DATA request allows you to define directory entries in the
cache structure for use in a directory-only cache.) If the data item exists in the
cache structure, the READ_DATA request on IXLCACHE reads the data into the
local cache buffer for the named data item. The REG_NAMELIST request returns
an indication as to whether there is data associated with the entry along with other
entry state information.

 Chapter 6. Using Cache Services (IXLCACHE) 6-15

Determining the Validity of a Data Item
When you identify a data item through READ_DATA, REG_NAMELIST, or
WRITE_DATA requests on IXLCACHE, the system also registers your connection
as having interest in the data item. Having registered interest ensures that the
system can indicate, through each user's local cache vector, whether the user's
locally cached copy of the data for the data item is valid.

Defining a Storage Class for a Data Item
Whenever you use IXLCACHE requests to create a directory entry for a data item
or to write a data item, you must also specify a storage class for the data item. The
system uses the data item's storage class assignment to reclaim storage in the
cache structure for new requests.

For More Information

For information about identifying a data item to the cache structure, see:

� “WRITE_DATA: Writing a Data Item to a Cache Structure” on page 6-53
� “READ_DATA: Reading a Data Item from a Cache Structure” on page 6-65
� “REG_NAMELIST: Registering Interest in a List of Data Items” on

page 6-71

For information about registering interest in a data item, see “Maintaining Data
Consistency” on page 6-19.

For information about assigning a storage class, see “Managing Cache
Structure Resources” on page 6-28.

Changing a Data Item in the Cache Structure
Consider a store-in cache that includes a cache structure with data items allocated
to data entries. When you read a data item from the cache structure, you read it
into your local cache buffer. Once the data item is in your local cache buffer, you
can use it as is or change the data. (In a cache system, a data item is considered
changed if the copy in the cache structure contains data that is not the same as the
data in the buffer or the data on permanent storage.)

You use the IXLCACHE REQUEST=WRITE_DATA to write the changed data item
back to the cache structure. On the request, you indicate that the data item has
changed. The system modifies the directory entry for the data item to indicate that
the data is changed and invalidates the locally cached copies of the same named
data item for other users. When other users reference the data item and test for
validity, the system indicates that their local cache copies of the data item are not
valid, and they must refresh their local cache buffers to reflect the changes to the
data item.

The system has a safeguard that prohibits you from overwriting changed data in the
cache structure. For instance, if the data you read into your local cache buffer is
changed, and you indicate on the write request to the cache structure that the data
item is unchanged, the system fails the request.

6-16 OS/390 V2R8.0 MVS Sysplex Services Guide

Casting out Changed Data
When you write changed data to the cache, you must assign the data to a cast-out
class. Cast-out class assignments help to implement the cast-out process whereby
changed data from the cache structure is written to permanent storage. Until the
data item is successfully cast out from the cache structure, the system cannot
reclaim resources for the changed data item. The system considers a data item to
be changed, and thus ineligible for reclaim, if either of the following conditions is
true:

� The data item's directory entry is marked changed.

� The data item's cast-out lock is held. (When the cast-out lock is released, the
data item is considered unchanged.)

For more information about casting out data, see “Casting out Data or Updating
Permanent Storage.”

Considerations Using the Store-through Cache Method
If you use the store-through cache method, you write copies of the same data to
the cache structure and permanent storage. Therefore, when you write a changed
data item to the cache structure, you indicate on the write request that the data
item is unchanged because, at the same time, you intend to write the same data
item to permanent storage. (Remember that data is considered changed in a cache
system when any copy of the data in the cache structure has been updated and is
no longer the same as the data in permanent storage.) Using IXLCACHE, you can
also request the cast-out lock for the data item to serialize the update to permanent
storage, and request that the system invalidate copies of the data item in the local
buffers of the other users.

Considerations Using the Directory-only Cache Method
Directory-only users do not write data to the cache structure. The directory-only
user identifies a data item to the cache structure on the IXLCACHE READ_DATA
or REG_NAMELIST request and creates a directory entry for the data item. (The
user assigns a directory entry to the data item by specifying ASSIGN=YES on the
READ_DATA request or by setting an “assignment control” bit on the
REG_NAMELIST request.) Because there is only a directory entry for the data item
and no data in the cache structure, the directory entry cannot be marked as
changed.

For More Information

For more information about writing a changed data item to the cache structure,
see:

� “Casting out Data or Updating Permanent Storage”
� “WRITE_DATA: Writing a Data Item to a Cache Structure” on page 6-53

Casting out Data or Updating Permanent Storage
The process of writing changed data from the cache structure to permanent storage
is called casting out data. Casting out data does not delete the data from the
structure.

 Chapter 6. Using Cache Services (IXLCACHE) 6-17

Considerations for Cast-out Using the Store-in Cache Method
In the store-in cache method, you must assign changed data items to cast-out
classes. You must determine the criteria to use with these cast-out class
assignments. You can group data items with similar “cast-out frequency” in the
same cast-out class. For instance, you could assign data items that are to be cast
out frequently to one cast-out class, and data items that could be cast-out
infrequently to a different cast-out class. Whenever you are ready to cast out, you
cast out all the data items belonging to a certain cast-out class at the same time.

Before you cast out data by cast-out class, you can use IXLCACHE
REQUEST=READ_COSTATS to obtain information about data items in the castout
class. When you have a sufficient number of data items to cast out, you can use
IXLCACHE REQUEST=READ_COCLASS to determine the names of the data
items. Then, when you are ready to write the data items to permanent storage, you
issue IXLCACHE REQUEST=CASTOUT_DATA once for each data item.

If the cache structure is allocated with user data field (UDF) order queues
(supported by CFLEVEL=5 or higher), the system maintains a queue for each
cast-out class for which user-defined data was written to the directory entry. The
queue is ordered in ascending order by the UDF field value. You can use the
REQUEST=READ_COCLASS,COSTATSFMT=COSTATSLIST invocation to request
that the system return for each cast-out class, the count of data elements and the
user data on the queue with the smallest user data value. How you use this data is
determined by your own protocol.

The cast-out service of IXLCACHE allows you to read the data item that you intend
to write to permanent storage from the cache to your local cache buffer. The
service also gives you the cast-out lock for the data item so you can serialize the
update of the data item on permanent storage. While you hold the lock, the data
item is said to be locked for cast-out , and other users cannot cast out the data
item. However, any user can update the data item in the cache even if it is locked
for cast-out. Resources for a data item that is locked for cast out cannot be
reclaimed.

The CASTOUT_DATA request updates the directory entry of the data item to
indicate unchanged data. To write the data item to permanent storage, use the
access method that you normally use to access permanent storage. After
completing the write operation, use IXLCACHE REQUEST=UNLOCK_CASTOUT or
REQUEST=UNLOCK_CO_NAME to release the cast-out lock. You can issue the
UNLOCK_CASTOUT request once to free multiple locks that belong to data items
within a certain cast-out class or you can issue the UNLOCK_CASTOUT request to
free a single lock. The UNLOCK_CO_NAME request allows you to free only a
single lock, and is a more efficient method than UNLOCK_CASTOUT for releasing
a single lock.

Considerations for Cast-out Using the Store-through Cache Method: With the
store-through cache method, you write to permanent storage and to the cache
structure at the same time and with the same serialization. Thus, you do not need
to obtain the cast-out lock to serialize the update to permanent storage.

For recovery in a multisystem environment, you can optionally obtain the lock
through the IXLCACHE REQUEST=WRITE_DATA with the GETCOLOCK=YES
option. If the system that performs the cast out obtains the lock and fails, users on

6-18 OS/390 V2R8.0 MVS Sysplex Services Guide

other systems can recognize that data items locked by the user might not be valid
as a result of the failure.

When you write the changes to the cache structure, you request that the system
invalidate the copies of the data item for other users. To write the data item to
permanent storage, use the access method that you usually use to access
permanent storage. After completing the write operation, use IXLCACHE
REQUEST=UNLCOCK_CASTOUT or REQUEST=UNLOCK_CO_NAME to free the
cast-out lock. You can use the UNLOCK_CASTOUT request once to free multiple
locks at the same time you can issue the UNLOCK_CASTOUT request once to free
a single lock. The UNLOCK_CO_NAME request allows you to free only a single
lock, and is a more efficient method than UNLOCK_CASTOUT for releasing a
single lock.

Considerations for Cast-out Using the Directory-only Cache
Method
If you use the directory-only cache method, you only write updates to permanent
storage. You do not write data to the cache structure and, as a result, do not need
to issue requests for cast out. To write the data item to permanent storage, use the
access method that you normally use to access permanent storage. Immediately
before or after you write the data item to permanent storage, ensure that you
invalidate copies of the data item that other users maintain in their local cache
buffers by using IXLCACHE REQUEST=CROSS_INVAL. The CROSS_INVAL
request must be invoked under the same serialization used to update the data item.

For More Information

For more information about updating permanent storage, see:

� “WRITE_DATA: Writing a Data Item to a Cache Structure” on page 6-53

� “CASTOUT_DATA: Casting Out Data from a Cache Structure” on
page 6-79

� “UNLOCK_CASTOUT: Releasing Cast-Out Locks” on page 6-84

� “UNLOCK_CO_NAME: Releasing a Single Cast-Out Lock” on page 6-91

� “CROSS_INVAL: Invalidating Other Users' Copies of Data Items” on
page 6-103

� “READ_COCLASS: Reading A Cast-Out Class” on page 6-120

� “READ_COSTATS: Reading Cast-Out Class Statistics” on page 6-124

Maintaining Data Consistency
Each time a connecting user issues the IXLCACHE macro to read data, write data,
or optionally, cast out data, the system registers the interest of the user in the data
item. It also indicates, in a local cache vector entry that the user specifies, that the
copy of the data item is valid. (A valid copy of a data item is one that contains the
latest updates to the data item that other users might have made.)

Registering interest allows the system to “remember” that the local cache buffer of
the user contains a valid copy of the data item. If a user changes the data item and
writes the data item to the cache structure, the system deregisters interest in the

 Chapter 6. Using Cache Services (IXLCACHE) 6-19

data item for the other users and indicates in their local cache vector entry that the
copy is no longer valid. Each connecting user must test the validity of the locally
cached copy by testing the vector entry associated with the data item. Each user
also needs to ensure that there is external serialization for the data item between
the time the user invokes IXLVECTR to test the validity of the data item and the
time when the user makes use of the data.

Registering Interest in a Data Item and Validating Local Copies
When you register interest, you must specify an entry in the local cache vector
(VECTORINDEX keyword) that you have assigned to the data item. The system
uses the vector entry to indicate the validity of the associated data item in your
local cache buffer. Figure 6-6 on page 6-21, shows data item X in the local storage
buffer of the connecting user A. The data item is valid because vector entry 2 —
the vector entry that connection A assigned to data item X, indicates that the data
is valid.

The system keeps track of users, the validity of copies of their data items, and the
vector entries for each user in the directory entry for each data item in the cache
structure. In Figure 6-6 on page 6-21, the directory entry for data item Z shows
that connecting users A and B have registered interest in data item Z (that is, the
connections have valid copies of data item Z). If a third connection updates Z in the
cache structure, the system uses the assigned vector entries (entry 5 for
connection A and entry 4 for connection B) to invalidate the local copies belonging
to connections A and B.

6-20 OS/390 V2R8.0 MVS Sysplex Services Guide

CONNECTION B

Local Cache Buffer
Directory

Vector Index
Data

Vector Index10 2

4

V

Z

3 4

Local Cache Vector For Connection B

CONNECTION A

Local Cache Buffer
Directory

Vector Index
Data

Data

Vector Index10 2

2

5

V V

X

Z

3 4 5

Local Cache Vector For Connection A

COUPLING FACILTY CACHE STRUCTURE

Directory

Data

Data

XX

ZZ

Connection A
Vector Index 2

Connection B
Vector Index 4

Connection A
Vector Index 5CPC 2

CPC 1

V=Valid

V=Valid

Figure 6-6. Registered Interest in Data Items

 Chapter 6. Using Cache Services (IXLCACHE) 6-21

Maintaining Connections between the Local Cache Vector and
Data Items
Although the system maintains the connection between cached data and your local
cache vector, you must establish and maintain the connection between the local
cache vector and your locally cached data. Figure 6-6 on page 6-21 shows how
users use a local cache buffer directory to maintain the connection between vector
entries and locally cached data items.

Registering Interest in a Data Item
When you perform any of the following tasks, you cause the system to register or
re-register your interest in a data item and update your local cache vector to
indicate that your locally cached copy of the data item is valid:

� Read a data item from the cache structure (REQUEST=READ_DATA).

� Write a data item to the cache structure
(REQUEST=WRITE_DATA,WHENREG=NO).

� Read a data item from the cache structure for cast-out and request to register
interest (REQUEST=CASTOUT_DATA,REGUSER=YES).

Deregistering Interest in a Data Item and Invalidating Local Copies
Figure 6-7 on page 6-23 shows what happens when connection A updates data
item Z in the cache structure. The system invalidates the copy of data item Z
belonging to connection B using local cache vector entry 4—the vector entry that
connection B assigned to data item Z. Notice also that the cache structure directory
shows that only connection A has registered interest in data item Z; connection B
has been deregistered.

6-22 OS/390 V2R8.0 MVS Sysplex Services Guide

CONNECTION B

Local Cache Buffer
Directory

Vector Index
Data

Vector Index10 2

4

NV

Z

3 4

Local Cache Vector For Connection B

CONNECTION A

Local Cache Buffer
Directory

Vector Index
Data

Data

Vector Index10 2

2

5

V V

X

Z’

3 4 5

Local Cache Vector For Connection A

COUPLING FACILTY CACHE STRUCTURE

Directory

Data

Data

XX

Z’Z

Connection A
Vector Index 2

Connection A
Vector Index 5CPC 2

CPC 1

V=Valid
NV=Not Valid

NV=Not Valid
V=Valid

Figure 6-7. Invalidating Local Cache Copy of a Data Item

 Chapter 6. Using Cache Services (IXLCACHE) 6-23

Invalidating Local Cache Copies of a Data Item
When any of the following events occur, the system invalidates your local copy of a
data item and deregisters your interest in the data item:

� A user writes an updated copy of the data item to the cache structure
(REQUEST=WRITE_DATA,CHANGED=YES).

� A user requests that the system invalidate copies of the data item
(REQUEST=CROSS_INVAL).

� A user deletes the data item from the cache structure
(REQUEST=DELETE_NAME).

� A user requests that the system write unchanged data and invalidate copies of
the data item (REQUEST=WRITE_DATA,CHANGED=NO,CROSSINVAL=YES).

� You reassign the vector entry for the data item to another data item
(REQUEST=WRITE_DATA, REQUEST=READ_DATA, or
REQUEST=CASTOUT_DATA).

� The system reclaims directory entry resources for the data item.

Determining the Validity of a Data Item through IXLVECTR
Before you use your copy of a data item, you must test the local cache vector entry
assigned to that data item to determine if the copy is current. IXLVECTR
REQUEST=TESTLOCALCACHE enables you to test the vector entry for the validity
of a data item in your local buffer.

In Figure 6-7 on page 6-23, connecting user B checks vector entry 4 to test the
validity of data item Z. In the example, the vector entry indicates that the data is not
valid. If a data item in your local cache buffer is not valid, IXLVECTR returns an
appropriate response. To refresh data item Z in the local buffer, connection B must
read the data item from the cache structure and again register interest in data item
Z.

The IXLVECTR macro also allows you to test for connectivity failure between your
system and the coupling facility through the VALIDATE=YES option. If connectivity
to the coupling facility is interrupted, specifying VALIDATE=YES on IXLVECTR
allows the system to invalidate the local cached copy of the data item. This helps
ensure data integrity because cross-invalidate might not have occurred during the
temporary loss of connectivity.

Changing the Size of the Local Cache Vector
The number of entries in the local cache vector determines the number of data
items for which you can have concurrently registered interest. By maintaining a
local cache vector that contains only the number of entries you need, you can
optimize the use of vector storage that other applications might need. You can
increase or decrease the vector size to meet the needs of your data sharing. To
change the vector size, use IXLVECTR REQUEST=MODIFYVECTORSIZE.

For More Information

For more information about the use of the IXLVECTR macro, see “Using the
IXLVECTR Macro” on page 9-3.

6-24 OS/390 V2R8.0 MVS Sysplex Services Guide

Serializing and Managing Access to Shared Data
When you share data with other users, you must establish protocols for serializing
the use of, and updates to, the shared data. The objectives of these protocols are
to ensure that:

� Changes made to cached data by one user are not subsequently overwritten
with down-level data by another user.

� Data that you are using (that is, data in your local cache buffer) contains the
most recent changes made by other users.

To meet these objectives, IBM recommends that you serialize accesses to cached
data.

Whether you serialize access to shared data and the serialization methods that you
use are your decisions. While it is generally true that cache services do not
automatically provide serialization, cache services might provide some serialization
to suit your needs. When you write data to the cache, you can optionally specify
that your data be written only if your local copy of the data item is still valid
(REQUEST=WRITE_DATA,WHENREG=YES). If another user updates the data in
the cache after you read it (which causes your local copy to be invalidated), you
cannot overwrite the update. However, to use this method, you do not hold
serialization on reading the data, so the data in your local cache buffer might be
downlevel data from the data in the cache structure.

You can provide other forms of serialization outside the scope of the IXLCACHE
macro. For example, you can use locking services available through the IXLLOCK
macro to serialize cache resources. See Chapter 8, “Using Lock Services
(IXLLOCK)” on page 8-1.

The following scenarios show ways to serialize and manage shared data access for
store-in, store-through, and directory-only cache methods.

Using but not Updating Data in a Store-in Cache
You are a store-in user who plans to use a data item but not update it. Serializing
this process ensures that no one updates the data item while you hold the lock.

1. Obtain a shared lock by using the IXLLOCK macro. Holding a shared lock
enables others to use, but not update, the data item.

2. If there is a copy of the data item in your local cache buffer, use the IXLVECTR
macro to determine if the copy is valid. If the copy is valid, go to step 5.

3. If a copy does not exist in the local cache buffer or the copy is no longer valid,
use IXLCACHE REQUEST=READ_DATA to read the data item from the cache
structure. If the data item is in the cache structure, go to step 5. If a local cache
buffer is not assigned to the named data item, assign the local cache buffer
and use a protocol to assign a vector entry to the buffer.

4. If the data item is not in the cache structure, read it from permanent storage
into the local cache buffer.

5. Use the data item as needed.

6. If the data item has been read from permanent storage, use IXLCACHE
REQUEST=WRITE_DATA to write the data item to the cache structure. The

 Chapter 6. Using Cache Services (IXLCACHE) 6-25

system registers your interest in the data item. Otherwise, skip this step and go
directly to step 7.

7. Use the IXLLOCK macro to free the shared lock.

Updating Data in a Store-in cache
You are a store-in user who plans to update the data item and then write it back to
the cache structure. Serializing this process ensures that no other user can use or
update the data item while you hold the lock.

1. Obtain an exclusive lock by using the IXLLOCK macro. Holding an exclusive
lock ensures that no other user can use or update the data item.

2. If there is a copy of the data item in your local cache buffer, use the IXLVECTR
macro to determine if the copy is valid. If the copy is valid, go to step 5.

3. If a copy does not exist in your local cache buffer or the copy is no longer valid,
use IXLCACHE REQUEST=READ_DATA to read the data item from the cache
structure. If the data item is in the cache structure, go to step 5. If a local cache
buffer is not assigned to the named data item, assign the local cache buffer
and use a protocol to assign a vector entry to the buffer.

4. If the data item is not in the cache structure, read it from permanent storage
into the local cache buffer.

5. Update the data item in the local cache buffer.

6. Use IXLCACHE REQUEST=WRITE_DATA to write the updated data item to
the cache structure. To invalidate copies of the data item for other users,
specify CHANGED=YES on the IXLCACHE request.

7. Use the IXLLOCK macro to free the exclusive lock.

Using but not Updating Data in a Store-through Cache
You are a store-through user who plans to use a data item but not update it.
Serializing this process ensures that no one updates the data item while you hold
the lock.

1. Obtain a shared lock by using the IXLLOCK macro. Holding a shared lock
enables others to also use, but not update, the data item.

2. If there is a copy of the data item in your local cache buffer, use the IXLVECTR
macro to determine if the copy is valid. If the copy is valid, go to step 5.

3. If a copy does not exist in the local cache buffer or the copy is no longer valid,
use IXLCACHE REQUEST=READ_DATA to read the data item from the cache
structure. If the data item is in the cache structure, go to step 5. If a local cache
buffer is not assigned to the named data item, assign the local cache buffer
and use a protocol to assign a vector entry to the buffer.

4. If the data item is not in the cache structure, read it from permanent storage
into the local cache buffer.

5. Use the data item as needed.

6. If the data item has been read from permanent storage, use IXLCACHE
REQUEST=WRITE_DATA to write it to the cache so the system can register
your interest. Otherwise, skip this step and go directly to step 7.

7. Use the IXLLOCK macro to free the shared lock.

6-26 OS/390 V2R8.0 MVS Sysplex Services Guide

Updating Data in a Store-through Cache
You are a store-through user who plans to update the data item and then write it
back to the cache structure. Serializing this process ensures that no other user can
use or update the data item while you hold the lock.

1. Obtain an exclusive lock by using the IXLLOCK macro. Holding an exclusive
lock ensures that no other user can use or update the data item.

2. If there is a copy of the data item in your local cache buffer, use the IXLVECTR
macro to determine if the copy is valid. If the copy is valid, go to step 5.

3. If a copy does not exist in the local cache buffer or the copy is no longer valid,
use IXLCACHE REQUEST=READ_DATA to read the data item from the cache
structure. If the data item is in the cache structure, go to step 5. If a local cache
buffer is not assigned to the named data item, assign the local cache buffer
and use a protocol to assign a vector entry to the buffer.

4. If the data item is not in the cache structure, read it from permanent storage
into the local cache buffer.

5. Update the data item in the local cache buffer.

6. Use IXLCACHE REQUEST=WRITE_DATA to write the updated data item to
the cache structure. On the IXLCACHE macro, specify CROSSINVAL=YES to
invalidate copies of the data item for other users, and CHANGED=NO to mark
the data item as unchanged. If necessary, you can optionally specify
GETCOLOCK=YES to obtain the cast-out lock.

7. Write the updated data item to permanent storage.

8. If the cast-out lock is held, use IXLCACHE REQUEST=UNLOCK_CASTOUT or
REQUEST=UNLOCK_CO_NAME to release it.

9. Use the IXLLOCK macro to free the exclusive lock.

Using but not Updating Data in a Directory-only Cache
You are a directory-only user who plans to use a data item but not update it.
Serializing this process ensures that no one updates the data item while you hold
the lock.

1. Obtain a shared lock by using the IXLLOCK macro. Holding a shared lock
enables others to also use, but not update, the data item.

2. If there is a copy of the data item in your local cache buffer, use the IXLVECTR
macro to determine if the copy is valid. If the copy is valid, go to step 4.

3. If a copy does not exist in the local cache buffer or the copy is no longer valid,
read the data item from permanent storage into the local cache buffer. If a local
cache buffer is not assigned to the named data item, assign the local cache
buffer and use a protocol to assign a vector entry to the buffer.

4. Use the data item as needed.

5. If the data item has been read from permanent storage, use IXLCACHE
REQUEST=READ_DATA to identify the data item to the cache and get your
interest in the data item registered. Otherwise, skip this step and go directly to
step 6.

6. Use the IXLLOCK macro to free the shared lock.

 Chapter 6. Using Cache Services (IXLCACHE) 6-27

Updating Data in a Directory-only Cache
You are a directory-only user who plans to update a data item and then write it
back to permanent storage. Serializing this process ensures that no other user can
use or update the data item while you hold the lock.

1. Obtain an exclusive lock by using the IXLLOCK macro. Holding an exclusive
lock ensures that no other user can use or update the data item.

2. If there is a copy of the data item in the local cache buffer, use the IXLVECTR
macro to determine if the copy is valid. If the copy is valid, go to step 4.

3. If a copy does not exist in the local cache buffer or the copy is no longer valid,
read the data item from permanent storage into the local cache buffer. If a local
cache buffer is not assigned to the named data item, assign the local cache
buffer and use a protocol to assign a vector entry to the buffer.

4. Update the data item in the local cache buffer.

5. Use the IXLCACHE macro REQUEST=CROSS_INVAL to invalidate copies of
the data item for other users.

6. Write the updated data item to permanent storage.

7. Use the IXLLOCK macro to free the exclusive lock.

Managing Cache Structure Resources
Because the amount of storage available to a cache structure is finite, you need to
use the storage efficiently. You manage the use of cache structure storage through:

� The assignment and use of storage classes and storage reclaim algorithms to
help control storage reclaim

� The cast-out process for changed data items that returns the data items to an
unchanged state, allows you to commit the changes to permanent storage, and
thereby makes the storage for cast-out data items suitable for reclaim.

 Storage Reclaim
Whenever you write a data item to the cache structure, the system first attempts to
allocate cache structure resources (a data entry, a directory entry, or both) that are
unallocated or not in use. When there are insufficient resources available, the
system attempts to reclaim currently allocated resources in the cache structure to
satisfy the request.

The system reclaims only those resources that are either:

� Allocated to unchanged data items that are not “locked for cast-out”
� Allocated to named data items that do not contain data
� Allocated to named data items that contain data but have no registered interest.

Data items that are marked changed or that are locked for cast-out cannot be
reclaimed. If the system cannot reclaim sufficient resources to satisfy the request,
the request fails.

6-28 OS/390 V2R8.0 MVS Sysplex Services Guide

Assigning and Using Storage Classes
Each time you read a data item from the cache structure or write a data item to the
cache structure, you must assign the data item to a storage class. Storage classes
allow you to control reclaim processing. By grouping data items with similar
attributes into a storage class, you can control from which group (that is, storage
class) the system will reclaim resources.

For each storage class, the system maintains a queue of entries that identifies the
data items for that storage class. Entries on the queue are kept in a least recently
used (LRU) order. When the system needs to reclaim from a particular storage
class, the system reclaims resources that are used least recently.

You need to develop algorithms to determine the number of storage classes and
the data items to assign to each storage class. You might define only one storage
class that meets your needs, or you might define multiple storage classes and base
the assignment of data items to different storage classes based on the importance
of the data items to your application. For instance, storage class one might identify
data entries for data to which the application does not need fast access. Storage
class two might identify data entries for data that your application must be able to
access quickly. Whenever you read or write the data item, you can also change
the data item's storage class.

IXLCACHE REQUEST=READ_STGSTATS returns statistics for a specified storage
class. These statistics provide information about the use of cache structure storage.

Storage Reclaim Considerations and the Directory-only Cache Method: For
the directory-only cache method, each data item that you identify to the cache
structure requires cache structure storage for the associated directory entry. When
you define a data item, you must assign the data item to a storage class. You use
the storage class assignments as a way to manage reclaim processing for the
directory entries.

Storage Reclaim Algorithm
You can optionally define a reclaim algorithm for any storage class that you use. If
you do not specify your own algorithm to reclaim storage, the system uses a
default. By default, the system attempts to reclaim the least recently used
resources that belong to data items in the storage class specified on the read or
write request.

Defining a Reclaim Algorithm for a Storage Class
You define a reclaim algorithm for a specified storage class by using IXLCACHE
REQUEST=SET_RECLVCTR. This request defines and activates a reclaim vector.
Each reclaim vector corresponds to one storage class and controls the reclaim of
resources for data items in that storage class. If you want to control the reclaim
process for two different storage classes, you define two reclaim vectors, one for
each storage class.

When you define the reclaim vector for a given storage class, you specify a number
of reclaim attempts that the system makes from target storage classes to satisfy a
request for any data item in the storage class controlled by the vector. The location
of an entry in a reclaim vector determines the storage class that is the target of the
reclaim attempt. The first vector entry corresponds to storage class 1, the second
vector entry corresponds to storage class 2, and so forth.

 Chapter 6. Using Cache Services (IXLCACHE) 6-29

When defining a reclaim vector, you also indicate on the REPEAT keyword how
many times the system can use the vector before it deactivates it and begins to use
the default reclaim algorithm. You can also use IXLCACHE
REQUEST=SET_RECLVCTR to deactivate the reclaim vector at any time, in which
case, the system immediately resumes use of the default reclaim algorithm.

Example of a Reclaim Vector: For example, suppose you have two storage
classes and you want to specify a reclaim vector for each of them. Storage class
one identifies data items that your application does not need to quickly access.
Storage class two identifies data items that your application must access quickly.

Figure 6-8 shows how you might define two reclaim vectors (one for each of the
storage classes) described as follows:

� The reclaim vector for storage class 1 specifies the following: 5 reclaims from
storage class 1 and 0 reclaims from storage class 2.

� The reclaim vector for storage class 2 specifies the following: 6 reclaims from
storage class 1 and 1 reclaim from storage class 2.

� The repeat factor specified on the REPEAT keyword is 2. For each of the
storage reclaim vectors described above, the system goes through the process
twice for reclaims before it deactivates the vector and uses the default.

Rationale: In this example, the overall effect is to prevent resources in the cache
structure associated with storage class 2 (the more important storage class) from
being reclaimed more often than resources from storage class 1.

How the Reclaim Vector for Storage Class 1 Works: For data items in storage
class 1, the system can make 5 reclaims for resources from storage class 1 to
satisfy requests for storage. For each reclaim from the storage class, the system
subtracts from the counter (which equals the value specified for the storage class, 5
in the example) until the value equals zero. Then the system reads the vector value
for the next storage class (storage class 2, in the example). For data items in
storage class 2 (considered to be the more important storage class), the system
can make no (0) reclaims to satisfy requests. At this point, the system has made
one pass through the vector. The repeat factor indicates the number of times the
system reads the reclaim values for storage classes specified on the vector. Before
the system reads the vector on the second pass, it resets the original reclaim
values for storage class 1 (5 reclaims) and storage class 2 (0 reclaims). With each
pass through the vector, the system resets the original vector values and subtracts

Figure 6-8. Two Reclaim Vectors

Storage class
reclaim vector

Number of reclaims
from storage class
1 resources

Number of reclaims
from storage class
2 resources Repeat factor

For storage
class 1

5 0 Attempts
reclaims as
indicated by the
vector 2 times.

For storage
class 2

6 1 Attempts
reclaims as
indicated by the
vector 2 times.

6-30 OS/390 V2R8.0 MVS Sysplex Services Guide

from the repeat counter (2, in this example). When the repeat counter equals 0, the
vector is deactivated and the system default for reclaim is in effect.

How the Reclaim Vector for Storage Class 2 Works: For data items in the more
important storage class 2, the system can make 6 reclaims for resources from
storage class 1. With each reclaim from the storage class, the system subtracts
from the counter (6 in this example) until the value equals zero. Then the system
reads the vector value for the next storage class (storage class 2). For data items
in storage class 2, the system can make 1 reclaim to satisfy requests. At this point,
the system has made one pass through the vector. The system subtracts 1 from
the repeat counter of 2, the original values in the vector are reset (6 for storage
class 1 and 1 for storage class 2), and the system starts the second pass through
the vector. When the repeat counter equals 0, the vector is deactivated and the
system default for reclaim is in effect.

Considerations when Defining the Reclaim Vector: You do not need to use a
reclaim vector for each storage class you have defined in the structure. You can
define a reclaim vector for some storage classes while allowing other storage
classes to use the system default reclaim algorithm. However, the number of
entries in any reclaim vector must equal the number of storage classes defined,
even if you have not defined reclaim vectors for some storage classes.

For More Information

For more information about defining your own reclaim algorithm or restoring the
default reclaim algorithm, see “SET_RECLVCTR: Overriding or Restoring the
Default Reclaim Algorithm” on page 6-105.

Managing Storage Reclaim for Specific Data Items
When the system reclaims storage, it tries to reclaim resources for data items that
are the least recently used and have no registered interest in the target storage
class. The system maintains information about data items in the cache structure in
least recently used queues for each storage class. The last item on the queue
indicates that the data item is the least recently used or referenced data item and is
suitable for reclaim.

Based on the least recently used queue for the storage class, the longer an
unchanged cached data item remains unused (or unreferenced) in the structure, the
greater the chance that the system can reclaim its resources. The system handles
reclaim processing as follows:

� When a reclaim of only data entry resources is required, the system reclaims
those resources from the least recently used queue for the storage class and
does not automatically reclaim or invalidate the associated directory entry.

� When a reclaim of directory entry resources is required, the system reclaims
those resources from the least recently used queue for the storage class,
invalidates the locally cached copies of the data item for all users, and frees
the associated data entry resources, if any.

When reclaiming resources from the least recently used queues, the system gives
preference to reclaiming those entries that have data but no registered interest over
those that have data and do have registered interest.

 Chapter 6. Using Cache Services (IXLCACHE) 6-31

If storage is reclaimed for a data item and a user then references that data item (for
example, with a READ_DATA request), the following occurs:

� If the system had reclaimed only data entry resources for the data item, then
the user's read reference of the data item succeeds and the user is registered
in the data item. The system returns an indication that the data cannot be read
(reason code IXLRSNCODENOREADDATA), since no data entry exists for the
data item.

� If the system had reclaimed directory entry resources for the data item (and
thus freed the associated data entry resources as well), then the user's read
reference of the data item will not succeed. If the user did not request
assignment of a new directory entry for the data item, the user will not be
registered in the data item and the system returns an indication that the data
item does not exist (reason code IXLRSNCODENOENTRY). If the user
requested assignment of a new directory entry for the data item, and if
assignment of a new directory entry is successful, the user will be registered in
the data item and the system will return an indication that the data cannot be
read (reason code IXLRSNCODENOREADDATA) because no data entry exists
for the data item.

In all of the above cases, no data is read into the user's local cache buffer. In
general the user should then read the data from permanent storage to the local
cache buffer. Depending on the user's caching protocols, the user may need to
write the data back to the cache structure as well, causing data entry resources to
be assigned to the data item.

To avoid having to frequently refresh the data item in the cache structure from
permanent storage, you can periodically read the data item from the cache
structure, write the data item to the cache structure, or issue a
PROCESS_REFLIST request for the data item. Any of these options causes the
system to do the following:

� Update the reference bit in the directory entry of the data item to indicate that
the data item has been recently referenced.

� Move the data item to the recently referenced end of its storage class queue.

The effect of issuing these requests is to make the data item less suitable for
reclaim processing so that you can continue to reference the data item in your local
cache buffer.

Using PROCESS_REFLIST Requests: PROCESS_REFLIST allows you to mark
the copy of the data item in the cache structure as recently referenced. If you are
using a local cache copy of the data item, but are not referencing the data item in
the cache structure, the system might be more likely to consider resources for the
data item in the cache structure as eligible for reclaim. When the system reclaims
data item resources, the system invalidates the local cache copy of the data item. If
you are using the local cache copy of the data item, but are not referencing the
data item in the cache structure, you need to continue to issue the IXLVECTR
macro to test the validity of the data item in your local cache while you are using it.

To avoid the reclaiming of resources in the cache structure for a data item that you
are referencing in your local cache but not in the cache structure itself, you can use
PROCESS_REFLIST to mark the data item as recently referenced. As a result, the
system is less likely to reclaim the resources for the data item.

6-32 OS/390 V2R8.0 MVS Sysplex Services Guide

PROCESS_REFLIST allows you to process multiple data items at the same time.
You can keep a record of the data items that you are using in your local cache
buffers, and, at certain intervals, or once you have collected a certain number of
data item names in a list, pass the list to the PROCESS_REFLIST request.

For more information about managing cache structure resources for specific data
items, see:

� “PROCESS_REFLIST: Marking Data Items as Referenced” on page 6-112
� “RESET_REFBIT: Marking Data Items as Unreferenced” on page 6-114.

Deleting Data Items and Reclaim Processing
For data items in the cache structure that users no longer need to access, you can
use IXLCACHE REQUEST=DELETE_NAME or REQUEST=DELETE_NAMELIST.
These requests delete the data item from the cache structure and free the allocated
resources. Deleting a data item from the cache causes the system to automatically
invalidate the locally cached copy of the data item for all users. For more
information about deleting data items, see “DELETE_NAME: Deleting Data Items
From a Cache Structure” on page 6-95 and “DELETE_NAMELIST: Deleting a List
of Data Items” on page 6-100.

If a user wants to deregister interest in a data item, the user does not invoke the
DELETE_NAME or DELETE_NAMELIST request. To deregister interest, the user
can register interest in another data item, and specify the vector index that is
currently assigned to the original data item. The user also reassigns the local cache
buffer to the new data item. For a complete description, see the following sections
on registering interest in a data item:

� “Registering Interest in the Data Item for WRITE_DATA Requests” on
page 6-54

� “Registering Interest in the Data Item for READ_ DATA Requests” on
page 6-66

� “Registering Interest in the Data Item for CASTOUT_DATA Requests” on
page 6-81.

Casting out Data Items and Reclaim Processing
If you have changed data in the cache structure, you need to cast out the data to
permanent storage. Because the system does not reclaim changed data items,
developing an efficient protocol for casting out data is essential for managing the
reclaim of resources for the cache structure.

Each time you write a changed data item to the cache structure, the system marks
the data item as changed. A data item that is marked as changed remains that way
until you successfully cast-out the data item. When you free the cast-out lock after
having cast out the data but are unable to write the data item to permanent
storage, you can issue an IXLCACHE request to free the cast-out lock and indicate
that the data item remain marked as changed. As long as the data item is marked
as changed or locked for cast out processing, the system does not reclaim
resources for the data item.

When a high percentage of data items are marked as changed, the amount of
storage available for reclaim is limited. If the amount of free storage available for

 Chapter 6. Using Cache Services (IXLCACHE) 6-33

new data items is limited, you might be unable to define new data items to the
cache structure.

For More Information

For more information about casting-out data items, see

� “Casting out Data or Updating Permanent Storage” on page 6-17

� “CASTOUT_DATA: Casting Out Data from a Cache Structure” on
page 6-79

Assigning Cast-Out Classes
When you use the store-in cache method, each time you write changed data to the
cache, you must assign it to a cast-out class. Consider grouping data items with
similar cast-out frequency requirements in the same cast-out class.

Establishing a Cast-Out Process
To ensure that the system can reclaim storage in the cache structure for
subsequent requests, you must periodically cast out changed data items. You can
develop a protocol by assigning multiple cast-out classes based on frequency. You
might set a “fast” timer to trigger cast-out processing for data items belonging to the
“frequently updated” storage class, and a “slow” timer to trigger cast-out processing
for infrequently updated data items. Or, you could base your cast-out algorithm on
how many changed data items there are in a certain cast-out class. When the
number of changed data items reaches that limit, you can cast out the data items.

For each specified data item on the IXLCACHE READ_DIRINFO request, the
system returns the cast-out class for the data item and an indication whether the
data item is changed. Using this and other information can help you make
decisions about how to perform cast-out processing. Using the IXLCACHE macro,
you can obtain:

� Directory information for specified data items (REQUEST=READ_DIRINFO).

� Cast-out statistics for specified cast-out classes (REQUEST=READ_COSTATS)

� Cast-out information for a specified cast-out class
(REQUEST=READ_COCLASS)

� Storage statistics for specified storage classes (REQUEST=READ_STGSTATS)

You can use the following information that these requests return to make your
cast-out decisions:

� The cast-out class for a data item

� The changed/unchanged state of the data item

� The total number of changed or locked for cast-out data items in a specified
storage class

� The total number of data elements allocated to the data items in a specified
storage class

� The total number of data elements allocated to the data items in a specified
cast-out class

� The names of data items belonging to a cast-out class

6-34 OS/390 V2R8.0 MVS Sysplex Services Guide

� The user-data associated with data items belonging to a cast-out class

Based on monitoring cast-out information that the system returns for pre-defined
thresholds, you can invoke a process to cast-out selected data items.

For More Information

For more information about obtaining information that can help you manage a
cast-out process, see:

� “READ_DIRINFO: Reading Cache Directory Entries” on page 6-116
� “READ_COSTATS: Reading Cast-Out Class Statistics” on page 6-124
� “READ_COCLASS: Reading A Cast-Out Class” on page 6-120
� “READ_STGSTATS: Reading Storage Class Statistics” on page 6-129

Releasing Cast-Out Locks
When you cast out data for a data item, you must obtain the cast-out lock for the
data item. After you have cast out the data and written it to permanent storage, you
must free the cast-out lock; otherwise, the system is unable to reclaim resources
associated with the data item.

To release a cast-out lock for a data item, use IXLCACHE
REQUEST=UNLOCK_CASTOUT or REQUEST=UNLOCK_CO_NAME. You can
free the cast-out lock for one data item at a time or unlock multiple cast-out locks
for multiple data items with REQUEST=UNLOCK_CASTOUT. To reduce processing
overhead, you might want to cast out a number of data items, then free all of the
cast-out locks with one invocation of IXLCACHE REQUEST=UNLOCK_CASTOUT.

For More Information

For more information about unlocking cast-out locks, see “UNLOCK_CASTOUT:
Releasing Cast-Out Locks” on page 6-84 and “UNLOCK_CO_NAME: Releasing
a Single Cast-Out Lock” on page 6-91.

Measuring Cache Structure Resource Usage
Every time you access a data item in the cache structure (through a READ_DATA
or WRITE_DATA request), the system sets the directory reference bit to indicate
that the data item is recently referenced. You can use IXLCACHE RESET_REFBIT
to test and reset the directory reference bit settings. Using RESET_REFBIT can
help determine how efficiently you are using cache structure storage. If the number
of recently referenced data items is low compared to the total number of cached
data items, your cache structure might be too big, and you might not be making
good use of cache structure resources. If the percentage of recently referenced
data items relative to the total number of data items in the cache structure is high,
your cache structure might be too small.

For each recently referenced data item that the system scans, the RESET_REFBIT
request resets the reference bit to make them appear to be “unreferenced.” (When
you issue RESET_REFBIT to reset the reference bit for a data item, the system
does not change the order of the data entry on the storage class queue.) After a
set interval, you can test again to measure resource usage.

 Chapter 6. Using Cache Services (IXLCACHE) 6-35

Understanding Synchronous and Asynchronous Cache Operations
You can specify whether to allow the system to process an IXLCACHE request
synchronously or asynchronously. For asynchronous processing of a request, you
can specify how you want the system to notify you about request completion. To
control synchronous or asynchronous processing, use the MODE parameter on
IXLCACHE requests. Figure 6-9 on page 6-37 lists the options for the MODE
parameter.

 Synchronous Processing

Synchronous processing of an IXLCACHE request means that your program
regains control only when the IXLCACHE request has completed processing.
To specify synchronous processing, you can specify one of the following
options for MODE:

 � SYNCECB
 � SYNCTOKEN
 � SYNCEXIT
 � SYNCSUSPEND

The system might need to suspend your program to be able to process the
IXLCACHE request synchronously. If you specify MODE=SYNCSUSPEND, the
system suspends the program, if necessary, to process the request
synchronously. If you specify another synchronous option for MODE and the
request cannot be processed synchronously, the system processes the request
asynchronously.

The following conditions can cause the system to process a synchronous
IXLCACHE request asynchronously:

� The necessary resources for the request (for example, a subchannel) are
not currently available

� The BUFFER on the request specifies more than 4096 bytes of buffer
storage.

� The BUFLIST parameter specifies more than one buffer, regardless of the
total amount of data for the request.

� A dump of the structure is in progress.

� The system might also choose to convert synchronous requests to
asynchronous processing, based on performance considerations or other
criteria.

The system indicates its intention to process your synchronous request
asynchronously by returning a return code of IXLRETCODEWARNING with a
reason code of IXLRSNCODEASYNCH when you issue the IXLCACHE
request.

 Asynchronous Processing

When the system processes a request asynchronously, your program regains
control after it issues the request, and the request runs independently. To
specify asynchronous processing, you can specify one of the following options
for MODE:

 � ASYNCECB

 � ASYNCTOKEN

6-36 OS/390 V2R8.0 MVS Sysplex Services Guide

 � ASYNCEXIT

 � ASYNCNORESPONSE

When the request runs asynchronously, you need to determine when it has
completed processing. For synchronous requests other than
MODE=SYNCSUSPEND, you need to specify how you want to be informed of
an asynchronous request completion if the system processes the request
asynchronously. You can specify how the system is to inform you when it
processes an IXLCACHE request asynchronously in one of the following ways:

� MODE=SYNCECB or MODE=ASYNCECB to post an event control block
(ECB).

� MODE=SYNCTOKEN or MODE=ASYNCTOKEN to return the request
token specified on the IXLFCOMP macro. You issue IXLFCOMP after you
issue the IXLCACHE request to obtain information about the results of the
request.

� MODE=SYNCEXIT or MODE=ASYNCEXIT to give control to the complete
exit for your program.

If you do not want to be informed about the completion of an asynchronous
request, you can code the following option for some types of requests:

 � MODE=ASYNCNORESPONSE

The MODE Parameter — Summary
The following table summarizes the synchronous and asynchronous options that
you can specify on the MODE parameter:

Figure 6-9 (Page 1 of 2). Options for IXLCACHE Request Processing and
Completion Notification

MODE Parameter
Value Actions Specified

SYNCECB Attempt to process the request synchronously but if the
request must be processed asynchronously, post an ECB to
indicate request completion.

ASYNCECB Process the request asynchronously and post an ECB to
indicate request completion.

SYNCTOKEN Attempt to process the request synchronously but if the
request must be processed asynchronously, return an
asynchronous request token representing the request.

To obtain request results, invoke the IXLFCOMP macro with
the asynchronous request token you received. For more
information, see “Using the IXLFCOMP Macro with
MODE=ASYNCTOKEN or MODE=SYNCTOKEN” on
page 7-40.

ASYNCTOKEN Process the request asynchronously and return an
asynchronous request token representing the request.

To obtain request results, invoke the IXLFCOMP macro with
the asynchronous request token you received. For more
information, see “Using the IXLFCOMP Macro with
MODE=ASYNCTOKEN or MODE=SYNCTOKEN” on
page 7-40.

 Chapter 6. Using Cache Services (IXLCACHE) 6-37

You can issue multiple IXLCACHE requests with MODE=ASYNCTOKEN or
MODE=SYNCTOKEN to allow you to continue with other work while the requests
are being processed asynchronously and obtain request results through the
IXLFCOMP macro.

Figure 6-9 (Page 2 of 2). Options for IXLCACHE Request Processing and
Completion Notification

MODE Parameter
Value Actions Specified

SYNCEXIT Attempt to process the request synchronously but if the
request must be processed asynchronously, give control to
the complete exit when the request completes. For more
information about the complete exit, see “Coding a Complete
Exit” on page 7-116.

ASYNCEXIT Process the request asynchronously and give control to the
complete exit when the request completes.

SYNCSUSPEND Process the request synchronously. If necessary, suspend the
program until the request completes processing. Note that this
is the only MODE option that could cause your program to be
suspended. To use this option, your program must be enabled
for I/O and external interrupts.

ASYNCNORESPONSE Process the request asynchronously. Do not provide
notification of request completion.

Using the IXLFCOMP Macro
If you specify MODE=ASYNCTOKEN or MODE=SYNCTOKEN, and your request is
processed asynchronously, you must invoke the IXLFCOMP macro to obtain the
results of your IXLCACHE request. You can use IXLFCOMP to determine whether
your request has completed or to have your task suspended until the request
completes.

If the return code from IXLFCOMP indicates that your request has completed, the
results are available in the output areas you have specified on the IXLCACHE
macro.

For more information about the IXLFCOMP macro, see “Using the IXLFCOMP
Macro” on page 9-1.

Selecting a Data Buffer For a Request
You can pass or receive structure entry or control data for IXLCACHE requests in
buffers. On the request, you can specify a single buffer (by using the BUFFER
keyword) or multiple buffers (by using the BUFLIST keyword). To specify buffers for
passing or receiving adjunct data, you must use the ADJAREA keyword.

The type of information in the buffers depends on the IXLCACHE request. For
instance, on a WRITE_DATA request, the buffer holds data for a data item to be
written to a data entry in the cache structure. On an UNLOCK_CASTOUT request,
the buffer contains a list of the names of data entries with cast-out locks that you
want to free. Both the BUFFER and BUFLIST parameter options enable you to
pass or receive up to 65,536 (64K) bytes of structure entry or control data. The
ADJAREA parameter allows you to pass or receive up to 64 bytes of data for an
adjunct area.

6-38 OS/390 V2R8.0 MVS Sysplex Services Guide

 BUFFER Keyword
The BUFFER keyword specifies a single contiguous buffer. It consists of a virtual
storage area containing the data that the user passes to the cache structure or data
that the system returns from the cache structure.

For a single buffer less than or equal to 4096 bytes in size , the storage must
have the following characteristics:

� The buffer size can be 256, 512, 1024, 2048, or 4096 bytes.
� The buffer must start on a 256-byte boundary.
� The buffer must not cross a 4096-byte (page) boundary.
� The buffer must not start below storage address 512.

For a single buffer greater than 4096 bytes , the storage must have the following
characteristics:

� The buffer size can be up to 65,536 bytes and must be a multiple of 4096.
� The buffer must start on a 4096-byte boundary.

The following IXLCACHE requests MUST specify a buffer size of 4096 or greater:

 � UNLOCK_CASTOUT
 � PROCESS_REFLIST
 � READ_COCLASS
 � READ_DIRINFO
 � READ_COSTATS

To specify the size of the buffer, use the following parameter:

 � BUFSIZE

 BUFLIST Keyword
The BUFLIST parameter specifies the address of a storage area that contains the
addresses of up to 16 buffers. These buffers do not have to be contiguous. The
system transfers data to and from the set of buffers in the list in order of ascending
buffer number. Figure 6-10 on page 6-40 illustrates a buffer list used with a cache
structure.

Storage for the buffer list must have the following characteristics:

� The buffer list consists of a maximum 128-byte storage area that can contain a
list of 0 to 16 buffer addresses.

� Each entry in the buffer list consists of an 8-byte field in which the high-order
(left-most) 4 bytes are reserved and the low-order (right-most) 4 bytes contain
the real or virtual address of a buffer.

To specify the ALET of each buffer in the buffer list, use the following parameter:

 � BUFALET

The BUFALET parameter specifies an access list entry token (ALET) to be used in
referencing all of the BUFLIST entries. All the buffers must be in the same address
or data space.

To specify the number of buffer entries in the list, use the following parameter:

 � BUFNUM

 Chapter 6. Using Cache Services (IXLCACHE) 6-39

Note: The system ignores any other buffer entries in the list greater than the
number of buffers specified on BUFNUM.

Each buffer specified by BUFLIST must have the following characteristics:

� The buffer size must be 256, 512, 1024, 2048, or 4096 bytes.
� All of the buffers must be the same size.
� The buffer must start on a 256-byte boundary.
� The buffer must not cross a 4096-byte boundary.
� The buffer must not reside below storage address 512.

For the following IXLCACHE requests, each buffer in the list must be 4096 bytes
long and must start on a 4096-byte boundary:

 � UNLOCK_CASTOUT
 � PROCESS_REFLIST
 � READ_COCLASS
 � READ_DIRINFO
 � READ_COSTATS

To specify the number of 256-byte increments in each BUFLIST buffer for all
requests except those that must start on a 4096-byte boundary, use the following
parameter:

 � BUFINCRNUM

Valid values are 1, 2, 4, 8, and 16. For example, if you specify BUFINCRNUM=4,
each buffer in the buffer list is 4 x 256 bytes, or 1024 bytes.

To specify whether the buffer addresses are real or virtual addresses, use one of
the following parameters:

 � BUFADDRTYPE=REAL
 � BUFADDRTYPE=VIRTUAL

Figure 6-10 shows an example of a buffer list:

4 bytes
reserved

4 bytes
reserved

Buffer
address

Buffer
address

8 bytes

128 bytes
Entry 1 Entry 16

Figure 6-10. Format of Buffer List Specified by the BUFLIST Parameter

 ADJAREA
ADJAREA specifies a 64-byte area containing the information to be written to or
read from the data entry's adjunct area.

6-40 OS/390 V2R8.0 MVS Sysplex Services Guide

Design Considerations for Choosing the Buffer Format
To help you evaluate options when you specify buffers, consider the following
questions:

� How much buffer storage should I use?
� Should I use BUFFER or BUFLIST?
� If I use BUFLIST, how many buffers should I use?
� What is the relationship between the organization of data in my buffers and

data elements in the structure?

Buffer Sizes: You should specify just the buffer storage you need to hold the data
you are passing or receiving. Because the system transfers the entire buffer
storage that you specify, specifying more buffer space than is needed to hold the
data can affect performance.

If you are writing data to a data entry and you wish to create a data entry with extra
space for use later, specify a greater number of data elements (ELEMNUM
keyword) than you need to hold your data. Specifying more data elements than
your data requires does not affect performance.

Specifying BUFFER or BUFLIST: Whether you use a single buffer or multiple
buffers depends on whether you are issuing IXLCACHE multiple times, whether all
the data resides in contiguous storage, and whether performance is a major factor.
If you want to provide real buffer addresses, you can only use BUFLIST.

When you pass IXLCACHE a single buffer, IXLCACHE creates a buffer list for that
buffer in the same manner as if you were specifying BUFLIST. If you invoke
IXLCACHE multiple times, you can obtain better performance if you use BUFLIST
instead of BUFFER and allow IXLCACHE to build the buffer list on each invocation.
Using BUFLIST also lets you avoid having to move data from multiple storage
areas into a single buffer before passing it to IXLCACHE.

Performance Considerations Using Buffers: If you choose to use multiple
buffers, you must determine how many buffers to use and the size of the buffers.
To achieve the best performance, use the fewest buffers possible. For example, a
few large buffers provide better performance than many small ones.

If you specify more than 4096 bytes of buffer storage, or specify BUFLIST with
more than one buffer, the system always processes the request asynchronously.
For a SYNCSUSPEND request, the system suspends the requesting unit of work.
(Note that requests are also processed asynchronously for other reasons such as
unavailability of a required resource.) In terms of performance, a single, smaller
buffer (under 4096 bytes) might be preferable to multiple buffers in a BUFLIST, or
to a buffer greater than 4096 bytes.

Buffers and Structure Data Elements: The size of your buffers does not have to
correspond to the size of a structure data element. To create a buffer size equal to
a structure element, specify the same value for BUFINCRNUM as was specified on
the ELEMINCRNUM keyword of the IXLCONN macro for the structure. Establishing
this one-to-one relationship is not required because IXLCACHE automatically
“remaps” data that is arranged differently as it is transferred between buffer areas
and structure elements.

 Chapter 6. Using Cache Services (IXLCACHE) 6-41

Design Considerations for Defining Buffer Storage Areas
The IXLCACHE request types that allow you to specify buffer storage areas
generally result in data being transferred directly between the data buffer storage
and the coupling facility storage. The coupling facility transfers data using real
storage addresses; therefore, the data buffer storage must be fixed in a specific,
known real storage location and remain so until the coupling facility has transferred
all data for the request.

When defining the buffer storage areas for an IXLCACHE request, consider the
following:

� The cross-memory mode of your application
� The use of real versus virtual storage

The data buffers for an IXLCACHE request can be addressable in the caller's
primary, secondary, or home address space, from the PASN access list, or from
the DU access list. The system assigns ownership of a data buffer to the address
space either in which the buffer storage resides or that has an associated data
space in which the buffer storage resides.

Determining Buffer Storage Ownership
XES always assumes that the storage for the data buffers is owned by the home
address space (the “requestor's” or “client's” address space) at the time of the
IXLCACHE request. However, XES also allows the buffers to be owned by the
primary address space (the “connector's” or “server's address space”) at the time of
the request when the following conditions both exist:

� The connector's space is not equal to the requestor's home space
� The connector's space is non-swappable.

Thus, the possible address space environments for your application are:

� Requestor (Home) equals Connector (Primary)

� Requestor (Home) does not equal Connector (Primary) with buffer storage
owned by Connector's address space

� Requestor (Home) does not equal Connector (Primary) with buffer storage
owned by Requestor's address space.

In general, the IXLCACHE service allows you to designate your data buffer storage
using real or virtual storage addresses. However, it is of the utmost importance that
the data buffer storage be fixed in a specific, known, real storage location and
remain so until all data transfer is complete.

Using Real Versus Virtual Storage: The IXLCACHE service allows you to
designate the data buffer storage in three different ways:

� By real storage address

� By pageable virtual storage address (including pageable subpools,
disabled-reference (DREF) subpools, and page-fixed storage that might not
remain page-fixed in a particular real storage location until the completion of
the request).

� By nonpageable virtual storage address (including fixed subpools and storage
that might not remain page-fixed in a particular real storage location until the
completion of the request).

6-42 OS/390 V2R8.0 MVS Sysplex Services Guide

(For information about whether a subpool is pageable, fixed, or DREF storage, see
Authorized Assembler Programming Guide.)

Specifying the PAGEABLE parameter with BUFFER and BUFLIST is a way to
identify to the system whether the storage area you pass is in pageable or
potentially pageable storage.

Real storage address

When data buffer storage is designated by real address, XES takes no
responsibility for its ownership or its attributes. The IXLCACHE invoker is entirely
responsible for management of the storage binds.

For example, suppose a swappable connector

Obtains a pageable virtual storage buffer in storage associated with the
connector's space
Pagefixes the storage
Loads the real address of the buffer storage
Passes those real storage addressses to XES on a request.

If the connector's address space were to be swapped out at some point after
loading the real addresses, the system could free and then reassign the real
storage frames backing the data buffer. (Page-fixed storage does not remain fixed
in real storage when the owning address space is swapped out.) Then, if those
real addresses were subsequently used to transfer data to or from the coupling
facility, the results would be unpredictable because XES is unaware that the bind
between the real addresses and the data buffer virtual storage has been broken.

To summarize: When data buffer storage is passed by real address, it is the caller's
responsibility to manage the binds between the data buffer virtual storage and the
real storage addresses provided to the coupling facility. The caller must ensure that
the data buffer virtual storage remains bound to the real storage addresses
provided until the request completes.

Pageable virtual storage address

When data buffer storage is designated by pageable virtual storage address
(PAGEABLE=YES on the IXLCACHE request), XES takes full responsibility for the
ownership and its attributes regardless of what address space owns the storage.
XES performs the required page fixing to fix the buffer in real storage while the
IXLCACHE request transfers data to or from the coupling facility. XES establishes
the storage binds between the data buffer virtual storage and the real storage
backing it and then releases those binds when the data transfer is complete.

If the storage-owning address space were to be swapped out while the
XES-established storage binds exist, XES does not allow the swap-out to complete
until those storage binds have been broken. The following three scenarios describe
actions taken by XES at the time of the swap-out:

1. Coupling facility data transfer has not yet been initiated.

XES breaks the real storage binds associated with the request. When the
address space is swapped-in again, XES re-establishes the storage binds for
the request by once again fixing the data buffer virtual storage in real storage
(which most likely is a different real storage location than the data buffer

 Chapter 6. Using Cache Services (IXLCACHE) 6-43

previously occupied). XES subsequently uses these real storage addresses for
the coupling facility data transfer.

2. Coupling facility data transfer is actively in progress.

XES delays the swap-out until the coupling facility data transfer completes.
When the address space is swapped-in again, the data transfer for the request
is complete and there is no need to re-establish the storage binds for the
request.

3. Coupling facility data transfer has completed.

XES breaks the real storage binds associated with the request (or, the storage
binds might already have been broken, depending on when the swap-out
occurred). When the address space is swapped-in again, the data transfer for
the request is complete and there is no need to re-establish storage binds for
the request.

To summarize: When data buffer storage is passed by pageable virtual storage
address, XES is responsible for managing the binds between the data buffer virtual
storage and the real storage used to transfer data to or from the coupling facility.

Nonpageable virtual storage address

When data buffer storage is designated by non-pageable virtual storage address
(PAGEABLE=NO on the IXLCACHE request), XES takes full responsibility for the
ownership and its attributes if and only if the storage is owned by the requestor's or
connector's address space. XES establishes the storage binds between the data
buffer virtual storage and the real storage backing it and then releases those binds
when the data transfer associated with the request is complete.

If the storage-owning address space (the requestor's or connector's address space)
were to be swapped out while the XES-established storage binds exist, XES does
not allow the swap-out to complete until those storage binds have been broken.
The following three scenarios describe actions taken by XES at the time of the
swap-out:

1. Coupling facility data transfer has not yet been initiated.

XES breaks the real storage binds associated with the request. When the
address space is swapped-in again, XES re-establishes the storage binds for
the request (which most likely is a different real storage location than the data
buffer previously occupied). XES subsequently uses these real storage
addresses for the coupling facility data transfer.

2. Coupling facility data transfer is actively in progress.

XES delays the swap-out until the coupling facility data transfer completes.
When the address space is swapped-in again, the data transfer for the request
is complete and there is no need to re-establish the storage binds for the
request.

3. Coupling facility data transfer has completed.

XES breaks the real storage binds associated with the request (or, the storage
binds might already have been broken, depending on when the swap-out
occurred). When the address space is swapped-in again, the data transfer for
the request is complete and there is no need to re-establish storage binds for
the request.

6-44 OS/390 V2R8.0 MVS Sysplex Services Guide

To summarize: When data buffer storage is passed by nonpageable virtual storage
address, XES is responsible for managing the binds between the data buffer virtual
storage and the real storage used to transfer data to or from the coupling facility if
and only if the storage is owned by the requestor's or connector's address space.

Notes:

1. If you specify PAGEABLE=NO and your request is processed synchronously,
you can free storage as soon as control returns from IXLCACHE. You must
check the return code to verify if the system handled the request
synchronously.

2. Figure 6-11 shows how long you must keep storage areas fixed for
asynchronous processing of a request. It shows the MODE (including
synchronous requests that might be processed asynchronously) and when the
storage can be made pageable during request processing:

Figure 6-11. When Storage Areas Passed to IXLCACHE Can Be Made Pageable

MODE Value
For Asynchronous Processing, when Storage Can Be Made
Pageable

ASYNCECB or
SYNCECB

After ECB is posted

ASYNCTOKEN or
SYNCTOKEN

When your program regains control from the IXLFCOMP service
and the request has completed .

ASYNCEXIT or
SYNCEXIT

When your completion exit receives control.

Design Considerations for Page-Fixed Storage
Allowing the system to page-fix storage (PAGEABLE=YES) is faster than using the
PGSER services. However, specifying PAGEABLE=YES results in slower
IXLCACHE performance than specifying PAGEABLE=NO because it takes more
time for IXLCACHE to ensure that the virtual storage is backed by central storage.
Additionally, if you issue IXLCACHE multiple times and reuse the same storage
areas to pass information, you might obtain better performance if you issue a single
PGSER invocation and specify PAGEABLE=NO than if you specify
PAGEABLE=YES and allow the system to fix storage on each IXLCACHE
invocation.

When selecting an option, consider how many requests you will issue and whether
you plan to use the same storage buffers on multiple requests. For example, if you
plan to write changes from the buffer to permanent storage as part of the
store-through cache method, and must page-fix the storage yourself for such a
write, specifying PAGEABLE=YES on the read request for the data in the cache
structure has no effect on the page fixing for the write to permanent storage. In
such a scenario, because you must provide the page fixing for the write to
permanent storage anyway, for improved performance, you might specify
PAGEABLE=NO on the IXLCACHE request and page-fix the storage yourself when
you write the data from local buffers to the cache structure.

See “Using Real Versus Virtual Storage” on page 6-42 for more information about
specifying pageable and nonpageable virtual storage.

 Chapter 6. Using Cache Services (IXLCACHE) 6-45

Specifying the Buffer Storage Key
You can specify the BUFSTGKEY parameter with BUFFER or BUFLIST and
PAGEABLE=YES to identify and associate a storage key with the buffers.
Specifying a storage key helps provide data integrity by allowing IXLCACHE
services to check that the buffer is accessible in the key intended by the caller.

Storage key checking is important when the buffer is owned by a client address
space that relies on a server address space to invoke IXLCACHE services for data
requests. IXLCACHE performs the storage key check so that before passing the
data to IXLCACHE, the server address space does not need to transfer the data of
the client address space into its own storage.

If you omit BUFSTGKEY with PAGEABLE=YES, the system uses the PSW key of
the IXLCACHE requestor as the default storage key and performs key checking
using the caller's PSW key.

You cannot specify the BUFSTGDEY parameter with PAGEABLE=NO. The system
does not do any storage key checking when non-pageable buffers are used. It is
the IXLCACHE invoker's responsibility to do any storage key checking that might
be required for non-pageable buffer storage.

Receiving Information from a Request
You receive information from an IXLCACHE request through return and reason
codes and the answer area. Depending on the type of request, you might receive
information in other storage locations provided by the request. For a description of
where to find information returned for each IXLCACHE requests, see the topic in
this chapter that discusses the request.

Requesting Return and Reason Codes
All IXLCACHE requests provide a return code in register 15. The system returns
reason codes, if they exist, in register 0. (Not all return codes have reason codes.)
Optionally, you can define the return code keyword (RETCODE) and the reason
code keyword (RSNCODE) in your program.

If the IXLCACHE request defines an answer area, the answer area also contains
the return code (in the CAARETCODE field) and the reason code (in the
CAARSNCODE field).

Defining an Answer Area (ANSAREA)
All IXLCACHE requests allow you the option to provide an answer area. When you
provide an answer area, the system uses it to return information about the request.
For a mapping of the answer area fields for the IXLCACHE macro, see macro
IXLYCAA in OS/390 MVS Data Areas, Vol 3 (IVT-RCWK).

If you provide an answer area, you must identify it on each IXLCACHE request
through the ANSAREA keyword. You must also indicate the length of the answer
area through the ANSLEN keyword.

The following are restrictions that apply when you specify an answer area:

� You must provide an answer area if you specify MODE=SYNCTOKEN or
MODE=ASYNCTOKEN.

6-46 OS/390 V2R8.0 MVS Sysplex Services Guide

� Do not specify the same answer area for more than one request at the same
time.

� Re-use or free answer area storage for a request only after you determine that
the request is complete, either synchronously, or through the asynchronous
specification for MODE on the request.

| Specifying the IXLYCAA Level
| The IXLCACHE Answer Area (IXLYCAA) supports several levels of information that
| IXLCACHE returns. Certain IXLCACHE requests might provide data that was not
| returned when the IXLCACHE service was first made available. For these request
| types, you must check the level of the IXLYCAA and ensure that the length of the
| answer area that you provide is capable of receiving all the data that the
| IXLCACHE request returns. For example, in OS/390 Release 8, extended restart
| tokens might be returned for restarting a request. An extended restart token
| requires that the level-1 version of IXLYCAA be used and that its length be
| specified as CAALEVEL1LEN.

| IBM recommends that you use the level-1 version of IXLYCAA in case additional
| new data is returned by the IXLCACHE service. Note that the level-1 IXLYCAA
| mapping is larger than the level-0 IXLYCAA mapping.

Determining Valid Information in the Answer Area
There are instances when the answer area might not be updated with valid
information for a request. For example, if you issue an IXLCACHE request and the
system handles the request asynchronously, the system issues a return and reason
code to indicate asynchronous processing for the request. As a result, the user
must assume that the data in the answer area or other storage location associated
with the request is not valid. Only when the user is sure that the request has
completed can the data in the answer area be considered valid. For the return and
reason code descriptions of each request, see OS/390 MVS Programming: Sysplex
Services Reference.

Specifying the Vector Entry Index on IXLCACHE Requests
You specify a vector entry index to refer to the data item in your local cache buffer
on the following IXLCACHE requests:

 � IXLCACHE REQUEST=WRITE_DATA
 � IXLCACHE REQUEST=READ_DATA
 � IXLCACHE REQUEST=CASTOUT_DATA

The system tracks data items in the local cache buffers through each user's vector
entry index that corresponds to the local buffer for the named data item. Users are
responsible for defining and maintaining the vector entry index values and for
specifying on the IXLCACHE request the index for the data item. On the request,
you can specify the vector entry index currently assigned to the data item in the
cache structure, a vector entry index that is not currently assigned to the data item
in the cache structure, or a vector entry index that is currently assigned to another
data item in the cache structure.

� Specifying an Assigned Vector Entry Index

To specify the vector entry index currently assigned to the data item, code the
vector entry index on VECTORINDEX and the name of the data item on the

 Chapter 6. Using Cache Services (IXLCACHE) 6-47

NAME keyword. The system registers your interest in the data item. It is your
responsibility to keep track of the vector entry index you have assigned to the
data item and to ensure that you specify that vector entry index.

� Specifying a Currently Unassigned Vector Entry Index

To specify a vector entry index that is currently unassigned to a data item, code
the unassigned vector entry index on VECTORINDEX and the name of the
data item on NAME. The system registers your interest in the data item. The
data item can be a new data item that currently does not have an assigned
vector entry index, or a data item that is currently assigned a different vector
entry index, in which case, the system invalidates the existing vector entry for
the data item.

� Specifying a Vector Entry Index that is Assigned to Another Data Item

To specify a vector entry index that is currently assigned to a data item to
another data item, code the vector entry index for the data item on
VECTORINDEX and the name of the data item to which you are assigning the
vector entry index on NAME. On the OLDNAME keyword, specify the name of
the data item to which the vector entry index is currently assigned. The system
registers your interest in the data item specified on NAME and deregisters your
interest in the data item specified on OLDNAME. The data item for NAME can
be a new data item that currently does not have a vector entry index assigned
or a data item that is currently assigned a different vector entry index, in which
case, the system invalidates the existing vector entry index for the data item.

For a description of the vector entry index and IXLCACHE
REQUEST=WRITE_DATA, see “Registering Interest in the Data Item for
WRITE_DATA Requests” on page 6-54.

For a description of the vector entry index and IXLCACHE
REQUEST=READ_DATA, see “Registering Interest in the Data Item for READ_
DATA Requests” on page 6-66.

For a description of the vector entry index and IXLCACHE
REQUEST=CASTOUT_DATA, see “Registering Interest in the Data Item for
CASTOUT_DATA Requests” on page 6-81.

Using Filters for Names on Requests
You can specify a NAME and a NAMEMASK filter for the following requests:

 � IXLCACHE REQUEST=CROSS_INVAL
 � IXLCACHE REQUEST=DELETE_NAME
 � IXLCACHE REQUEST=RESET_REFBIT
 � IXLCACHE REQUEST=READ_DIRINFO
 � IXLCACHE REQUEST=READ_COCLASS

With these requests, you can specify either a single data item name (NAME) or a
NAME and NAMEMASK that defines a filter or character selection pattern for
multiple data item names.

Using a Character Selection Pattern

Optionally, you can code both the NAME and NAMEMASK keywords to provide
a character selection pattern. The NAMEMASK keyword defines a selection

6-48 OS/390 V2R8.0 MVS Sysplex Services Guide

bit-mask. The selection bit-mask together with the name specified on the NAME
keyword defines a character pattern that the system uses to select data item
names. The technique enables you to select multiple data item names from the
cache structure.

The selection process works as follows: The data item name specified on the
NAME keyword is 16-characters long. The bit-mask specified on the
NAMEMASK keyword is a bit string that is 16-bits long. Each bit in the bit-mask
corresponds to the same relative character position in the data item name. For
example, the high-order bit in the mask corresponds to the high-order character
in the data item name.

The value of each bit in the mask determines whether the corresponding
character in the NAME keyword is used in the selection process. If the mask bit
is B'1', the corresponding character in both the cached data item name and
the name specified on the NAME keyword must match exactly. If the mask bit
is B'0', the corresponding character in the cached data item name can be any
value.

Consider the following bit-mask values:

� If the mask contains all B'1's (which is also the system default), the
system selects only the cached data item whose name matches exactly the
name specified on the NAME keyword.

� If the mask contains all B'0's, the system selects all cached data items.

� If the mask contains a combination of B'0's and B'1's, the system selects
only those names that satisfy the selection criteria.

For examples of using NAME and NAMEMASK, see “Identifying Data Items to
Delete” on page 6-96.

Restarting a Request that Ends Prematurely
Some IXLCACHE requests can complete prematurely (that is, without fully
completing the requested service) if the request exceeds the time-out criteria for the

| coupling facility or the user's buffer is filled before all data is returned. (Time-out
criteria for a coupling facility is model-dependent.) The following IXLCACHE
requests can complete prematurely if they exceed time-out criteria:

 � IXLCACHE REQUEST=DELETE_NAME
 � IXLCACHE REQUEST=CROSS_INVAL
 � IXLCACHE REQUEST=RESET_REFBIT
 � IXLCACHE REQUEST=READ_DIRINFO
 � IXLCACHE REQUEST=READ_COCLASS
 � IXLCACHE REQUEST=UNLOCK_CASTOUT
 � IXLCACHE REQUEST=REG_NAMELIST

There are two methods by which the system enables restart of a prematurely
completed request. One method uses a restart token, and the other uses an index
value. Both methods require that you provide an answer area, mapped by the
IXLYCAA macro.

 Chapter 6. Using Cache Services (IXLCACHE) 6-49

Using the Restart Token
The following IXLCACHE requests use the restart token method when restarting a
prematurely completed request:

 � IXLCACHE REQUEST=DELETE_NAME
 � IXLCACHE REQUEST=CROSS_INVAL
 � IXLCACHE REQUEST=RESET_REFBIT
 � IXLCACHE REQUEST=READ_DIRINFO
 � IXLCACHE REQUEST=READ_COCLASS

| To enable restart of a prematurely completed request, the system provides a restart
| token in the answer area. The restart token can be either 8 or 16 bytes long. The
| standard restart token (RESTOKEN) is 8 bytes long and is returned in the
| CAARESTOKEN field of the answer area. The extended restart token
| (EXTRESTOKEN) is 16 bytes long and is returned in the CAAEXTRESTOKEN field
| of the answer area. Requestors that specify IXLCONN ALLOWAUTO=YES must
| use the extended restart token. Requestors that specify or default to
| ALLOWAUTO=NO must use the standard restart token.

On the first invocation of any IXLCACHE request, you can optionally specify a
| RESTOKEN or EXTRESTOKEN of all zeros to indicate that the request is invoked

for the first time. If the request completes prematurely, it returns a restart value to
| the CAARESTOKEN or CAAEXTRESTOKEN field in the answer area of the
| request. To restart processing, you must specify RESTOKEN or EXTRESTOKEN
| on the next invocation of the request and reset either RESTOKEN or
| EXTRESTOKEN with the value returned in the answer area from the previous

request. To ensure that you do not alter the intent of the request that completed
prematurely, the restarted request needs to specify the same keywords and values

| as those of the original request (with the exception of RESTOKEN or
| EXTRESTOKEN which is now the value returned in CAARESTOKEN or
| CAAEXTRESTOKEN from the original request). The system restarts the request

from the point at which it completed prematurely on the original request.

| When using an extended restart token, users should be particularly aware of the
| structure instance being processed. For example, if a structure has undergone a
| system-managed rebuild and the user then specifies the extended restart token
| returned from processing the original structure, the system returns the reason code
| IXLRSNCODEBADEXTRESTOKEN. An appropriate action to take when this
| situation occurs would be to start the process again with an EXTRESTOKEN of
| zero.

Restarting Requests Multiple Times with Restart Tokens
It is possible for a request to complete prematurely multiple times. Each time, you
must restart the request until it completes normally. The following series of events
shows how to handle these requests:

1. The request completes prematurely and the system returns a restart token in
the answer area.

| 2. Issue IXLCACHE to restart the request. You must code RESTOKEN or
| EXTRESTOKEN to specify the restart token. All other keywords coded on the

original request need to be coded on the restart request.

3. The request again completes prematurely and the system returns a restart
token in the answer area.

6-50 OS/390 V2R8.0 MVS Sysplex Services Guide

| 4. Issue IXLCACHE with the RESTOKEN or EXTRESTOKEN to restart the
request.

Continue this process until the system completes processing all the data specified
by the request.

| To avoid coding separate IXLCACHE invocations with RESTOKEN or
| EXTRESTOKEN each time you need to restart the request, code a single

IXLCACHE invocation with the restart token initialized to all zeros on the original
request. Every time you need to restart the request, you can set the restart token

| equal to the value returned in the CAARESTOKEN or CAAEXTRESTOKEN field of
the answer area on the previous request.

Using an Index Value
The following IXLCACHE requests use the index value method when restarting a
prematurely completed request:

 � IXLCACHE REQUEST=UNLOCK_CASTOUT
 � IXLCACHE REQUEST=REG_NAMELIST
 � IXLCACHE REQUEST=DELETE_NAMELIST

To enable restart of a prematurely completed request, the system provides a index
value in the index field of the answer area. For an UNLOCK_CASTOUT request,
the system returns an index value into the list of name elements in the
CAAULINDEX field. For a REG_NAMELIST request, the system returns an index
value into the list of registration blocks in the CAARNLINDEX field. For a
DELETE_NAMELIST request, the system returns an index value into the list of
name elements in the CAADNLINDEX field. Use this index value to restart the
request so it can process the remaining data.

“Processing an UNLOCK_CASTOUT Request that Ends Prematurely” on
page 6-87 describes how to use the index value when describes how to use the
index value when restarting an UNLOCK_CASTOUT request. “Restarting a
REG_NAMELIST Request that Ends Prematurely” on page 6-77 describes how to
use the index value when restarting a REG_NAMELIST request. “Restarting a
DELETE_NAMELIST Request that Ends Prematurely” on page 6-102 describes
how to use the index value when restarting a DELETE_NAMELIST request.

Restarting Requests Multiple Times with Index Values
It is possible for a request to complete prematurely multiple times. Each time, you
must restart the request until it completes normally. The following series of events
shows how to handle these requests:

1. The request completes prematurely and the system returns an index value in
the answer area.

2. Issue IXLCACHE to restart the request. You must reinitialize the starting index
based on the index value returned. All other keywords coded on the original
request need to be coded on the restart request.

3. The request again completes prematurely and the system returns an index
value in the answer area.

4. Issue IXLCACHE with the reinitialized starting index value to restart the
request.

 Chapter 6. Using Cache Services (IXLCACHE) 6-51

Continue this process until the system completes processing all the data specified
by the request.

Understanding the Cache Data Entry Version Number
When a cache structure is allocated in a coupling facility with CFLEVEL=5 or
higher, several IXLCACHE requests allow you to associate a version number with a
data entry. You can use the version number field to indicate when the contents of a
data entry have changed, to select data entries for certain types of IXLCACHE
requests, or to implement a serialization mechanism (similar to compare and swap)
on a single data entry basis.

Setting the Cache Entry Version Number
The WRITE_DATA request allows you to set up or change the version number of
the target data entry by specifying the VERSUPDATE parameter. The version
number can be:

� Assigned a particular value (VERSUPDATE=SET,NEWVERS=newvers)
� Incremented by one (VERSUPDATE=INC)
� Decremented by one (VERSUPDATE=DEC).

Note: When a data entry is created, its version number is set to zero. If you
specify VERSUPDATE=INC or VERSUPDATE=DEC when you create a
new cache entry, the system uses zero as the value to be incremented or
decremented.

Using the Version Number to Select Data Entries for Processing
With structures allocated in a coupling facility with CFLEVEL=5 or higher, on a
WRITE_DATA request, you can require the target data entry to compare
successfully with a version number and type of comparison that you specify in
order to be selected for processing. You can specify that a version number be
equal or less-than-equal to a designated version number with the
VERSCOMPTYPE keyword. If the version number for the target data entry does
not meet the version comparison criteria you specify, the IXLCACHE request fails
with no resultant change to the structure. The system returns the version number
that did not meet the required comparison criteria in the cache answer area.

On DELETE_NAME and DELETE_NAMELIST requests, you can require that all
selected data entries have a version number which compares successfully with a
version number and type of comparison you specify. If the comparison fails on a
DELETE_NAME request, no processing is performed for the current entry and
processing continues with the next entry to be considered. When a version number
comparison fails on a DELETE_NAMELIST request, the ERRORACTION keyword
allows you to specify that either processing is to continue with the next entry or the
request is to be stopped. If stopped, the index of the entry that caused the error is
returned in the cache answer area.

Using the Version Number to Serialize Data Entry Operations
By adhering to a protocol of updating the version number when you update a cache
entry's contents, you can avoid corrupting or deleting changes made to the entry by
other users. For instance, you could establish the following procedure for updating
data entries:

� Read a data entry

� Update its contents

6-52 OS/390 V2R8.0 MVS Sysplex Services Guide

� Increment, decrement, or set the version number of the updated copy of the
data entry

� Write the changes back to the data entry using the VERSCOMP parameter to
ensure that the data entry is updated only if its version number is still the same
as when you read it or is less than or equal to a specified value.

If the version number comparison fails, the write request is not performed and you
must start the update process again after re-reading the current data entry.

Other Services Used with IXLCACHE
Besides the IXLCACHE services, several other services are available to users for
managing and using a cache structure. The following is a list of services and exits:

� IXLCONN macro — Used to define characteristics of the cache structure and to
connect to the structure

� IXLVECTR — Used to determine the validity of locally cached data and to
manage the local cache vector

� IXLLOCK macro — Used to serialize access to data that is shared among
users of the cache structure

� IXLFCOMP macro and the complete exit — Used to handle the completion of
IXLCACHE requests that run asynchronously.

WRITE_DATA: Writing a Data Item to a Cache Structure
To define a data item and write it to a cache structure, or to update a previously
written data item, use the WRITE_DATA request. When you write data to a cache
structure, you can:

� Write only a data item from your local cache buffers to a data entry in the
cache structure

� Write only adjunct data to the adjunct area, if the data entry has an adjunct
area

� Write both adjunct data and a data item

Additionally, when updating a data item, you can:

� Write user-defined data to the associated directory entry

� Write zero data to a data entry, thus causing the user to disassociate a data
item and adjunct from the entry.

With a cache structure allocated in a coupling facility with CFLEVEL=5 or higher,
these additional functions are available. You can:

� Write a version number, update a version number, and compare version
numbers.

� Write data without registering interest and optionally, deregister interest in a
different directory entry.

 Chapter 6. Using Cache Services (IXLCACHE) 6-53

Guide to the Topic

“WRITE_DATA: Writing a Data Item to a Cache Structure” is divided into three
sections.

The first section, “IXLCACHE Functions for REQUEST=WRITE_DATA” on
page 6-54, applies to all WRITE_DATA requests and includes the following
major topics:

� “Registering Interest in the Data Item for WRITE_DATA Requests” on
page 6-54

� “Specifying the Data Item Name” on page 6-57
� “Specifying the Changed or Unchanged State of the Data Item” on

page 6-57
� “Assigning a Changed Data Item to a Cast-Out Class” on page 6-59
� “Specifying Parity of a Changed Data Item” on page 6-59
� “Writing User-Defined Data” on page 6-60
� “Obtaining the Cast-Out Lock on Write Requests” on page 6-58
� “Assigning a Storage Class” on page 6-60
� “Specifying the Size of the Data Entry to Hold the Data” on page 6-61
� “Selecting the Buffering Method” on page 6-61
� “Design Considerations for Choosing the Buffer Format” on page 6-41
� “Specifying Data on a Write Request” on page 6-61
� “Receiving Answer Area Information” on page 6-62

The second section, “Defining and Writing a New Data Item: Summary” on
page 6-62 summarizes a procedure for defining a new data item and writing it
to the cache structure.

The third section, “Updating an Existing Data Item: Summary” on page 6-64
summarizes a procedure for updating a data item that is already defined to the
cache structure.

IXLCACHE Functions for REQUEST=WRITE_DATA
The following functions apply when you specify REQUEST=WRITE_DATA.

Registering Interest in the Data Item for WRITE_DATA Requests
Users indicate on the WRITE_DATA request whether the user requires current
registration of interest in the data item for the request to succeed. You can specify
WHENREG=YES (which is also the system default), or WHENREG=NO. For an
illustration of registered interest in data items, see Figure 6-6 on page 6-21.

Using the WHENREG=YES Option: WHENREG=YES provides a way to serialize
updates without obtaining a lock. For example, you might select this option if you
are updating the data item and you want to be sure that the copy in your local
cache buffer is still valid at the time the write operation takes place. If the copy in
your local cache buffer is not valid, the request fails, and you must read the data
item from the cache structure and request that your interest be re-registered. You
can make updates to the copy in your buffer and write the updated data item to the
cache structure. (Note that WHENREG=YES does not actually serialize the use of
the data the way an external lock does, but only prevents you from writing data that
is not valid in your local cache buffer to the cache structure.)

6-54 OS/390 V2R8.0 MVS Sysplex Services Guide

The VECTORINDEX keyword with WHENREG=YES is not supported with coupling
facilities of CFLEVEL 0 or 1 and will be ignored. However, with a coupling facility of
CFLEVEL=2, you can optionally specify the vector entry assigned to the data item
with the VECTORINDEX keyword. If you code WHENREG=YES and your interest
in the data item is registered with the same vector index as is specified on
VECTORINDEX, the WRITE_DATA request will be processed. If you code
WHENREG=YES and your interest in the data item is either not registered or
registered with a different vector index, the WRITE_DATA request will fail with an
IXLRSNCODENOENTRY reason code. In the latter case (where the vector index is
different from that specified by VECTORINDEX), the system returns the vector
index with which you are currently registered at the time of the failed request in the
cache answer area.

� CAALCVI is set ON to indicate that the value of the vector index specified on
the request is different from the vector index with which you are currently
registered.

� CAALCVINUM contains the value of the vector index with which you are
currently registered.

The system defaults are WHENREG=YES and
VECTORINDEX=NO_VECTORINDEX.

Using the WHENREG=NO Option: When writing a new data item to the cache
structure, code WHENREG=NO to indicate that you do not have registered interest
in the data item. Also, code WHENREG=NO if you want to update the cached copy
of the data item regardless of whether you are currently registered. If the data item
is new and you code WHENREG=NO, the system allocates cache structure
resources when they are available, writes the data item to the cache structure, and
registers your interest in the data item. If unused cache structure resources are
unavailable, the system attempts to reclaim resources currently in use.

With a cache structure allocated in a coupling facility with CFLEVEL=5 or higher,
you can optionally specify REGUSER to indicate whether the WRITE_DATA
request should register interest in the entry. If you specify REGUSER=NO, keep in
mind that the system gives preference to reclaiming those data items for which
there is data but no registered interest.

Using the REGUSER Options: Use the REGUSER option with WHENREG=NO to
indicate whether you want to have interest registered in the data item. Data entries
in the structure that contain data with no registered interest are higher-priority
candidates for being reclaimed than entries with some registered interest.

� Specify REGUSER=NO when you want to write data without registering interest
and optionally, with the same request, deregister interest in a different directory
entry.

– Use the NAME keyword to identify the data entry to be written without
having interest registered.

– Use the OLDNAME keyword to identify the entry for which deregistration is
to be performed.

– Use the VECTORINDEX keyword to identify the vector index of the entry
which is to be deregistered. VECTORINDEX is required if OLDNAME is
specified.

 Chapter 6. Using Cache Services (IXLCACHE) 6-55

� Specify REGUSER=YES when interest is to be registered in the entry. With
REGUSER=YES, you must also specify a value for VECTORINDEX.

When you code WHENREG=NO, you must specify the vector entry assigned to the
data item. For a given local cache vector, the vector entries start at 0. For example,
if a vector contains 3 entries, they are numbered 0, 1, and 2.

You specify the vector entry on the VECTORINDEX keyword. If you code
WHENREG=NO when your interest in the data item is currently registered, you can
specify the vector entry that is currently assigned to the data item. You can also
specify a vector entry that is currently unassigned, or specify a vector entry that is
currently assigned to another data item.

For example, consider the data items A and B. The vector entry index for A is 1
and the vector entry index for B is 2. To reassign vector entry index 1 to B, code
the following keywords:

 VECTORINDEX=1
 NAME=B
 OLDNAME=A

The system deregisters your interest in data item A, associates vector entry 1 to
data item B, registers your interest in B, and writes the data item to the cache
structure.

Scenario: Consider specifying a vector entry that is currently assigned to a data
item to another data item if you need to contract the size of your local cache buffer
and you want to remap your vector entry indexes to data items so you can keep
frequently referenced data items in the contracted local cache buffers.

In the following is a scenario, a protocol maps each vector entry to a named buffer:
for example, vector entry 1 maps to BUFONE, vector entry 2 maps to BUFTWO,
and so forth. BUFONE contains data item X, BUFTWO contains data item Y, and
BUFTHREE contains data item Z. You want to free the space allocated to
BUFTHREE and you want to keep data items X and Z in the local cache buffers:

1. Move data item Z from BUFTHREE to BUFTWO.

2. Issue the following request to write data item Z to the cache structure, to assign
vector entry 2 to data item Z, and to deregister interest in data item Y:

IXLCACHE REQUEST=WRITE_DATA,WHENREG=NO,VECTORINDEX=VECTOR2, X
 NAME=NNAME,OLDNAME=ONAME,...

...

VECTOR2 DC F'2' VECTOR ENTRY
NNAME DC CL16'Z' NEW NAME
ONAME DC CL16'Y' OLD NAME

...

3. Free the storage allocated to BUFTHREE.

4. Compress the vector, using IXLVECTR MODIFYVECTORSIZE, so that the
unneeded entry 3 is released.

6-56 OS/390 V2R8.0 MVS Sysplex Services Guide

For general information on specifying the vector index entry, see “Specifying the
Vector Entry Index on IXLCACHE Requests” on page 6-47.

Specifying the Data Item Name
All WRITE_DATA requests must specify the name of the data item. Specify the
data item name on the NAME keyword.

Specifying the Changed or Unchanged State of the Data Item
When you write a data item to the cache structure, you must indicate the changed
or unchanged state of the data item on the CHANGED keyword.

An unchanged data item is one that is identical to the data item on permanent
storage. For example, if you read a data item from permanent storage to your local
cache buffer, and then, without changing the data item, write it to cache, the data
item is considered unchanged. To indicate that you are writing an unchanged data
item to the cache structure, specify CHANGED=NO, or omit the CHANGED
keyword. If you read the data item from permanent storage or the cache structure
to your local cache buffer, change the data that is in the buffer, and then write the
buffer to the cache structure without also writing the data item back to permanent
storage, the data item in the cache is considered changed because it is unlike the
data item on permanent storage.

To indicate that you are writing a changed data item to the cache structure, specify
CHANGED=YES. When you specify CHANGED=YES, the system invalidates any
copies of the data item that are in local cache buffers of other users and
deregisters their interest in the data item.

WRITE_DATA Requests and Unchanged Data: If a data item in the cache
structure is marked changed, and you attempt to issue a WRITE_DATA request
with CHANGED=NO, the system fails the request. (The system does not let you
overwrite changed data with unchanged data in the cache structure.)

Changed Data and Storage Reclaim: If the system has marked a data item as
changed, or a user holds the cast-out lock for the data item, the data item is not
eligible for reclaim. The system might reclaim resources to satisfy a request from
any user to either define a new data item or increase the number of data elements
associated with the data item. If the system reclaims resources for a data item, the
local copies of the data item for all users are invalidated and their interest
deregistered. A subsequent user must read that data item from permanent storage
and store it back to the cache structure.

Casting out Changed Data: To make efficient use of cache structure storage,
you need to cast-out the changed data in a timely way by using
REQUEST=CASTOUT_DATA and ensure that you release the lock for the data
items you have cast out by using REQUEST=UNLOCK_CASTOUT. Once the
changed data item is cast out and the lock for the data item is released, the
resources for the data item are eligible for reclaim. For information, see “Reasons
for Casting out Data” on page 6-79.

Recovery and Changed Data Items: If the coupling facility or structure fails, you
cannot cast out the data you have changed from the cache structure. Unless you
provide recovery in such situations, you might lose the changed data. To guarantee
that you do not lose changed data in the event of a coupling facility or structure
failure, provide the necessary recovery routines.

 Chapter 6. Using Cache Services (IXLCACHE) 6-57

Obtaining the Cast-Out Lock on Write Requests
When you write a data item to the cache structure, you can request the cast-out
lock for the data item.

To obtain the cast-out lock, code GETCOLOCK=YES on the IXLCACHE request.
When you obtain the cast-out lock, you identify your connection and, optionally, a
process (such as a task) as the holder of the lock. You specify your process on the
PROCESSID keyword. (The system can return the id, along with the cast-out lock,
on certain IXLCACHE requests to the answer area.) While you hold the cast-out
lock, if another user invokes a cache service that returns the value of the cast-out
lock in the answer area, that user can identify, not only the connection, but also the
task or process that holds the lock.

Note: Depending on the IXLCACHE request, two cast-out lock states exist. One is
associated with the WRITE_DATA described in this section, and one is
associated with CASTOUT_DATA. See “Identifying the Cast-Out Locks to
Release” on page 6-85.

Writing Changed and Unchanged Data items to the Cache
The following topics describe writing changed and unchanged data to the cache
structure depending on whether you use the store-through or store-in cache
system. (With the directory-only cache, you do not write data items to the cache
structure.)

Store-in Cache System: In a store-in cache system, changed and unchanged
data items might be handled as follows:

� When writing a new data item that is identical to the copy on permanent
storage, code CHANGED=NO. You can also code CROSSINVAL=NO and
GETCOLOCK=NO, or omit those keywords and use the system defaults.

� When writing a data item that you have read from permanent storage or the
cache structure and updated, or when writing an updated data item back to the
cache structure, code CHANGED=YES. The system marks the cached data
item as changed and invalidates other users' copies of the data item that are in
their local cache buffers. The system considers resources for changed data
items as ineligible for reclaim.

Store-through Cache System: In a store-through cache system, changed and
unchanged data items might be handled as follows:

� When writing a new data item that is identical to the copy on permanent
storage, code CHANGED=NO. You can also code CROSSINVAL=NO and
GETCOLOCK=NO, or omit these keywords and use the system defaults.

� When writing a data item that you have read from permanent storage or the
cache structure and updated, or when writing an updated data item back to the
cache structure:

– Code CHANGED=NO to mark the data item as unchanged. Remember, in
a store-through cache system you intend to immediately write the data item
to permanent storage. You can mark the data item as unchanged to
indicate to the system that the data item resources are eligible for reclaim.

– Code CROSSINVAL=YES to cause the system to invalidate copies of the
data item that might be in local cache buffers of other users.

6-58 OS/390 V2R8.0 MVS Sysplex Services Guide

When you write unchanged data items to the cache structure in the store-through
cache system, you can also code GETCOLOCK=YES to obtain the cast-out lock for
the data item. Obtaining the cast-out lock serializes the update to permanent
storage. If another user attempts to obtain the same cast-out lock, that user's
request fails. Whether or not you serialize your permanent updates to storage by
obtaining the cast-out lock depends on your protocol.

Assigning a Changed Data Item to a Cast-Out Class
Each time you write a changed data item (CHANGED=YES) to the cache structure,
you must assign the data item to a cast-out class. Specify the cast-out class on the
COCLASS keyword.

You can define the total number of cast-out classes on the IXLCONN macro. The
first user who connects to the structure determines the number of cast-out classes
for the structure. Cast-out classes are numbered consecutively from 1 to n where n
is the number of cast-out classes specified on IXLCONN.

The data item remains assigned to this cast-out class until one of the following
events occur:

� A subsequent WRITE_DATA request for the data item assigns a different
cast-out class.

� A CASTOUT_DATA request casts out the data item from the cache structure,
and you issue the UNLOCK_CASTOUT request to release the cast-out lock.
(You can issue UNLOCK_CASTOUT and specify that the system remark the
data entry as changed, in which case, the data item remains associated with
the storage class to which it was assigned. See “Changing the Directory Entry
for the Data Item” on page 6-89.)

� A subsequent DELETE_NAME request deletes the data item from the cache
structure.

For information on the selection and use of cast-out classes, see “Casting out Data
Items and Reclaim Processing” on page 6-33.

Specifying Parity of a Changed Data Item
When you write a data item to the cache structure and specify CHANGED=YES,
you can specify bits (called parity bits) in the directory entry of the data item. The
system writes the parity bits only when the value of the bits in the directory entry
are null as follows:

B'11'

Otherwise, the parity bits are left unchanged:

B'ð1' or B'1ð'

The system returns the parity bits as part of the directory entry when you issue
IXLCACHE REQUEST=READ_DIRINFO with the DIRINFOFMT=DIRENTRYLIST
keyword. The system does not use the parity bits. You establish your own protocol
to use the parity bits.

 Chapter 6. Using Cache Services (IXLCACHE) 6-59

Writing User-Defined Data
When you write a changed data item (CHANGED=YES) to the cache structure, you
can also write eight bytes of user-defined data to the directory entry for the data
item. (User-defined data might identify the user, typically a process or task
identifier, that updates the data item.)

The system writes the user-defined data only if one of the following occurs:

� The data item name is currently undefined in the cache structure.

� The data item name is defined in the cache structure but there is no data
stored in the data entry.

� The data item is currently stored in the cache structure and is marked as
unchanged.

The system does not use the user-defined data. You establish your own protocol to
make use of the data. For cache structures allocated in a coupling facility with
CFLEVEL=5 or higher, you can, however, request that the system maintain a
queue of the data items for which user-defined data was written to the directory
entry. Then, when reading the cast-out class statistical information with
REQUEST=READ_COSTATS, the system returns for each cast-out class, the
count of data elements and the user data for the UDF order queue entry having the
smallest value.

To enable UDF (user data field) order queues, the following conditions must be
met:

� The structure must be allocated in a coupling facility with CFLEVEL=5 or
higher.

� The initial IXLCONN invocation to connect to the structure must specify
UDFORDER=YES. After the structure's allocation, an indicator in IXLYCONA
indicates whether UDF order queues are supported.

� The IXLCACHE REQUEST=READ_COSTATS invocation must specify
COSTATSFMT=COSTATSLIST.

Note that if a structure is allocated in a coupling facility with CFLEVEL=5 or higher
and the IXLCACHE invocation specifies COSTATSFMT=COSTATSLIST, but UDF
order queues are not supported by the structure, the system returns the user data
of the first entry in the cast-out class queue.

Assigning a Storage Class
Each time you write a data item to the cache structure, you must assign the data
item to a storage class. To specify the storage class, specify the STGCLASS
keyword. If the data item is currently assigned to a storage class, you can assign it
to the same class or reassign it to a different class.

The system determines the number of storage classes for the structure based on
the value specified on the first invocation of IXLCONN that allocates the structure.
The system ignores any subsequent specifications made by subsequent connectors
to the structure as long as the structure remains allocated. Storage classes are
numbered consecutively from 1 to n where n is the number of storage classes
specified on IXLCONN.

6-60 OS/390 V2R8.0 MVS Sysplex Services Guide

For information on how to use storage classes to manage resource reclamation,
see “Managing Cache Structure Resources” on page 6-28.

Specifying the Size of the Data Entry to Hold the Data
Whether you update an existing data entry or create a new one, you must always
specify the number of data elements to allocate for the data entry to hold the data
you are providing. To specify the number, specify the ELEMNUM keyword. Each
write request causes the contents and the size of the data entry to be redefined.

The element size and the maximum number of elements that you can allocate to a
data item are defined on the IXLCONN macro of the first user who connects to the
structure. The size of a data element affects the number of data elements you
specify. The first user to connect to the cache structure, selects the data element
size. The size is fixed for the life of the structure. Possible sizes are 256, 512,
1024, 2048, or 4096 bytes. Figure 6-12 shows the result of specifying a number of
data elements that is more than, less than, or exactly the number necessary to
contain the data you are passing by means of BUFFER or BUFLIST.

Figure 6-12. Results of Specifying the Number of Data Elements

Number of Data Elements Specified Result

Enough to hold data Specified number of data elements is
allocated.

More than number needed to hold data Specified number of data elements is
allocated. Extra space is padded with
binary zeros.

Fewer than number needed to hold data. The data is truncated to fit the allotted
space.

Selecting the Buffering Method
You can write data to a data entry, write data to the adjunct area when the
structure is defined with adjunct areas, or write data to both a data entry and
adjunct area for a data item. You pass data to be written to the data entry in a
buffer specified on the BUFFER and BUFSIZE keywords, or multiple buffers
specified on the BUFLIST, BUFNUM, BUFALET, and BUFINCRNUM keywords.
(BUFALET allows you to specify an access list entry token or ALET for use in
referencing BUFLIST buffers.) Both methods enable you to pass up to 65536 (64K)
bytes of data. You pass data to be written to the adjunct area in a single 64-byte
storage area (the ADJAREA keyword).

For information about whether to use a single buffer or multiple buffers and for
information on selecting buffer attributes, see “Selecting a Data Buffer For a
Request” on page 6-38.

Specifying Data on a Write Request
When you write to the cache structure, you must specify whether you are writing
only the data item to a data entry, only adjunct data, or both.

To write a data item for a data entry only, omit the ADJAREA keyword from the
request. If the cache structure definition supports an adjunct area, the system
writes binary zeros to the adjunct area. To specify the local cache buffer for the
data item, use either BUFFER or BUFLIST.

 Chapter 6. Using Cache Services (IXLCACHE) 6-61

To write adjunct data only, code the ADJAREA keyword. You must also specify
BUFLIST, and BUFNUM must equal 0. The system writes the data specified by the
ADJAREA keyword to the adjunct area and leaves the related data entry
unchanged.

To write both a data item and adjunct data, specify ADJAREA and use either
BUFLIST or BUFFER.

Specifying that No Data Is to Be Written on a Write Request
For cache structures allocated in a coupling facility with CFLEVEL=4 or higher, you
can issue a WRITE_DATA request that effectively specifies that no data is to be
written. This allows you to remove unchanged data and adjunct from the coupling
facility without invalidating all other's local buffers.

To accomplish this, you must specify CHANGED=NO on the WRITE_DATA
request. Neither BUFFER nor BUFLIST is required, and ELEMNUM must be zero.
If ELEMNUM is specified with a value greater than zero, the system will write data
to the entry. If BUFFER or BUFLIST are not specified, the data written will contain
all binary zeros.

Specifying the Cache Entry Version Number on a WRITE_DATA
Request
For information about:

� Using the entry version number to maintain data integrity on a WRITE_DATA
request

� Updating the version number on a WRITE_DATA request

see “Understanding the Cache Data Entry Version Number” on page 6-52.

Receiving Answer Area Information
On most IXLCACHE requests, the system returns information related to the request
in the answer area. You specify the answer area on the ANSLEN and ANSAREA
keywords. With certain events, the information in the answer area might not be
valid. See “Determining Valid Information in the Answer Area” on page 6-47.

When the request completes, the system returns information to the answer area.
When the request is not valid, the system returns non-zero return and reason
codes.

For the mapping of the answer area, see the IXLYCAA mapping macro described
in OS/390 MVS Data Areas, Vol 3 (IVT-RCWK). For a description of answer area
fields and return and reason codes for the request, see OS/390 MVS Programming:
Sysplex Services Reference.

Defining and Writing a New Data Item: Summary
A previously undefined data item is one that is not defined to the cache structure.
This topic summarizes a way to use the IXLCACHE REQUEST=WRITE_DATA to
define and write a new data item.

� To write an undefined data item to the cache structure, specify NAME for the
data item and WHENREG=NO to indicate that you currently do not have
registered interest in the data item.

6-62 OS/390 V2R8.0 MVS Sysplex Services Guide

� Assign a vector entry on the VECTORINDEX keyword. If the vector entry you
assign is currently associated with another data item, specify OLDNAME to
identify the other data item.

The system attempts to allocate the cache structure resources to satisfy the write
request. If the allocation is successful, the system creates a directory entry and
registers your interest in the data item. If the resources are unavailable to satisfy
the allocation, and the system is unable to reclaim resources currently in use, the
request fails.

Your request must indicate whether the data item you are writing is the same as
the copy on permanent storage. If it is the same, specify CHANGED=NO or omit
the parameter to use the system default. The system does not allow you to
overwrite changed data with unchanged data.

Considerations for a Store-through Cache System: If you change the data item
before writing it to the cache structure and at the same time you intend to write the
data item to permanent storage, specify CHANGED=NO to mark the data item as
unchanged. The technique is typically used in a store-through cache environment
when you are writing the changed data item to both the cache structure and to
permanent storage. In this case, you must also code CROSSINVAL=YES to
invalidate copies of the data item in the local cache buffers of other users and
deregister their interest in the data item.

You can optionally specify GETCOLOCK=YES to obtain the cast-out lock for the
data item. By holding the cast-out lock, you serialize the update to permanent
storage. If another user makes a request to obtain the cast-out lock that you hold,
the request fails. You can also use PROCESSID to identify your task or process as
the holder of the cast-out lock. After successfully writing the data item to permanent
storage, issue a REQUEST=UNLOCK_CASTOUT or
REQUEST=UNLOCK_CO&NAME to free the cast-out lock.

Considerations for a Store-in Cache System: If you write a changed data item
to the cache structure without also writing the data item to permanent storage,
specify CHANGE=YES. This technique is typically used in a store-in cache system.
You must also specify COCLASS to assign the data item to a cast-out class.
Optionally, you can specify PARITY to assign parity bits to the data item and
USERDATA to provide user-defined data for the directory entry.

Specifying Storage Class and Data Element Numbers: You must code
STGCLASS to assign the data item to a storage class, and ELEMNUM to specify
the number of data elements that are to be allocated to the data item.

Data that you write to the data item must be in the local cache buffer. You identify
the buffer by coding either BUFLIST or BUFFER and related keywords. Data that
you write to the adjunct area must be in a storage area identified on the ADJAREA
keyword, and the cache structure must be allocated with adjunct areas when you
connect to the structure.

When the WRITE_DATA request completes, the system provides a return code, a
reason code, and appropriate answer area information. Examine the information
that the system returns, and take the action that is appropriate for your program.

For a discussion of keywords applicable to all IXLCACHE requests, see:

 Chapter 6. Using Cache Services (IXLCACHE) 6-63

� “Understanding Synchronous and Asynchronous Cache Operations” on
page 6-36

� “Accessing and Managing Data Within a Cache System” on page 6-14
� “Requesting Return and Reason Codes” on page 6-46
� “Defining an Answer Area (ANSAREA)” on page 6-46

Updating an Existing Data Item: Summary
An existing data item is one whose name is currently defined to the cache
structure. This topic summarizes a way to use the IXLCACHE
REQUEST=WRITE_DATA to update an existing data item.

To ensure that you do not overwrite changes that another user might have made to
the data item and to ensure that the copy of the data item in your local cache buffer
is current, you can code WRITE_DATA with WHENREG=YES without having to
use locks to serialize the updates. When coding the WRITE_DATA request for an
existing data item, specify the NAME keyword to identify the data item and
WHENREG=YES to request that the system perform the update only when you
have a registered interest in the data item.

Otherwise, you can use IXLLOCK to serialize your updates and specify
WHENREG=NO with the WRITE_DATA request, and the system performs the
update regardless of whether you have registered interest in the data item or not.

Your request must indicate whether the data item you are writing is the same as
the copy on permanent storage. If it is the same, specify CHANGED=NO or omit
the parameter to use the system default. The system does not allow you to
overwrite changed data with unchanged data.

Considerations for a Store-through Cache System: If you change the data item
before writing it to the cache structure and at the same time you intend to write the
data item to permanent storage, specify CHANGED=NO to mark the data item as
unchanged. The technique is typically used in a store-through cache environment
when you are writing the changed data item to both the cache structure and to
permanent storage. In this case, you must also code CROSSINVAL=YES to
invalidate copies of the data item in the local cache buffers of other users and
deregister their interest in the data item.

You can optionally specify GETCOLOCK=YES to obtain the cast-out lock for the
data item. By holding the cast-out lock, you serialize the update to permanent
storage. If another user makes a request to obtain the cast-out lock that you hold,
the request fails. You can also use PROCESSID to identify your task or process as
the holder of the cast-out lock. After successfully writing the data item to permanent
storage, issue a REQUEST=UNLOCK_CASTOUT or
REQUEST=UNLOCK_CO_NAME to free the cast-out lock.

Considerations for a Store-in Cache System: If you write a changed data item
to the cache structure without also writing the data item to permanent storage,
specify CHANGE=YES. This technique is typically used in a store-in cache system.
You must also specify COCLASS to assign the data item to a cast-out class.
Optionally, you can specify PARITY to assign parity bits to the data item and
USERDATA to provide user-defined data for the directory entry.

6-64 OS/390 V2R8.0 MVS Sysplex Services Guide

Specifying Storage Class and Data Element Numbers: You must code
STGCLASS to assign the data item to a storage class, and ELEMNUM to specify
the number of data elements that are to be allocated to the data item.

Data that you write to the data item must be in the local cache buffer. You identify
the buffer by coding either BUFLIST or BUFFER and related keywords. Data that
you write to the adjunct area must be in a storage area identified on the ADJAREA
keyword, and the cache structure must be allocated with adjunct areas when you
connect to the structure.

When the WRITE_DATA request completes, the system provides a return code, a
reason code, and appropriate answer area information. Examine the information
that the system returns, and take the action that is appropriate for your program.

For a discussion of keywords applicable to all IXLCACHE requests, see:

� “Understanding Synchronous and Asynchronous Cache Operations” on
page 6-36

� “Accessing and Managing Data Within a Cache System” on page 6-14
� “Requesting Return and Reason Codes” on page 6-46
� “Defining an Answer Area (ANSAREA)” on page 6-46

READ_DATA: Reading a Data Item from a Cache Structure
You read a data item (REQUEST=READ_DATA) to either:

� Define (allocate a directory entry for) a new data item to the cache structure
and register interest in that data item

� Read a currently defined data item from the cache structure to your local cache
buffer and register or re-register interest in the data item.

� Register interest in a currently defined data item without reading the data
element from the cache structure to your local cache buffer (only for cache
structures allocated in a coupling facility with CFLEVEL=4 or higher).

� Read a data item without registering interest in the data item (only for cache
structures allocated in a coupling facility with CFLEVEL=5 or higher).

When you define a new data item, the system tries to allocate and initialize a
directory entry for the data item. If resources for allocating a directory entry are
unavailable and cannot be reclaimed, the system fails the request. If the system
can allocate the directory entry, the system also registers your interest in the data
item and validates your local copy of the data item. There is no data actually
transferred from the cache to your local cache buffer or adjunct area.

Note: The system validates your local copy even when there is currently no data
in the local buffer.

When you read a currently defined data item from the cache structure, you can:

� Read only the data item into your local cache buffer
� Read only the adjunct data to your adjunct area
� Read both the data item and adjunct data
� Register interest in the data item without reading the data into your local cache

buffer (only for cache structures allocated in a coupling facility with CFLEVEL=4
or higher).

 Chapter 6. Using Cache Services (IXLCACHE) 6-65

The system registers your interest in the data item, transfers the requested data, if
it is stored in the cache structure, to your storage, and validates your local copy.

If your protocol relies on external serialization, you need to hold a lock to serialize
your read operation. For serialization recommendations and sample scenarios that
show how to establish serialization, see “Serializing and Managing Access to
Shared Data” on page 6-25.

Guide to the Topic

“READ_DATA: Reading a Data Item from a Cache Structure” on page 6-65 is
divided into three sections.

The first section, “IXLCACHE Functions for REQUEST=READ_DATA,” applies
to all READ_DATA requests and includes the following major topics:

� “Specifying the Data Item Name”
� “Registering Interest in the Data Item for READ_ DATA Requests”
� “Specifying a New or Existing Data Item” on page 6-67
� “Assigning a Storage Class” on page 6-68
� “Selecting the Buffering Method” on page 6-68
� “Specifying the Data to be Read” on page 6-69
� “Receiving Answer Area Information” on page 6-69

The second section, “Defining a New Data Item: Summary” on page 6-70
summarizes a procedure for defining a new data item to the cache structure.

The third section, “Reading a Data Item: Summary” on page 6-70 summarizes
a procedure for reading a data item that is already defined to the cache
structure.

IXLCACHE Functions for REQUEST=READ_DATA
The following functions apply when you specify REQUEST=READ_DATA.

Specifying the Data Item Name
All READ_DATA requests must specify the name of the data item. Specify the data
item name on the NAME keyword.

Registering Interest in the Data Item for READ_ DATA Requests
Prior to coupling facilities at CFLEVEL=5, all READ_DATA requests either register
or re-register your interest in the data item. To enable the system to register or
re-register your interest, each request must specify a vector entry index on the
VECTORINDEX keyword. If you currently have a vector entry index assigned to the
data item, you can specify that vector entry. Optionally, you can specify a vector
entry that is currently assigned to another data item or one that is currently
unassigned.

With a cache structure allocated in a coupling facility with CFLEVEL=5 or higher,
you can read a data item with a READ_DATA request without having to register
interest in the data item, using the REGUSER=NO specification. It should be noted,
however, when choosing not to register interest in a data item, that entries with no
registered interest are higher-priority candidates for reclaim processing than entries
with registered interest.

6-66 OS/390 V2R8.0 MVS Sysplex Services Guide

The VECTORINDEX keyword is not required when using REGUSER=NO to
indicate that interest is not to be registered. The VECTORINDEX keyword is
required when REGUSER=YES is specified or defaulted to, and whenever
OLDNAME is specified to deregister interest in a data item other than the one
being read.

For a given local cache vector, the vector entries start at 0. For example, if a vector
contains 3 entries, they are numbered 0, 1, and 2. For an illustration of registered
interest in data items, see Figure 6-6 on page 6-21.

Consider specifying a vector entry that is currently assigned to a data item to
another data item if you need to contract the size of your local cache buffer and
you want to remap your vector entry indexes to data items so you can keep
frequently referenced data items in the contracted local cache buffers.

The following is a scenario:

� You have a protocol that maps each vector entry to a named buffer: for
example, vector entry 1 maps to BUFONE, vector entry 2 maps to BUFTWO,
and so forth.

� BUFONE contains data item X, BUFTWO contains data item Y, and
BUFTHREE contains data item Z. You no longer need data item Y and you
want to free as much local cache buffer storage as possible.

� Issue the following request to read data item Z into BUFTWO, to associate
vector entry 2 with data item Z, and deregister interest in data item Y:

IXLCACHE REQUEST=READ_DATA,ASSIGN=NO,VECTORINDEX=VECTOR2, X
 OLDNAME=ONAME,NAME=NNAME,...

...

VECTOR2 DC F'2' VECTOR ENTRY
NNAME DC CL16'Z' NEW NAME
ONAME DC CL16'Y' OLD NAME

...

� Free the storage allocated to BUFTHREE.
� Compress the vector, using IXLVECTR MODIFYVECTORSIZE, so that the

unneeded entry 3 is released.

Specifying a New or Existing Data Item
On each READ_DATA request, you specify whether you want the system to define
the data item to the structure. If you do not know whether the data item is currently
assigned a directory entry in the cache structure, specify ASSIGN=YES (which is
also the system default). If a directory entry for the data item does not exist in the
cache structure, this request defines the directory entry to the cache structure.
Directory-only cache systems use this option to allocate only the directory entry for
a data item in the structure.

If you specify ASSIGN=YES and cache structure resources are available, the
system allocates a directory entry for the named data item. If resources are
unavailable for the directory entry, and currently allocated resources cannot be
reclaimed, the system fails the request. If the data item already has a directory
entry allocated, the request does not define a second directory entry, and the

 Chapter 6. Using Cache Services (IXLCACHE) 6-67

system registers the user's interest in the data item. If the data item has a directory
and a data entry associated with it, the request reads the data to your local cache
buffer and the system re-registers user interest in the data item.

If you do not want the system to define the data item to the structure, code
ASSIGN=NO. Store-in and store-through cache users use this option to read a
currently cached data item.

If the data is available, ASSIGN=NO causes the system to transfer the requested
data to your storage. If the named data item is currently undefined and you code
ASSIGN=NO, the system fails the request.

The system registers interest in the data item if the READ_DATA request allocates
a directory entry or re-registers interest in the data item if the directory entry is
already allocated.

For general information on specifying the vector index entry, see “Specifying the
Vector Entry Index on IXLCACHE Requests” on page 6-47.

Assigning a Storage Class
Each time you read a data item, you must assign the data item to a storage class.
To specify the storage class, specify the STGCLASS keyword. If the data item is
currently assigned to a storage class, you can assign it to the same class or
reassign it to a different class.

The system determines the number of storage classes for the structure based on
the value specified on the first invocation of IXLCONN that allocates the structure.
The system ignores any subsequent specifications made by subsequent connectors
to the structure as long as the structure remains allocated. Storage classes are
numbered consecutively from 1 to n where n is the number of storage classes
specified on IXLCONN.

For information on how to use storage classes to manage resource reclamation,
see “Managing Cache Structure Resources” on page 6-28.

Selecting the Buffering Method
On read requests, the system returns data from the cache structure to the local
cache buffers. (Optionally, at CFLEVEL=4 or higher, you can specify that the
system is not to return data from the cache structure. See “Specifying that No Data
Is To Be Read” on page 6-69.) You can receive data in either a single buffer (the
BUFFER keyword) or in multiple buffers (the BUFLIST keyword). Both methods
enable you to receive up to 65536 (64K) bytes of data. Adjunct area information
associated with the data item is returned in the 64-byte buffer specified by the
ADJAREA keyword. If you use the READ_DATA request to register interest in the
named data item, you need not specify any buffers to receive data.

You must ensure that your local cache buffer can hold the largest data item that
you plan to read. If you read data items of different sizes into the same buffer,
ensure that the buffer is as large as the largest data item you read. If you attempt
to read a data item that is larger than the buffer, data is not returned to the buffer,
and the system returns appropriate return and reason codes.

6-68 OS/390 V2R8.0 MVS Sysplex Services Guide

For information about whether to use a single buffer or multiple buffers and for
information on selecting buffer attributes, see “Selecting a Data Buffer For a
Request” on page 6-38.

Specifying the Data to be Read
You issue a READ_DATA request to either define a new data item or read a
currently defined data item. When you define a new data item, there is no data
transferred to either your local cache buffer or your adjunct area.

When you read a currently defined data item, you can read the data item, read
adjunct data, or read both. To read the data item only, identify the local cache
buffers by coding either the BUFFER or BUFLIST keywords and their related
keywords. Omit the ADJAREA keyword.

� If there is data in the cache structure for the requested data item, the system
transfers the data item to your local cache buffer.

� If there is no data in the data entry, your local cache buffer is left unchanged.

To read adjunct data only, code the ADJAREA keyword and omit the BUFFER
keyword. Optionally, you can code the BUFLIST keyword and its related keywords.
If you code BUFLIST, BUFNUM must specify a value of zero.

� If the cache structure supports adjunct data, the system returns the adjunct
data to the area specified on the ADJAREA keyword.

� If the cache structure does not support adjunct data, the area specified on the
ADJAREA keyword remains unchanged, and appropriate return and reason
codes are returned.

To read both the data item and adjunct data, code BUFFER or BUFLIST and their
related keywords, and ADJAREA.

Specifying that No Data Is To Be Read
For cache structures allocated in a coupling facility of CFLEVEL=4 or higher, you
can issue a READ_DATA request with the RETURNDATA=NO keyword to
suppress the read function so that no data is returned. Instead, the READ_DATA
request will register interest in the entry without returning the associated data. Note
however, that if the cache structure supports adjunct data and the data exists, the
READ_DATA request will return the adjunct data in the area specified on the
ADJAREA keyword. If you do not specify the ADJAREA keyword, the system does
not return the adjunct data even if it exists. The CAAADJAREAVALID bit in the
cache answer area indicates the presence of adjunct data in the area specified by
ADJAREA.

Receiving Answer Area Information
On most IXLCACHE requests, the system returns information related to the request
in the answer area. You specify the answer area on the ANSLEN and ANSAREA
keywords. With certain events, the information in the answer area might not be
valid. See “Determining Valid Information in the Answer Area” on page 6-47.

When the request completes, the system returns information to the answer area.
When the request is not valid, the system returns non-zero return and reason
codes.

 Chapter 6. Using Cache Services (IXLCACHE) 6-69

For the mapping of the answer area, see the IXLYCAA mapping macro described
in OS/390 MVS Data Areas, Vol 3 (IVT-RCWK). For a description of answer area
fields and return and reason codes for the request, see OS/390 MVS Programming:
Sysplex Services Reference.

Defining a New Data Item: Summary
This topic summarizes one way to define a new data item using IXLCACHE
REQUEST=READ_DATA:

� To name the data item, code the NAME keyword.

� To request that the system create a directory entry if one does not exist, code
ASSIGN=YES, or omit the ASSIGN keyword. The system attempts to allocate
the cache structure resources needed to satisfy the request. If the allocation is
successful, the system creates a directory entry and registers your interest in
the data item. If unallocated resources are unavailable and currently allocated
resources cannot be reclaimed to satisfy the allocation, the request fails.

� When you define a new data item, there is no data in the cache structure for
the data item, and it is unnecessary to code the BUFFER, BUFLIST, or
ADJAREA keywords.

� Code the VECTORINDEX keyword.

You must assign a vector index entry by coding the VECTORINDEX keyword. If
you assign a vector index entry that is currently associated with another data item,
specify the name of that data item on the OLDNAME keyword. The system creates
an association between the new data item and the vector index entry and registers
your interest in the data item. If you also specified the OLDNAME keyword, the
system deregisters your interest in the data item specified on OLDNAME.

For More Information

There are other keywords that are required and some that are optional. Some
of these keywords apply to all IXLCACHE requests and others apply to just
READ_DATA requests. For a description of keywords applicable to all
IXLCACHE requests, see:

� “Understanding Synchronous and Asynchronous Cache Operations” on
page 6-36

� “Accessing and Managing Data Within a Cache System” on page 6-14
� “Requesting Return and Reason Codes” on page 6-46
� “Defining an Answer Area (ANSAREA)” on page 6-46

Reading a Data Item: Summary
This topic summarizes ways to read a data item or create a directory entry for a
data item if one does not exist using IXLCACHE REQUEST=READ_DATA:

� To identify the data item, code the NAME keyword.

� To indicate that a directory entry for the data item is to be created if it does not
already exist, code ASSIGN=YES. Directory-only users of the cache can
specify this keyword.

� To read an existing data item in the cache to the local cache buffer, code
ASSIGN=NO. If the data item does not exist, the system fails the request.
Store-in or store-through cache users can specify this keyword.

6-70 OS/390 V2R8.0 MVS Sysplex Services Guide

� To read an existing data item, identify your local cache buffers by coding either
BUFFER, or BUFLIST and their related keywords. The system transfers the
data item from the data entry to your local cache buffers. If the data entry is
empty (that is, data does not exist for the data item in the cache structure), the
system does not transfer data to your local cache buffers, but registers interest
for the data item in the directory entry.

� If the cache structure supports adjunct data, use the ADJAREA keyword to
read adjunct data. The system transfers the adjunct data from the cache
structure to the buffer specified on the ADJAREA keyword.

You must assign a vector index entry by coding the VECTORINDEX keyword. If
you assign a vector index entry that is currently associated with another data item,
specify the name of that data item on the OLDNAME keyword. The system creates
an association between the new data item and the vector index entry and registers
your interest in the data item. If you also specified the OLDNAME keyword, the
system deregisters your interest in the data item specified on OLDNAME.

For More Information

There are other keywords that are required and some that are optional. Some
of these keywords apply to all IXLCACHE requests and others apply to just
READ_DATA requests. For a description of keywords applicable to all
IXLCACHE requests, see:

� “Understanding Synchronous and Asynchronous Cache Operations” on
page 6-36

� “Accessing and Managing Data Within a Cache System” on page 6-14
� “Requesting Return and Reason Codes” on page 6-46
� “Defining an Answer Area (ANSAREA)” on page 6-46

REG_NAMELIST: Registering Interest in a List of Data Items
You might want to identify a list of data items to the cache structure with one
operation. The REG_NAMELIST request allows you to:

� Define (allocate directory entries for) up to 32 new data items to the cache
structure and register interest in those data items, and

� Register or re-register interest in up to 32 currently defined data items in the
cache structure.

The REG_NAMELIST request type is valid only for a structure allocated in a
coupling facility with CFLEVEL=2 or higher.

As with the READ_DATA request, when you define each new data item, you can
specify that the system is to try to allocate and initialize a directory entry for the
data item. If the system can allocate the directory entry, the system also registers
your interest in the data item and validates your local copy of the data item. If the
system is unable to allocate the directory entry because resources are unavailable
and cannot be reclaimed, the system will terminate the request, perhaps without
having processed all the data items you have specified.

For each data item in which you want to register interest, you build a registration
block identifying the data item, its associated local cache vector index, and other

 Chapter 6. Using Cache Services (IXLCACHE) 6-71

information specific to the data item. When processing of the REG_NAMELIST
request completes, the system returns status information about each of the data
items identified by a registration block. This status information indicates whether
the user was successfully registered for the data item.

� If successful, the system returns directory information about the entry, and the
user's local vector is marked valid.

� If not successful, the system does not return directory information about the
entry, and the user's local vector is marked invalid.

Guide to the Topic

“REG_NAMELIST: Registering Interest in a List of Data Items” on page 6-71 is
divided into two sections.

The first section, “IXLCACHE Functions for REQUEST=REG_NAMELIST,”
applies to all REG_NAMELIST requests and includes the following major topics:

� “Specifying a Data Item for Registration Block Processing”
� “Specifying the Registration Block Buffer” on page 6-74
� “Specifying the Index Values for Registration Block Processing” on

page 6-74
� “Providing a Storage Area for Returned Registration Information” on

page 6-74
� “Receiving Answer Area Information” on page 6-74
� “Description of Returned Registration Information” on page 6-75
� “Restarting a REG_NAMELIST Request that Ends Prematurely” on

page 6-77

The second section, “Registering Interest in a List of Data Items: Summary” on
page 6-78 summarizes a procedure for specifying a list of entries to be
registered.

IXLCACHE Functions for REQUEST=REG_NAMELIST
The following functions apply when you specify REQUEST=REG_NAMELIST.

Specifying a Data Item for Registration Block Processing
You identify each data item in a registration block, which you build in the area
identified by the BUFFER keyword. You can build up to 32 registration blocks in the
BUFFER area. Each registration block is mapped by the mapping macro
IXLYCRRB. For a description of IXLYCRRB, see OS/390 MVS Data Areas, Vol 3
(IVT-RCWK).

Figure 6-13 shows the information that each registration block contains. The third
column contains a reference to the READ_DATA function that is analogous to the
REG_NAMELIST function.

Figure 6-13 (Page 1 of 2). IXLCACHE Registration Block Information

Field Name Description READ_DATA Keyword

CRRBSTGCLASS Storage class to which this
entry should be assigned.

STGCLASS keyword

6-72 OS/390 V2R8.0 MVS Sysplex Services Guide

Figure 6-13 (Page 2 of 2). IXLCACHE Registration Block Information

Field Name Description READ_DATA Keyword

CRRBASSIGNCNTL Directory entry
assignment:

0 Do not assign a
directory entry for this
entry if one does not
currently exist.

1 Assign a directory
entry for this entry if
one does not
currently exist.

ASSIGN=YES|NO
keyword

CRRBNAMEREPLACECNTL Name replacement control.

0 Do not deregister
interest for the entry
specified by
CRRBOLDNAME.

1 Deregister interest for
the specified local
cache vector index
and the entry
specified by
CRRBOLDNAME.

The deregistration of
the CRRBOLDNAME
entry occurs only if
the user is currently
registered in the
CRRBOLDNAME
entry with the vector
index specified in
CRRBVECTORINDEX.

Specification of
OLDNAME keyword

CRRBNAME Name of this entry NAME keyword

CRRBOLDNAME Name of the old entry to
which the vector index
specified by
CRRBVECTORINDEX
was previously assigned.
The registration of this
vectorindex for the old
entry will be deregistered.

OLDNAME keyword

CRRBVECTORINDEX Local cache vector index.
Used in both the
registration of the
CRRBNAME entry and the
deregistration of the
CRRBOLDNAME entry.

VECTORINDEX keyword

 Chapter 6. Using Cache Services (IXLCACHE) 6-73

Specifying the Registration Block Buffer
When you issue a REQUEST=REG_NAMELIST request, you must identify the
buffer that contains the set of registration blocks that specify the data items. Note
that the BUFFER specification for REG_NAMELIST requests differs in its
addressability requirements from other IXLCACHE requests that use BUFFER. You
must use a single buffer (the BUFFER keyword), which is addressable from your
primary address space or from your PASN access list. The size of the buffer can
be larger than that actually required to hold the maximum (32) number of
registration blocks. However, creating a buffer larger than required could result in a
performance degradation.

For information on selecting buffer attributes, see “Selecting a Data Buffer For a
Request” on page 6-38.

Specifying the Index Values for Registration Block Processing
On a REG_NAMELIST request, you specify a starting and ending index value for
registration block processing with the STARTINDEX and ENDINDEX keywords.
Both keywords specify an index value into the set of registration blocks. The
registration blocks in the storage area are numbered starting with 1.

� Use STARTINDEX to identify the first registration block in the storage area that
the system is to process.

� Use ENDINDEX to identify the last registration block that the system is to
process.

The system starts with the registration block indicated by the index for
STARTINDEX and attempts to process all registration blocks through the one
indicated by the index for ENDINDEX.

Providing a Storage Area for Returned Registration Information
The REG_NAMELIST request must identify a 256-byte storage area where the
system can return status information about the results of the registration block
processing. To identify the storage area, code the NSBAREA keyword. The
NSBAREA area must be addressable in your primary address space or from your
PASN access list.

Additional information about the request might be returned in the cache answer
area.

Receiving Answer Area Information
On most IXLCACHE requests, the system returns information related to the request
in the answer area. You specify the answer area on the ANSLEN and ANSAREA
keywords. With certain events, the information in the answer area might not be
valid. See “Determining Valid Information in the Answer Area” on page 6-47.

Below is a description of the answer area information returned when the answer
area is valid. The answer area is mapped by the IXLYCAA macro, which is shown
in OS/390 MVS Data Areas, Vol 3 (IVT-RCWK).

CAARETCODE The return code from the IXLCACHE macro. Return code values
are defined in the IXLYCON macro.

6-74 OS/390 V2R8.0 MVS Sysplex Services Guide

CAARSNCODE The reason code associated with the return code from the
IXLCACHE macro. Reason code values are defined in the
IXLYCON macro.

CAASTGCLFULL The storage class from which a reclaiming operation failed, thus
causing the failure of the REG_NAMELIST request because the
system could not obtain directory resources to satisfy the
request.

CAARNLINDEX Index of the current registration block. A value of zero indicates
that no registration blocks were successfully processed. See
“Restarting a REG_NAMELIST Request that Ends Prematurely”
on page 6-77 for a description of the CAARNLINDEX value
when specific reason codes are returned.

Description of Returned Registration Information
The system returns state information for each processed data item included in your
registration block area. Mapping macro IXLYNSB maps the information. See
MVS/ESA SP V5 Data Areas, Vol 3 (IVT-RCWK) for a description of IXLYNSB.

IXLYNSB contains two arrays. The first array (the “NSB array”) contains state
information for the corresponding named cache entry, including whether the
registration was successful. The second array (the “NSBINVLCVINUM array”)
contains the invalidated vector index when the corresponding named cache entry's
prior registration was invalidated as a result of the REG_NAMELIST request. There
is a one-to-one correlation between a registration block entry in the BUFFER area
and an element in each of the arrays in the NSBAREA area. Therefore, the same
index number that designates an IXLYCRRB entry in the BUFFER will also
designate the corresponding NSB array entry and NSBINVLCVINUM array entry.

Figure 6-14 describes the information returned for each data item.

Figure 6-14 (Page 1 of 3). IXLCACHE Registration Block Returned Information

Field Name Description

NSBCHANGED Change status of cached subsystem data

0 Unchanged

1 Changed

NSBDATACACHED Indicator of whether the associated data entry is
cached or is a directory-only entry.

0 Data not cached

1 Data cached

NSBPARITY Parity as recorded in the item's directory entry

 Chapter 6. Using Cache Services (IXLCACHE) 6-75

Figure 6-14 (Page 2 of 3). IXLCACHE Registration Block Returned Information

Field Name Description

NSBCOLOCKSTATE State of the castout lock

00 (CAACOLS_RESET)
Reset state, which is entered when the
name is assigned to the directory entry or
when the castout lock is reset to zeros.

01 (CAACOLS_READFORCASTOUT)
Read-for-castout state, which is entered
when the castout lock is obtained by a
CASTOUT_DATA request.

10 (CAACOLS_WRITEWITHCASTOUT)
Write with castout, which is entered when
the castout lock is obtained by a
WRITE_DATA request specifying
GETCOLOCK=YES.

NSBINVLCVI Indicator of whether a local cache vector index was
invalidated because interest for the associated item
was re-registered using a different vector index.

0 The associated NSBINVLCVINUM array
entry is not valid.

1 The associated NSBINVLCVINUM array
entry contains the invalidated local cache
vector index number.

NSBREGPERFORMED Indicator of whether the registration was
successfully performed.

0 The registration was not successfully
performed. For this data item:

� No directory entry for the name exists
� The user is not registered in the entry
� The user's local cache buffer for the

entry was marked invalid
� The other NSB information for the

named entry was not returned.

1 The registration was successful for the entry
name and local cache vector index in the
corresponding registration block. For this
data item:

� A directory entry for the name exists
� The user was registered in the named

entry as requested
� The user's local cache buffer for the

entry was marked valid
� The other NSB information for the

named entry was returned.

NSBELEMNUM The entry size expressed as the number of
elements in the entry. (This value is returned only
when the cache structure is allocated in a coupling
facility of CFLEVEL=4 or higher.)

6-76 OS/390 V2R8.0 MVS Sysplex Services Guide

Figure 6-14 (Page 3 of 3). IXLCACHE Registration Block Returned Information

Field Name Description

NSBINVLCVINUM The value of the local cache vector index that was
invalidated when interest for the data item was
re-registered using a different vector index.
NSBINVLCVI indicates the validity of this value.

Restarting a REG_NAMELIST Request that Ends Prematurely
The IXLCACHE REQUEST=REG_NAMELIST request can complete prematurely.
When a request completes prematurely, the system will not have processed all the
registration blocks identifying the data items. To continue processing the
registration blocks, you must restart the request.

When a request completes prematurely, the system returns an index value into the
list of registration block entries. This value is returned in the CAARNLINDEX field of
the answer area. Use this index value to restart the request.

Reasons for which a REG_NAMELIST can complete prematurely are:

� The request has exceeded the model-dependent time-out criteria. The index of
the next registration block to be processed is returned in the answer area
(ANSAREA). All registration blocks preceding this one are processed.

� The user has specified an incorrect storage class or the target storage class is
full. The index of the failing registration block is returned in the answer area. All
registration blocks preceding the failing registration block are processed.

� The user has specified an incorrect local cache vector index. The index of the
failing registration block is returned in the answer area. None of the registration
blocks are processed.

The information in the NSBAREA for the registration blocks processed before the
premature completion of the REG_NAMELIST request might or might not contain
meaningful information. The following return and reason codes from the
REG_NAMELIST request indicate which registration blocks were processed prior to
the request's premature completion.

IXLRETCODEOK
All NSB array and NSBINVLCVINUM array entries that have an index value
greater than or equal to STARTINDEX and less than or equal to
ENDINDEX contain meaningful information.

IXLRSNCODETIMEOUT
All NSB array and NSBINVLCVINUM array entries that have an index value
greater than or equal to STARTINDEX and less than CAARNLINDEX
contain meaningful information. To process the remaining registration
blocks, update STARTINDEX with the value in CAARNLINDEX and reissue
the REG_NAMELIST request.

IXLRSNCODESTRFULL IXLRSNCODEBADSTGCLASS
All NSB array and NSBINVLCVINUM array entries that have an index value
greater than or equal to STARTINDEX and less than CAARNLINDEX
contain meaningful information. The registration block indexed by
CAARNLINDEX was not processed either because the target storage class
was full or because an incorrect storage class was specified. If possible,
correct the error in the registration block. To process the remaining

 Chapter 6. Using Cache Services (IXLCACHE) 6-77

registration blocks (including the corrected registration block), update
STARTINDEX with the value in CAARNLINDEX and reissue the
REG_NAMELIST request. If it is not possible to correct the error in the
registration block, update STARTINDEX with the value in CAARNLINDEX
plus one and reissue the REG_NAMELIST request.

IXLRSNCODEBADVECTOROP
No NSB array or NSBINVLCVINUM array entries contain meaningful
information. The registration block indexed by CAARNLINDEX contains the
invalid vector index. Correct that vector index value and reissue the
REG_NAMELIST request with the same STARTINDEX and ENDINDEX
values.

A restarted request can also complete prematurely due to either a timeout or a
failure on a later registration block in the list. Restart the request using the
procedure described.

Registering Interest in a List of Data Items: Summary
You use a register name list request to register interest in up to 32 data items.

The request must identify the data items by building a list of registration blocks in a
buffer. Each registration block contains information about the data item, such as
name, storage class, and whether a directory entry should be assigned.

The request must indicate the first and last registration block in the list of
registration blocks that the system is to process.

� To identify the first registration block, use the STARTINDEX keyword.

� To identify the last registration block, use the ENDINDEX keyword.

The request can complete prematurely for the following reasons:

� The coupling facility timed-out.

� A registration block specified an incorrect storage class or the target storage
class was full.

� A registration block specified an incorrect local cache vector index.

Each time a request completes prematurely, the system returns an index value.
You can use the index value to identify the registration block that might have
caused the premature completion. You can also use the index value to restart the
request.

For More Information

There are other keywords that are required and some that are optional. Some
of these keywords apply to all IXLCACHE requests and others apply to just
REG_NAMELIST requests. For a description of keywords applicable to all
IXLCACHE requests, see:

� “Understanding Synchronous and Asynchronous Cache Operations” on
page 6-36

� “Accessing and Managing Data Within a Cache System” on page 6-14
� “Requesting Return and Reason Codes” on page 6-46
� “Defining an Answer Area (ANSAREA)” on page 6-46

6-78 OS/390 V2R8.0 MVS Sysplex Services Guide

CASTOUT_DATA: Casting Out Data from a Cache Structure
Casting out a changed data item means reading it from the cache structure and
writing it to permanent storage. When you cast out a data item from the cache
structure, the data item is not deleted from the structure, but remains in the cache
structure.

When you cast out a data item, you obtain the cast-out lock to prevent other users
from casting out the same data item. The system considers the data for a data item
that is cast out as unchanged. Even though the data item is marked unchanged, it
is unavailable for reclaim until its cast-out lock is released. Once the data item is
cast out and a user releases the cast-out lock for the data item, the storage
resources for the data item are available for reclaim.

Note: Depending on the IXLCACHE request, two cast-out lock states exist. One is
associated with UNLOCK_CASTOUT, and one is associated with
WRITE_DATA. See “Identifying the Cast-Out Locks to Release” on
page 6-85 and “Obtaining the Cast-Out Lock on Write Requests” on
page 6-58.

Reasons for Casting out Data
Periodic casting out of changed data items from the structure can improve the
likelihood that the system can reclaim storage resources for new requests. The
number of data items that can be defined to the cache structure at any given time
is finite. If you try to define a new data item to the cache structure or increase the
size of an existing data entry, and there is insufficient unused cache structure
storage available for the new data item, the system attempts to reclaim storage.

The system attempts to reclaim storage from unchanged data items stored in the
cache structure. When you cast out data items and release the lock, the data items
are considered unchanged and available for reclaim. If there are no unchanged
data items, or insufficient storage is available from unchanged data items, the
request fails.

How you cast out data items depends on the cast-out class you assign to each
data item, and how your protocol uses these cast-out class assignments. For
information on how to assign cast-out classes and on developing cast-out protocol,
see “Casting out Data Items and Reclaim Processing” on page 6-33.

It is also important to cast out changed data from the cache structure because the
changed data might be lost if the coupling facility or structure fails. The more often
you cast out changed data, the fewer changed data items you lose if a failure
occurs, and you thus minimize the amount of recovery processing you need to
perform.

 Cast-out Requests
To read the data item for cast-out, you issue a REQUEST=CASTOUT_DATA
request. The system locks the data item for cast-out on your behalf, marks the data
item unchanged and transfers the requested data to your storage. Locking the data
item for cast-out prevents another user from concurrently casting out the same data
item. Locking a data item for cast-out, however, does not prevent another user from
reading the data item from the cache structure or from updating the data item in the
cache structure.

 Chapter 6. Using Cache Services (IXLCACHE) 6-79

After completion of the REQUEST=CASTOUT_DATA request, you must write the
data item to permanent storage. After the write operation completes, you must
release the cast-out lock by issuing either a REQUEST=UNLOCK_CASTOUT
request or a REQUEST=UNLOCK_CO_NAME request. If other users have not
updated the data while the cast-out lock is held, the system releases the cast-out
lock and removes the data item from the cast-out class to which it had been
assigned.

If you are unable to write the data item to permanent storage, you can request that
the system mark the data item as changed when you release the lock on an
UNLOCK_CASTOUT request or UNLOCK_CO_NAME request. By marking the
data item as changed, you ensure that the data item's cache structure resources
are not reclaimed before you, or another user, casts out the data item. Also, the
data item remains associated with its cast-out class. (See “Changing the Directory
Entry for the Data Item” on page 6-89.)

The data item is also marked as changed if another user updates the data item
while you hold the cast-out lock. While you hold the lock, the data item being cast
out is still available in the cache structure to be read or updated. If another user
updates the data item in the cache structure while you hold the lock, that user's
request causes the data item to be marked changed and to be assigned to the
specified cast-out class. When you issue the UNLOCK_CASTOUT or
UNLOCK_CO_NAME request for the data item, the system still considers the data
item to be associated with the cast-out class that the user specified when the data
item was updated.

The cast-out process involves three major tasks:

� Reading the data item for cast-out from the cache structure : To read a
data item for cast-out, you issue a REQUEST=CASTOUT_DATA request. See
“IXLCACHE Functions for CASTOUT_DATA” on page 6-81.

� Writing the data item to its permanent storage : IXLCACHE does not provide
services for writing the data item to permanent storage. You must use other
system services to perform this task. See the documentation for the method
you use to access permanent storage.

� Unlocking the cast-out lock : You must unlock the cast-out lock by issuing a
REQUEST=UNLOCK_CASTOUT or REQUEST=UNLOCK_CO_NAME request.
See “UNLOCK_CASTOUT: Releasing Cast-Out Locks” on page 6-84 and
“UNLOCK_CO_NAME: Releasing a Single Cast-Out Lock” on page 6-91.

Plan to process an entire cast-out class at a time. Perform the first two steps for
each data item in the class, and then the third step, passing all the names that
were cast out in a list.

6-80 OS/390 V2R8.0 MVS Sysplex Services Guide

Guide to the Topic

“CASTOUT_DATA: Casting Out Data from a Cache Structure” on page 6-79 is
divided into two sections.

The first section, “IXLCACHE Functions for CASTOUT_DATA” on page 6-81,
applies to all CASTOUT_DATA requests and includes the following major
topics:

� “Specifying the Data Item Name” on page 6-81
� “Registering Interest in the Data Item for CASTOUT_DATA Requests” on

page 6-81
� “Specifying a Process Identifier” on page 6-82
� “Selecting the Buffering Method” on page 6-82
� “Specifying the Data to be Cast Out” on page 6-82
� “Receiving Answer Area Information” on page 6-83

The second section, “Casting Out A Data Item: Summary” on page 6-83
summarizes a procedure for casting-out data from a cache structure.

IXLCACHE Functions for CASTOUT_DATA
The following topics apply to casting out data from the cache structure when you
specify REQUEST=CASTOUT_DATA.

Specifying the Data Item Name
All CASTOUT_DATA requests must identify the data item for cast-out. To identify
the data item, specify the data item name on the NAME keyword.

Registering Interest in the Data Item for CASTOUT_DATA
Requests
Users can perform cast-out processing for a data item without having to register
interest in the data item. To cast-out a data item for which you do not want to
register interest, code REGUSER=NO (which is the system default). The system
does not register interest, and if you currently have registered interest in the data
item, the system does not deregister your interest unless another user updates the
data item while you hold the cast-out lock. Using WHENREG=NO on the
CASTOUT_DATA request allows you to develop a cast-out protocol that is
independent of the regular registration/deregistration of interest in shared data
items that occur with other IXLCACHE requests. (For a description of the
registration/deregistration process, see Figure 6-6 on page 6-21.)

To register interest on a CASTOUT_DATA request, specify REGUSER=YES and
the VECTORINDEX keyword to specify a vector entry for the data item. You can
specify the vector entry index currently assigned to the data item in the cache
structure, a vector entry index that is not currently assigned to the data item in the
cache structure, or a vector entry index that is currently assigned to a data item in
the cache structure to another data item.

Specify REGUSER=NO to indicate that interest in a data item is not to be
registered. With a structure allocated in a coupling facility with CFLEVEL=5 or
higher, you can also optionally deregister interest in the data item specified by
OLDNAME. The VECTORINDEX keyword is required whenever OLDNAME is
specified to deregister interest in a data item other than the one being read.

 Chapter 6. Using Cache Services (IXLCACHE) 6-81

For general information on specifying the vector index entry, see “Specifying the
Vector Entry Index on IXLCACHE Requests” on page 6-47.

Specifying a Process Identifier
Optionally, you can identify your task or process as the holder of the cast-out lock
for the named data item. You identify your task or process on the PROCESSID
keyword. When you obtain the cast-out lock, the process identifier becomes part of
the cast-out lock along with your connection identifier. If another user invokes a
service that returns the value of the cast-out lock in the answer area while your
connection holds the cast-out lock, that user can identify, not only your connection,
but also the task or process that holds the lock.

Selecting the Buffering Method
The system returns the data read for cast-out to your local cache buffers. You can
receive data in either a single buffer (the BUFFER keyword) or in multiple buffers
(the BUFLIST keyword). Both methods enable you to receive up to 65536 (64K)
bytes of data. The system returns adjunct information read for cast-out to the
64-byte buffer specified by the ADJAREA keyword.

You must ensure that your local cache buffer can hold the largest data item that
you plan to cast out. If you read data items of different sizes into the same buffer,
ensure that the buffer is as large as the largest data item you cast out. If you
attempt to read a data item that is larger than the buffer, data is not returned to the
buffer, and the system returns appropriate return and reason codes. Even if your
buffer is too small to contain the data, the request still registers your interest in the
data item if you have specified REGUSER=YES, and the system still obtains the
cast out lock for the data item.

For information about whether to use a single buffer or multiple buffers and for
information on selecting buffer attributes, see “Selecting a Data Buffer For a
Request” on page 6-38.

You must ensure that your local cache buffer is large enough to hold the largest
data item that you plan to cast-out. If you cast-out data items of different sizes,
ensure that the buffer is as large as the largest data item you will cast-out. If you
attempt to cast-out a data item that is larger than the buffer, no data is returned to
the buffer. If this occurs, your interest in the data item will still be registered (if you
specified REGUSER=YES) and the data item's cast-out lock will still be obtained,
requiring that you release it with an UNLOCK_CASTOUT request.

For information about whether to use a single buffer or multiple buffers and for
information on selecting buffer attributes, see “Design Considerations for Choosing
the Buffer Format” on page 6-41.

Specifying the Data to be Cast Out
When you cast out data, you can cast out only the data for the data item, cast out
only adjunct data, or cast out both.

For example, if the data for a data item needs to be backed up on permanent
storage, but the adjunct data for the data item contains control information that
does not need to be backed up, you need only cast out the data for the data item.
On the other hand, for adjunct data that must be backed up on permanent storage,
you need to cast out both the data and the adjunct data for the data item.

6-82 OS/390 V2R8.0 MVS Sysplex Services Guide

To cast-out only the data for the data item, identify the local cache buffers by
coding either BUFFER or BUFLIST (you must specify one of these keywords) and
their related keywords. Omit the ADJAREA keyword.

To cast-out adjunct data only, code the ADJAREA keyword and omit the BUFFER
keyword. Optionally, you can code the BUFLIST keyword and its related keywords.
If you code BUFLIST, BUFNUM must specify a value of zero.

To cast out both the data item and adjunct data, code BUFFER or BUFLIST and
their related keywords, and ADJAREA.

Consider the following when you issue these requests:

� If there is data in the cache structure for the requested data item, the system
transfers the data to your local cache buffer.

� If you specify ADJAREA and the cache structure supports adjunct areas, the
system returns the adjunct data to the area specified on ADJAREA.

� If the cache structure does not support ADJAREA, the area specified on
ADJAREA remains unchanged.

� If there is no data in the data entry or no adjunct data, your local cache buffer
and adjunct area are left unchanged.

Cast out and Unchanged Data: If the data entry does not contain changed data,
the system does not obtain the cast-out lock for the data item and does not cast
out the data to your local cache buffers. Return and reason codes indicate the
error, and the system does not register interest for the user in the data item.

Receiving Answer Area Information
On most IXLCACHE requests, the system returns information related to the request
in the answer area. You specify the answer area on the ANSLEN and ANSAREA
keywords. With certain events, the information in the answer area might not be
valid. See “Determining Valid Information in the Answer Area” on page 6-47.

When the request completes, the system returns information to the answer area.
When the request is not valid, the system returns non-zero return and reason
codes.

For the mapping of the answer area, see the IXLYCAA mapping macro described
in OS/390 MVS Data Areas, Vol 3 (IVT-RCWK). For a description of answer area
fields and return and reason codes for the request, see OS/390 MVS Programming:
Sysplex Services Reference.

Casting Out A Data Item: Summary
The three major tasks of a cast-out operation are:

� Reading the data item for cast-out from the cache structure and obtaining the
cast-out lock.

� Writing the data item to permanent storage.

� Releasing the data item's cast-out lock.

To identify the data item, code the data item name on the NAME keyword.

 Chapter 6. Using Cache Services (IXLCACHE) 6-83

You can cast-out a data item regardless of whether you have registered interest in
the data item. You also have the option to register interest as part of the cast-out
operation. If you do not want to register interest, code REGUSER=NO. To register
interest, code REGUSER=YES and VECTORINDEX to assign a vector entry. If you
assign a vector entry that is currently assigned to another data item, specify that
data item name on the OLDNAME keyword. The system deregisters your interest in
the data item specified on the OLDNAME keyword.

Optionally, you can identify your task or process as the holder of the data item's
cast-out lock. To do this, specify the task or process identifier on the PROCESSID
keyword. By providing this identifier, you enable other users to determine which
task or process holds the data item's cast-out lock.

To read a data item for cast-out, identify your local cache buffers by coding either
BUFFER, or BUFLIST and their related keywords. The system transfers the data
item from the data entry to your local cache buffers. If the data entry does not
contain changed data, the system does not obtain the cast-out lock for the data
item and does not cast out the data to your local cache buffers. Return and reason
codes indicate the error, and the system does not register interest for the user in
the data item.

If the cache structure supports adjunct data, you can read the adjunct data for
cast-out by coding the ADJAREA keyword. The system transfers the adjunct data
from the cache structure to the buffer specified on the ADJAREA keyword.

For More Information

There are other keywords that are required and some that are optional. For a
description of keywords that are applicable to all IXLCACHE requests, see:

� “Understanding Synchronous and Asynchronous Cache Operations” on
page 6-36

� “Accessing and Managing Data Within a Cache System” on page 6-14
� “Requesting Return and Reason Codes” on page 6-46
� “Defining an Answer Area (ANSAREA)” on page 6-46

UNLOCK_CASTOUT: Releasing Cast-Out Locks
To release one or more cast-out locks held by your connection, issue an
IXLCACHE REQUEST=UNLOCK_CASTOUT request. After you have cast out and
written the data for the data item to permanent storage, you release a cast-out lock.
If you fail to update permanent storage for the data item that you have cast out,
you need to release the lock, but you indicate that the data item is changed on the
UNLOCK_CASTOUT request. As a result, the system does not consider the data
item eligible for reclaim. The data item then needs to be cast out again so that you
can successfully write the changes to permanent storage.

You have the option to release one lock at a time or multiple locks. To reduce
processing overhead, you might write a number of data items associated with a
specific cast-out class, for example, to permanent storage, then release their
cast-out locks with one invocation of REQUEST=UNLOCK_CASTOUT.

When you release a cast-out lock for a data item, the system updates the directory
entry to indicate that the lock is released. If the data item has not been updated by

6-84 OS/390 V2R8.0 MVS Sysplex Services Guide

another user while the lock is held, the system also disassociates the data item
from the cast-out class.

As a user, you can also update the directory entry for the data item by providing
data for the user-defined data field and by changing the parity bits. You can also
indicate on the UNLOCK_CASTOUT request that the system mark the data as
changed, which makes the resources unavailable for reclaim.

While you hold a cast-out lock for a data item, another user can write changed data
to the data item. If you issue REQUEST=UNLOCK_CASTOUT after another user
has changed the data, the system releases the cast-out lock, but does not update
the directory entry with any of the data that you provide. Instead, the system
considers the data item as changed and updates the directory entry as specified on
the write request of the user that makes the change. The data item also remains
associated with the cast-out class specified by the user on the WRITE_DATA
request.

Guide to the Topic

“UNLOCK_CASTOUT: Releasing Cast-Out Locks” on page 6-84 is divided into
two sections.

The first section, “IXLCACHE Functions for REQUEST=UNLOCK_CASTOUT,”
applies to all UNLOCK_CASTOUT requests and includes the following major
topics:

� “Identifying the Cast-Out Locks to Release”
� “Initializing Elements in the List of Name Elements” on page 6-86
� “Selecting a Buffering Method” on page 6-87
� “Processing an UNLOCK_CASTOUT Request that Ends Prematurely” on

page 6-87
� “Receiving Answer Area Information” on page 6-88
� “Changing the Directory Entry for the Data Item” on page 6-89

The second section, “Releasing Cast-Out Locks: Summary” on page 6-90
summarizes a procedure for unlocking cast-out locks.

IXLCACHE Functions for REQUEST=UNLOCK_CASTOUT
The following functions apply when you specify REQUEST=UNLOCK_CASTOUT.

Identifying the Cast-Out Locks to Release
To identify the data items whose cast-out locks are to be released, you build a list
of names in a buffer. The mapping macro IXLYCUNB maps each name element in
the list. For a description of IXLYCUNB, see OS/390 MVS Data Areas, Vol 3
(IVT-RCWK).

Each name element in the list identifies one data item and contains the following
information:

� Data item name: The name of the data item whose cast-out lock is to be
released.

� User-defined data: Data that is to replace the current user-defined data in the
directory entry for the data item.

 Chapter 6. Using Cache Services (IXLCACHE) 6-85

� Parity bits: Parity bits that are to replace the current parity bits in the directory
entry for the data item.

� Change indicator: An indicator to allow the system to mark the data item as
changed in the cache structure after the lock is released.

When you issue IXLCACHE REQUEST=UNLOCK_CASTOUT, you can release
cast-out locks for all data items identified in the list of name elements or for a
subset of the data items. To identify the set of data items whose cast-out locks are
to be released, use the FIRSTNAME and LASTNAME keywords. Both keywords
specify an index value into the list of name elements. Use FIRSTNAME to identify
the first element for the first data item in the list that the system is to process and
LASTNAME to identify the last element for the last data item that the system is to
process. The system starts with the data item indicated by the index for
FIRSTNAME and attempts to release the cast-out locks for all data items through
the data item indicated by the index for LASTNAME.

For example, you have built a list of seven name elements that identify data items
named A, B, C, D, E, F, and G. The name element that identifies data item A starts
at buffer offset 1. All other name elements follow in contiguous storage:

� To release the cast-out locks for A, B, and C, FIRSTNAME must specify an
index of 1 and LASTNAME an index of 3.

� To release the cast-out locks for C, D, and E, FIRSTNAME must specify an
index of 3 and LASTNAME an index of 5.

� To release the cast-out lock for data item G only, FIRSTNAME and LASTNAME
both must specify an index of 7.

Initializing Elements in the List of Name Elements
For each name element in the list, you must initialize the data item name. If you
plan to use the user-defined data field and the parity bits, you must also initialize
these fields. Otherwise, you can specify zeros for the user-defined data field and
parity bits. You must also indicate whether the system marks the data item as
changed. Indicating the changed status of a data item depends on whether you
successfully write the data item to permanent storage.

During normal cast-out processing, you write changed data for each data item to
permanent storage. For a successful write operation, issue the request to release
the lock and ensure that the value of the change indicator informs the system to
leave the change state as is. As long as no other user has updated the data item
while you held the lock, the system considers the data item as unchanged and the
storage resources are eligible for reclaim. For an unsuccessful write operation to
permanent storage, issue the request to release the lock and set the change
indicator to mark the data item as changed. By marking the data item as changed,
the system cannot reclaim data item resources for other requests so that you can
preserve the changes until you are able to write the data item to permanent
storage.

6-86 OS/390 V2R8.0 MVS Sysplex Services Guide

Specifying a Process Identifier
Optionally, you can identify your task or process as the lock holder for one or more
cast-out locks for the named data items on the PROCESSID keyword. While you
hold a cast-out lock for a data item, another user can invoke a service that returns
the value of the cast-out lock in the answer area, and the user can identify, not only
the connection, but also the task or process that holds the lock.

Selecting a Buffering Method
When you issue a REQUEST=UNLOCK_CASTOUT request, you must specify a
buffer that contains the list of name elements. You can use a single buffer (the
BUFFER keyword) or multiple buffers (the BUFLIST keyword). Either method
enables you to build a maximum of 2048 name elements.

For information about whether to use a single buffer or multiple buffers and for
information on selecting buffer attributes, see “Design Considerations for Choosing
the Buffer Format” on page 6-41.

Processing an UNLOCK_CASTOUT Request that Ends
Prematurely
The completion of IXLCACHE REQUEST=UNLOCK_CASTOUT request can be
affected for the following reasons:

� The request exceeds the time-out criteria for the coupling facility. (Time-out
criteria is model-dependent.)

� A name element specified a data item that is not defined to the cache structure.

� The connection specified on the CONTOKEN keyword, or the process or task
specified on the PROCESSID keyword, does not hold the cast-out lock for one
of the data items specified by the name element.

� A name element specified a data item with parity bits that are not valid.

� A name element specified a data item that holds a cast-out lock in a
write-with-cast-out state. The write-with-cast-out lock state is not compatible
with the change indicator for the data item.

Each time a request completes prematurely, the system returns an index value into
the list of name elements in the CAAULINDEX field of the answer area. Use this
index value in CAAULINDEX to:

� Locate the name element that specified the undefined data item, the data item
with a connector, task, or process that does not hold the cast-out lock, the data
item that specified parity bits that are not valid, or the data item that requested
an incompatible update for the change indicator.

� For time-out problems, restart the request so it can process the remaining
elements in the list of name elements.

Locating a Name Element: Use the index value to identify the data item that is
not defined, the data item for which the connection, task, or process does not hold
the cast-out lock, the data item that specified parity bits that are not valid, or the
data item that requested an incompatible update for the change indicator.

For example, you specify a list of five name elements for data items named A, B,
C, D, and E. The list starts at offset 1 of the buffer. When you issue the
REQUEST=UNLOCK_CASTOUT request, FIRSTNAME specifies an index of 1 (for

 Chapter 6. Using Cache Services (IXLCACHE) 6-87

data item A) and LASTNAME an index of 5 (for data item E). If data item C is not
defined to the cache structure, the system prematurely completes the request and
returns an index value of 3 in CAAULINDEX that corresponds to data item C.

Restarting a Request: Use the index value to restart a prematurely completed
request. Before restarting a request, you must reinitialize the index value that
FIRSTNAME specifies. If the request exceeded a time-out value for the coupling
facility, reinitialize the FIRSTNAME index value to the value returned in
CAAULINDEX.

If the request specifies a data item that is not in the cache structure, a data item for
which the connection, task, or process does not hold the cast-out lock, a data item
that specified parity bits that are not valid, or a data item that requested an
incompatible update for the change indicator, and the condition is unexpected,
check to ensure that all users of the cache structure are following the established
protocols. If your protocol expects these conditions to occur and you want to restart
the request, increase the value in the CAAULINDEX by 1 (as long as the original
value is not the last element in the list), so that it points to the next name element
in the list. When you reissue the request, specify the new index value on
FIRSTNAME.

In the previous example that described missing data item C indicated by index
value 3 in CAAULINDEX, specify 4 in CAAULINDEX. Then for FIRSTNAME, also
specify 4 and reissue the request. When you reissue the request, the system can
start to release the cast-out lock starting with data item D.

Note: If the problem is the last name element in the list, ensure that the new index
value for FIRSTNAME does not exceed the value for LASTNAME. For
example, if the fourth element in a list of four caused the problem
(CAAULINDEX returns a value of 4) and you want to restart the request
with the first element, specify 1 for FIRSTNAME. Do not increase
CAAULINDEX by 1 and specify that value (5) for FIRSTNAME, or you will
receive an error.

To restart a request, after reinitializing FIRSTNAME, reissue IXLCACHE
REQUEST=UNLOCK_CASTOUT. To ensure that you do not alter the intent of the
request that completed prematurely, the restarted request should specify the same
keywords and values (with the exception of the index value specified on
FIRSTNAME) as the request that completed prematurely. For general information
about restarting requests, see “Restarting a Request that Ends Prematurely” on
page 6-49.

Receiving Answer Area Information
On most IXLCACHE requests, the system returns information related to the request
in the answer area. You specify the answer area on the ANSLEN and ANSAREA
keywords. With certain events, the information in the answer area might not be
valid. See “Determining Valid Information in the Answer Area” on page 6-47.

When the request completes, the system returns information to the answer area.
When the request is not valid, the system returns non-zero return and reason
codes.

For the mapping of the answer area, see the IXLYCAA mapping macro described
in OS/390 MVS Data Areas, Vol 3 (IVT-RCWK). For a description of answer area

6-88 OS/390 V2R8.0 MVS Sysplex Services Guide

fields and return and reason codes for the request, see OS/390 MVS Programming:
Sysplex Services Reference.

Changing the Directory Entry for the Data Item
If a user does not write changed data to a data item while you hold the cast-out
lock, you can indicate to the system whether you want to mark the data item as
changed or indicate that the system is not to change the status of the data item
when you release the lock.

If you indicate that the system is not to change the status of the data item when
you release the lock and no other user has updated the data item in the cache
while the lock was held, the system is able to reclaim resources from the data item
for other requests. If you indicate that the data item is changed when you release
the lock or a user has updated the data item while the lock was held, the system
considers the data item as changed, and the system cannot reclaim data item
resources.

Indicating to the System not to Change the Status of the Data Item: If you do
not want to change the status of the data item and the data item is unchanged, the
system does the following:

� Updates the user-data and parity bits in the directory entry with the data you
provide in the name element.

� Disassociates the data item from the cast-out class to which it was assigned.

Marking the Data Item as Changed: To request that the data item be marked as
changed, do the following:

� Specify B'1' in the CUNBCHANGEOI field of the mapping macro IXLYCUNB
for the name element of the data item in the list.

If you request that the system mark the data item as changed the system does the
following:

� Marks the data item as changed.

� Updates the user-data and parity bits in the directory entry with the data you
provide in the name element.

� Leaves the data item associated with the cast-out class to which it was
assigned.

When Another User Updates the Data Item: If another user writes changed data
to the data item while you hold the cast-out lock, the system ignores the data in the
name element. Instead, the information provided on the other user's write request
determines the directory update. The system:

� Marks the data item as changed.

� Updates the user-data field and the parity bits with the information supplied on
the WRITE_DATA request.

� Assigns the data item to the cast-out class specified on the WRITE_DATA
request.

The UNLOCK_CASTOUT request in this instance does not affect the directory
entry for the data item and has no effect on the storage class specified for the data

 Chapter 6. Using Cache Services (IXLCACHE) 6-89

item on the WRITE_DATA request. The data item resources are marked as
changed and are not available for storage reclaim.

Releasing Cast-Out Locks: Summary
You use an unlock cast-out request to unlock one or more locks that your
connection, or optionally your process or task, holds.

The request must identify the data items whose cast-out locks are to be unlocked.

� To identify the data items, build a list of name elements in a buffer. Each
name element contains a data item name, user-defined data, parity bits, and a
change indicator (change-bit-overindication bit):

� To mark the data item as changed use the CUNBCHANGEOI field in the
IXLYCUNB mapping macro for each name element in the list. The data item
remains associated with its specified cast-out class, and the resources of the
data item are not available for reclaim.

� If the data item is not changed, allow the system to leave the state of the data
item as is, and the data item is disassociated with its cast-out class and its
resources available for reclaim.

The request must indicate the first and last name elements in the list of name
elements that the system is to process.

� To identify the first name element, use the FIRSTNAME keyword.

� To identify the last name element, use the LASTNAME keyword.

The system processes all of the name elements from FIRSTNAME through
LASTNAME.

Optionally, specify the task or process identifier on the PROCESSID keyword to
identify the task or process that holds the cast-out lock for the data item.

The request can complete prematurely for the following reasons:

� The coupling facility times-out.

� A name element specifies a data item that is not in the cache structure.

� A name element specifies a data item whose cast-out lock is not held by the
specified connection or process or task identified by the PROCESSID.

� A name element specified a data item with parity bits that are not valid.

� A name element specified a data item that holds a cast-out lock in a
write-with-cast-out state. The write-with-cast-out lock state is not compatible
with the change indicator for the data item.

Each time a request completes prematurely, the system returns an index value.
You can use the index value to identify the name element for the data item that
might have caused the premature completion. You can also use the index value to
restart the request.

The request can alter the directory entry for each data item named in a name
element. If, while you hold the cast-out lock, no other user writes changed data to
the data item, the system updates the directory entry with the information you
supply in the name element. If another user writes changed data to the data item
while you hold the cast-out lock, the system unlocks the cast-out lock but ignores

6-90 OS/390 V2R8.0 MVS Sysplex Services Guide

your directory update information. Instead, the system updates the directory with
information provided by the user who performed the update.

For More Information

There are other keywords that are required and some that are optional. For a
description of keywords that are applicable to all IXLCACHE requests, see:

� “Understanding Synchronous and Asynchronous Cache Operations” on
page 6-36

� “Accessing and Managing Data Within a Cache System” on page 6-14
� “Requesting Return and Reason Codes” on page 6-46
� “Defining an Answer Area (ANSAREA)” on page 6-46

UNLOCK_CO_NAME: Releasing a Single Cast-Out Lock
To release a single cast-out lock held by your connection, issue an IXLCACHE
REQUEST=UNLOCK_CO_NAME request. After you have (Note that although it is
possible to release a single cast-out lock with the UNLOCK_CASTOUT request, it
is more efficient to use the UNLOCK_CO_NAME request. After you have cast out
and written the data for the data item to permanent storage, you release a cast-out
lock. If you fail to update permanent storage for the data item that you have cast
out, you need to release the lock, but you indicate that the data item is changed on
the UNLOCK_CO_NAME request. As a result, the system does not consider the
data item eligible for reclaim. The data item then needs to be cast out again so that
you can successfully write the changes to permanent storage.

When you release a cast-out lock for a data item, the system updates the directory
entry to indicate that the lock is released. If the data item has not been updated by
another user while the lock is held, the system also disassociates the data item
from the cast-out class.

As a user, you can also update the directory entry for the data item by providing
data for the user-defined data field and by changing the parity bits. You can also
indicate on the UNLOCK_CO_NAME request that the system mark the data as
changed, which makes the resources unavailable for reclaim.

While you hold a cast-out lock for a data item, another user can write changed data
to the data item. If you issue REQUEST=UNLOCK_CO_NAME after another user
has changed the data, the system releases the cast-out lock, but does not update
the directory entry with any of the data that you provide. Instead, the system
considers the data item as changed and updates the directory entry as specified on
the write request of the user that makes the change. The data item also remains
associated with the cast-out class specified by the user on the WRITE_DATA
request.

 Chapter 6. Using Cache Services (IXLCACHE) 6-91

Guide to the Topic

“UNLOCK_CO_NAME: Releasing a Single Cast-Out Lock” is divided into two
sections.

The first section, “IXLCACHE Functions for REQUEST=UNLOCK_CO_NAME”
on page 6-92, applies to all UNLOCK_CO_NAME requests and includes the
following major topics:

� “Identifying the Cast-Out Lock to Release” on page 6-92
� “Initializing a Name Element” on page 6-92
� “Specifying a Process Identifier” on page 6-93
� “Receiving Answer Area Information” on page 6-93
� “Changing the Directory Entry for the Data Item” on page 6-93

The second section, “Releasing a Single Cast-Out Lock: Summary” on
page 6-94 summarizes a procedure for unlocking a single cast-out lock.

IXLCACHE Functions for REQUEST=UNLOCK_CO_NAME
The following functions apply when you specify REQUEST=UNLOCK_CO_NAME.

Identifying the Cast-Out Lock to Release
To identify the data item whose cast-out lock is to be released, you create a name
element record in the CUNBAREA. The mapping macro IXLYCUNB maps the
name element. For a description of IXLYCUNB, see OS/390 MVS Data Areas, Vol
3 (IVT-RCWK).

The name element in the CUNBAREA contains the following information:

� Data item name: The name of the data item whose cast-out lock is to be
released.

� User-defined data: Data that is to replace the current user-defined data in the
directory entry for the data item.

� Parity bits: Parity bits that are to replace the current parity bits in the directory
entry for the data item.

� Change indicator: An indicator to allow the system to mark the data item as
changed in the cache structure after the lock is released.

Initializing a Name Element
You must initialize the data item name. If you plan to use the user-defined data
field and the parity bits, you must also initialize these fields. Otherwise, you can
specify zeros for the user-defined data field and parity bits. You must also indicate
whether the system marks the data item as changed. Indicating the changed status
of a data item depends on whether you successfully write the data item to
permanent storage.

During normal cast-out processing, you write changed data for each data item to
permanent storage. For a successful write operation, issue the request to release
the lock and ensure that the value of the change indicator informs the system to
leave the change state as is. As long as no other user has updated the data item
while you held the lock, the system considers the data item as unchanged and the
storage resources are eligible for reclaim. For an unsuccessful write operation to

6-92 OS/390 V2R8.0 MVS Sysplex Services Guide

permanent storage, issue the request to release the lock and set the change
indicator to mark the data item as changed. By marking the data item as changed,
the system cannot reclaim data item resources for other requests so that you can
preserve the changes until you are able to write the data item to permanent
storage.

Specifying a Process Identifier
Optionally, you can identify your task or process as the lock holder for a cast-out
lock for the named data item on the PROCESSID keyword. While you hold a
cast-out lock for a data item, another user can invoke a service that returns the
value of the cast-out lock in the answer area, and the user can identify, not only the
connection, but also the task or process that holds the lock.

Selecting a Buffering Method
When you issue a REQUEST=UNLOCK_CASTOUT request, you must specify a
buffer that contains the list of name elements. You can use a single buffer (the
BUFFER keyword) or multiple buffers (the BUFLIST keyword). Either method
enables you to build a maximum of 2048 name elements.

For information about whether to use a single buffer or multiple buffers and for
information on selecting buffer attributes, see “Design Considerations for Choosing
the Buffer Format” on page 6-41.

Receiving Answer Area Information
On most IXLCACHE requests, the system returns information related to the request
in the answer area. You specify the answer area on the ANSLEN and ANSAREA
keywords. With certain events, the information in the answer area might not be
valid. See “Determining Valid Information in the Answer Area” on page 6-47.

When the request completes, the system returns information to the answer area.
When the request is not valid, the system returns non-zero return and reason
codes.

For the mapping of the answer area, see the IXLYCAA mapping macro described
in OS/390 MVS Data Areas, Vol 3 (IVT-RCWK). For a description of answer area
fields and return and reason codes for the request, see OS/390 MVS Programming:
Sysplex Services Reference.

Changing the Directory Entry for the Data Item
If a user does not write changed data to a data item while you hold the cast-out
lock, you can indicate to the system whether you want to mark the data item as
changed or indicate that the system is not to change the status of the data item
when you release the lock.

If you indicate that the system is not to change the status of the data item when
you release the lock and no other user has updated the data item in the cache
while the lock was held, the system is able to reclaim resources from the data item
for other requests. If you indicate that the data item is changed when you release
the lock or a user has updated the data item while the lock was held, the system
considers the data item as changed, and the system cannot reclaim data item
resources.

 Chapter 6. Using Cache Services (IXLCACHE) 6-93

Indicating to the System not to Change the Status of the Data Item: If you do
not want to change the status of the data item and the data item is unchanged, the
system does the following:

� Updates the user-data and parity bits in the directory entry with the data you
provide in the name element.

� Disassociates the data item from the cast-out class to which it was assigned.

Marking the Data Item as Changed: To request that the data item be marked as
changed, do the following:

� Specify B'1' in the CUNBCHANGEOI field of the mapping macro IXLYCUNB
for the name element.

If you request that the system mark the data item as changed the system does the
following:

� Marks the data item as changed.

� Updates the user-data and parity bits in the directory entry with the data you
provide in the name element.

� Leaves the data item associated with the cast-out class to which it was
assigned.

When Another User Updates the Data Item: If another user writes changed data
to the data item while you hold the cast-out lock, the system ignores the data in the
name element. Instead, the information provided on the other user's write request
determines the directory update. The system:

� Marks the data item as changed.

� Updates the user-data field and the parity bits with the information supplied on
the WRITE_DATA request.

� Assigns the data item to the cast-out class specified on the WRITE_DATA
request.

The UNLOCK_CO_NAME request in this instance does not affect the directory
entry for the data item and has no effect on the storage class specified for the data
item on the WRITE_DATA request. The data item resources are marked as
changed and are not available for storage reclaim.

Releasing a Single Cast-Out Lock: Summary
You use an UNLOCK_CO_NAME request to unlock one lock that your connection,
or optionally your process or task, holds.

The request must identify the data item whose cast-out lock is to be unlocked.

� To identify the data item, build a name element in the area specified by
CUNBAREA, mapped by IXLYCUNB. Each name element contains the data
item name, user-defined data, parity bits, and a change indicator
(change-bit-overindication bit):

� To mark the data item as changed use the CUNBCHANGEOI field in the
IXLYCUNB mapping macro. The data item remains associated with its specified
cast-out class, and the resources of the data item are not available for reclaim.

6-94 OS/390 V2R8.0 MVS Sysplex Services Guide

� If the data item is not changed, allow the system to leave the state of the data
item as is, and the data item is disassociated with its cast-out class and its
resources available for reclaim.

Optionally, specify the task or process identifier on the PROCESSID keyword to
identify the task or process that holds the cast-out lock for the data item.

The request can alter the directory entry for the data item. If, while you hold the
cast-out lock, no other user writes changed data to the data item, the system
updates the directory entry with the information you supply in the name element. If
another user writes changed data to the data item while you hold the cast-out lock,
the system unlocks the cast-out lock but ignores your directory update information.
Instead, the system updates the directory with information provided by the user who
performed the update.

For More Information

There are other keywords that are required and some that are optional. For a
description of keywords that are applicable to all IXLCACHE requests, see:

� “Accessing and Managing Data Within a Cache System” on page 6-14 for
the connect token and the request identifier

 � on page 6-14
� “Requesting Return and Reason Codes” on page 6-46
� “Defining an Answer Area (ANSAREA)” on page 6-46

DELETE_NAME: Deleting Data Items From a Cache Structure
To delete a data item from the cache structure and free the cache structure
resources allocated to that data item, issue the IXLCACHE
REQUEST=DELETE_NAME request. With one request you can delete a single
data item or multiple data items whose names satisfy a specified character
selection pattern. For cache structures allocated in a coupling facility of
CFLEVEL=4 or lower, the system deletes the data entry and the directory entry for
the data items identified on the request, and invalidates the copies of the data
items that are in local cache buffers for all users (including the user who issues the
request). The data items are no longer associated with their cast-out classes or
storage classes, and the resources allocated to the data item are made available
for reuse within the cache structure. Subsequent references to a deleted data item
fail until the data item is redefined to the cache structure.

For cache structures allocated in a coupling facility of CFLEVEL=5 or higher, you
have the option of specifying the type of resource deletion that is to be performed
as well as whether version number comparison is required.

If your protocol relies on external serialization, you need to hold a lock to serialize
access to data items. For serialization recommendations and sample scenarios that
show how to establish serialization, see “Serializing and Managing Access to
Shared Data” on page 6-25.

Timing and DELETE_NAME Requests

When you issue the DELETE_NAME request, consider the impact of timing issues
on serialization. If another user creates a new data item in the cache after you have

 Chapter 6. Using Cache Services (IXLCACHE) 6-95

issued a DELETE_NAME request with criteria that matches the data item but
before the request completes, the request might not delete the data item. If you
want to ensure that when your request completes, any data item matching your
criteria has been deleted from the cache structure, you must hold serialization
throughout the request processing. Serialization needs to remain in effect for both
the initial request, and any subsequent request restarts that might be required as a
result of a timeout, and the scope of the serialization must prevent any other user
from creating a new entry that matches the criteria on the DELETE_NAME request.

Guide to the Topic

“DELETE_NAME: Deleting Data Items From a Cache Structure” on page 6-95
is divided into two sections.

The first section, “IXLCACHE Functions for REQUEST=DELETE_NAME,”
applies to all DELETE_NAME requests and includes the following major topics:

� “Identifying Data Items to Delete”
� “Specifying the Type of Deletion” on page 6-97
� “Restarting Requests” on page 6-98
� “Receiving Answer Area Information” on page 6-99

The second section, “Deleting Data Items: Summary” on page 6-99 summarizes
a procedure for deleting data items from a cache structure.

IXLCACHE Functions for REQUEST=DELETE_NAME
The following functions apply when you specify IXLCACHE
REQUEST=DELETE_NAME.

Identifying Data Items to Delete
To identify a single data item, specify the data item name on the NAME keyword
and omit the NAMEMASK keyword. This causes the system to select only the data
item whose name matches the name specified on the NAME keyword. For a
general description of NAMEMASK and the character selection pattern, see “Using
Filters for Names on Requests” on page 6-48.

Example 1: You want to select the data item named IXLG567. You can omit the
NAMEMASK keyword or code it as shown:

 IXLCACHE ...,NAME=DNAME,NAMEMASK=MASK,...

 . . .

DNAME DC CL16'IXLG567'
MASK DC BL2'1111111111111111'

...

Example 2: You want to select only those data items whose name contains the
characters 'RL' in the third and fourth character positions. The other characters in
the name can be any character. You must provide the following values for the
NAME and NAMEMASK keywords:

6-96 OS/390 V2R8.0 MVS Sysplex Services Guide

 IXLCACHE ...,NAME=DNAME,NAMEMASK=MASK,...

 . . .

DNAME DC CL16'XXRL'
MASK DC BL2'ðð11ðððððððððððð'

...

Note: The characters 'XX' in the data constant DINAME can be anything you
choose because they are not used in the selection process.

Example 3: You want to select only those data items whose name begins with the
character string 'IXL1'. The other characters in the name can be any character.
You must provide the following values for the NAME and NAMEMASK keywords:

 IXLCACHE ...,NAME=DNAME,NAMEMASK=MASK,...

 . . .

DNAME DC CL16'IXL1'
MASK DC BL2'1111ðððððððððððð'

...

Specifying the Type of Deletion
Use the DELETETYPE keyword to indicate the type of delete processing to be
performed. The default (DIRANDDATA) requests that all cache structure resources
for the entry be released for reuse by the structure and also all applicable
connections have their interest deregistered and a cross-invalidate performed
against their local vector.

The other DELETETYPE keyword options all provide the ability to keep the data
item's directory entry and not have the system perform the cross-invalidate against
a connector's local vector. For each structure entry,

� UNCHDATA requests that all unchanged data only be released for reuse.

� CHDATA requests that all changed data be released for reuse and certain
status fields be reset.

� ANYDATA requests that, whether changed or unchanged, the data is to be
released for reuse and status fields are to be reset.

| Using Name Classes in a Coupling Facility
| At connect time, you can specify that the cache structure is to be allocated to
| support the logical grouping of cache entries into name classes. A coupling facility
| of CFLEVEL=7 or higher can assign entries to name classes based on the value of
| the NAMECLASSMASK that was specified when the structure was allocated. Using
| NAMECLASSMASK in conjunction with NAMEMASK may improve the efficiency of
| an IXLCACHE REQUEST=DELETE_NAME request.

| For example, if your processing requires that at some point you will want to identify
| for deletion purposes all cache entries that adhere to a particular naming
| convention, the following method would accomplish that requirement:

| 1. Determine a naming convention that logically relates the entry names. Let's
| suppose that the naming convention specifies that the first four characters of

 Chapter 6. Using Cache Services (IXLCACHE) 6-97

| the name determine the logical naming convention for these “related” entries.
| That is, at some point in your processing, you will want to delete all entries in
| the cache structure whose entry names start with a given four-character string,
| while leaving all other entries whose names start with a different four-character
| string unaffected.

| 2. Specify on IXLCONN a NAMECLASSMASK value of X'F000' to indicate that
| the first four characters are the ones in which you are interested. This allows
| the coupling facility (of CFLEVEL=7 or higher) to maintain separate name
| classes based on the first four characters of the name as the entries in the
| structure are referenced. Each separate name class maintained by the coupling
| facility contains only those entries whose names start with the same first four
| characters.

| 3. If, at some point in your processing, you want to delete a particular set of
| entries with the same first four characters, issue IXLCACHE
| REQUEST=DELETE_NAME with a NAME identifying the entries to be deleted
| and a NAMEMASK=X'F000' (equal to the NAMECLASSMASK value). The
| coupling facility can efficiently process this request because the cache entries
| have been logically grouped into name classes. For example, if the entries to
| be deleted all start with the characters ‘ABCD’, those entries identified by
| NAME=ABCDxxxxxxxxxxxx would have been logically grouped together and
| can be easily retrieved by the coupling facility for deletion.

| In contrast, again assuming a NAMECLASSMASK of X'F000', consider the
| following examples.

| � If the entries to be deleted are identified by the NAME ‘ABxxxxxxxxxxxxxx’
| and a NAMEMASK of X'C000' is specified, the coupling facility would
| have to scan the entire directory to locate those entries that matched the
| name ‘ABxxxxxxxxxxxxxx’. The coupling facility retrieval process would be
| significantly less efficient, depending on the size of the structure.

| � If the entries to be deleted are identified by the NAME ‘ABCDEFGHxx’ and
| a NAMEMASK of X'FF00' is specified, because the NAMEMASK does not
| exactly match the NAMECLASSMASK specified on IXLCONN, the coupling
| facility would scan the entire directory to locate the entries with names
| identified by ‘ABCDEFGHxx’.

| � If the structure does not support name classes (either because it is not
| allocated in a coupling facility of CFLEVEL=7 or higher or because
| NAMECLASSMASK was not specified on IXLCONN when the structure
| was allocated), the request will result in the coupling facility having to scan
| the entire directory to locate the entries to be deleted because they have
| not been logically grouped together.

 Restarting Requests
IXLCACHE REQUEST=DELETE_NAME might complete prematurely because the
request exceeds time-out criteria. When a request completes prematurely, the
system might not have deleted all the data items specified on the request. Even if

| you expect to delete a single data item or are using name classes to optimize the
| performance of the REQUEST=DELETE_NAME request, you need to consider
| time-outs. (Time-outs will be much less likely to occur when using name classes,
| but still must be considered.) To delete one or more remaining data items for the

request, you can restart the request. For general information about restarting a
request, see “Restarting a Request that Ends Prematurely” on page 6-49.

6-98 OS/390 V2R8.0 MVS Sysplex Services Guide

Receiving Answer Area Information
On most IXLCACHE requests, the system returns information related to the request
in the answer area. You specify the answer area on the ANSLEN and ANSAREA
keywords. With certain events, the information in the answer area might not be
valid. See “Determining Valid Information in the Answer Area” on page 6-47.

When the request completes, the system returns information to the answer area.
When the request is not valid, the system returns non-zero return and reason
codes.

For the mapping of the answer area, see the IXLYCAA mapping macro described
in OS/390 MVS Data Areas, Vol 3 (IVT-RCWK). For a description of answer area
fields and return and reason codes for the request, see OS/390 MVS Programming:
Sysplex Services Reference.

Deleting Data Items: Summary
You delete a data item to remove it from the cache structure. Deleting a data item
removes the name from the cache structure, marks the copies of the data item as
not valid for all users, and frees the data item's cache structure resources for
reuse.

� To identify the data item, specify the data item name on the NAME keyword. If
you want to delete only the named data item, omit the NAMEMASK keyword.

� To delete all data items with names that match a specified character pattern,
code both the NAME and NAMEMASK keywords. NAME must specify a data
item name that contains the specified character pattern. NAMEMASK must
specify a bit-string where the bits that correspond to the specified character
pattern are set to B'1'. For examples that show how to use NAME and
NAMEMASK together, see “Using Filters for Names on Requests” on
page 6-48.

If the coupling facility time-out criteria are exceeded, the delete request completes
prematurely. For the time-out of a request, the system returns a token that you can
use to restart the request from the point at which it timed-out. The system returns
the token in the CAARESTOKEN field of the answer area. To restart a request that
completes prematurely, code the IXLCACHE REQUEST=DELETE_NAME request
as you previously coded it with the exception of the RESTOKEN keyword. The
RESTOKEN keyword must specify the token that the system returned when the
delete request ended prematurely.

For More Information

There are other keywords that are required and some that are optional. For a
description of keywords that are applicable to all IXLCACHE requests, see:

� “Accessing and Managing Data Within a Cache System” on page 6-14
� “Requesting Return and Reason Codes” on page 6-46
� “Defining an Answer Area (ANSAREA)” on page 6-46
� “Understanding Synchronous and Asynchronous Cache Operations” on

page 6-36

 Chapter 6. Using Cache Services (IXLCACHE) 6-99

DELETE_NAMELIST: Deleting a List of Data Items
To delete one or more data items from a cache structure, issue an IXLCACHE
REQUEST=DELETE_NAMELIST request. The DELETE_NAMELIST request allows
you to delete selective resources for a cache structure allocated in a coupling
facility of CFLEVEL=5 or higher. The DELETE_NAMELIST also allows you to do
version number comparisons and provides an option to control whether processing
should continue after an error or miscomparison has occurred.

Guide to the Topic

“DELETE_NAMELIST: Deleting a List of Data Items” is divided into two
sections.

The first section, “IXLCACHE Functions for REQUEST=DELETE_NAMELIST,”
applies to all DELETE_NAMELIST requests and includes the following major
topics:

� “Identifying Data Items to Delete”
� “Identifying Data Items to Delete”
� “Specifying the Type of Deletion” on page 6-101
� “Requesting Version Comparison” on page 6-101
� “Handling Error Processing” on page 6-101
� “Restarting a DELETE_NAMELIST Request that Ends Prematurely” on

page 6-102
� “Receiving Answer Area Information” on page 6-102

The second section, “Deleting a List of Data Items: Summary” on page 6-102
summarizes a procedure for deleting a list of data items from a cache structure.

IXLCACHE Functions for REQUEST=DELETE_NAMELIST
The following functions apply when you specify IXLCACHE
REQUEST=DELETE_NAMELIST.

Identifying Data Items to Delete
To identify a data item for deletion processing, you build a list of name blocks in a
buffer. The mapping macro IXLYDNNB maps each name block in the list. For a
description of IXLYDNNB, see OS/390 MVS Data Areas, Vol 3 (IVT-RCWK).

Each name block in the list identifies one data item and contains the following
information:

� Structure entry name: The name of the structure entry for which delete
processing is to be performed.

� Comparative version number: An optional version number to be used when
version number comparison is requested.

6-100 OS/390 V2R8.0 MVS Sysplex Services Guide

Selecting a Buffering Method
When you issue a REQUEST=DELETE_NAMELIST request, you must specify a
buffer that contains the list of name elements. You can use a single buffer (the
BUFFER keyword) or multiple buffers (the BUFLIST keyword). Either method
enables you to build a maximum of 2048 name elements.

For information about whether to use a single buffer or multiple buffers and for
information on selecting buffer attributes, see “Design Considerations for Choosing
the Buffer Format” on page 6-41.

Use the STARTINDEX and ENDINDEX keywords as index values to identify the
name blocks in the buffer area to be processed. The name blocks are numbered
starting with 1. The name blocks are processed sequentially beginning with
STARTINDEX and continuing through ENDINDEX.

Specifying the Type of Deletion
Use the DELETETYPE keyword to indicate the type of delete processing to be
performed. The default (DIRANDDATA) requests that all cache structure resources
for the entry be released for reuse by the structure and also all applicable
connections have their interest deregistered and a cross-invalidate performed
against their local vector.

The other DELETETYPE keyword options all provide the ability to keep the data
item's directory entry and not have the system perform the cross-invalidate against
connectors' local vectors. For each structure entry,

� UNCHDATA requests that all unchanged data only be released for reuse.

� CHDATA requests that all changed data be released for reuse and certain
status associated with the data's change state be reset.

� ANYDATA requests that, whether changed or unchanged, the data is to be
released for reuse and status fields associated with the data's change state are
to be reset.

Requesting Version Comparison
Use the VERSCOMPTYPE keyword if you require structure entry version
comparison to be performed. The system compares the version number in the
structure entry with the version number in the IXLYDNNB name block being
processed. Valid conditions that you can specify are no comparison, equal
comparison, or less than or equal comparison. If the comparison does not meet the
condition specified, you can request that processing either continue with the next
name block or be halted.

Handling Error Processing
If, while processing the IXLYDNNB name blocks, either an entry is not found or a
version number miscompare occurs, you can specify whether processing is to
continue with the next name block (ERRORACTION=CONTINUE) or stop
(ERRORACTION=TERMINATE). If processing is halted, the index value of the
entry that caused the error is returned in the CAADNLINDEX field of IXLYCAA. To
restart processing after it is halted, increment the index value returned in
CAADNLINDEX by 1, reinitialize STARTINDEX with the new index value, and
resubmit the DELETE_NAMELIST request.

 Chapter 6. Using Cache Services (IXLCACHE) 6-101

Restarting a DELETE_NAMELIST Request that Ends Prematurely
An IXLCACHE REQUEST=DELETE_NAMELIST request might complete
prematurely if the request exceeds the time-out criteria for the coupling facility.
(Time-out criteria is model-dependent.) Each time a request completes prematurely,
the system returns an index value into the list of name elements in the
CAADNLINDEX field of the answer area. Use this index value in CAADNLINDEX to
restart the request so it can process the remaining elements in the list of name
elements. Reinitialize the STARTINDEX index value to the value returned in
CAADNLINDEX. To restart a request, after reinitializing STARTINDEX, reissue
IXLCACHE REQUEST=DELETE_NAMELIST. To ensure that you do not alter the
intent of the request that completed prematurely, the restarted request should
specify the same keywords and values (with the exception of the index value
specified on STARTINDEX) as the request that completed prematurely. For general
information about restarting requests, see “Restarting a Request that Ends
Prematurely” on page 6-49.

Receiving Answer Area Information
On most IXLCACHE requests, the system returns information related to the request
in the answer area. You specify the answer area on the ANSLEN and ANSAREA
keywords. With certain events, the information in the answer area might not be
valid. See “Determining Valid Information in the Answer Area” on page 6-47.

When the request completes, the system returns information to the answer area.
When the request is not valid, the system returns non-zero return and reason
codes.

For the mapping of the answer area, see the IXLYCAA mapping macro described
in OS/390 MVS Data Areas, Vol 3 (IVT-RCWK). For a description of answer area
fields and return and reason codes for the request, see OS/390 MVS Programming:
Sysplex Services Reference.

Deleting a List of Data Items: Summary
For cache structures allocated in a coupling facility with CFLEVEL=5 or higher, you
can specify a list of data items for which structure resources are to be deleted. The
resources are returned to the structure for reuse. You can specify the type of
deletion to be performed and whether version number comparison is required. The
DELETE_NAMELIST provides you with the option of deleting data resources
without deleting the corresponding directory entry or having the system
cross-invalidate connectors' local vectors.

If an entry is not found or a version number miscompare occurs, the
DELETE_NAMELIST request provides an option for either continuing processing
with the next entry or halting processing. If halted, the system returns an index
value in the CAADNLINDEX field of the answer area. To continue processing the
request, reinitialize the STARTINDEX keyword with the incremented index value
and resubmit the DELETE_NAMELIST request.

If the coupling facility time-out criteria are exceeded, the DELETE_NAMELIST
request completes prematurely. For the time-out of a request, the system returns
an index value that you can use to restart the request from the point at which it
timed-out. The system returns the index value in the CAADNLINDEX field of the
answer area. To restart a request that completes prematurely, code the IXLCACHE
REQUEST=DELETE_NAMELIST request as you previously coded it with the
exception of the STARTINDEX keyword. The STARTINDEX keyword must specify

6-102 OS/390 V2R8.0 MVS Sysplex Services Guide

the index value that the system returned when the delete request ended
prematurely.

For More Information

There are other keywords that are required and some that are optional. For a
description of keywords that are applicable to all IXLCACHE requests, see:

� “Accessing and Managing Data Within a Cache System” on page 6-14
� “Requesting Return and Reason Codes” on page 6-46
� “Defining an Answer Area (ANSAREA)” on page 6-46
� “Understanding Synchronous and Asynchronous Cache Operations” on

page 6-36

CROSS_INVAL: Invalidating Other Users' Copies of Data Items
To invalidate copies of one or more data items that other users have in their local
cache buffers, use IXLCACHE REQUEST=CROSS_INVAL. The system invalidates
any copies of the specified data items that are in the local cache buffers of other
users and deregisters interest in the data item for those users. (Your own copy of
the data item is not invalidated.) Typically, you use the cross-invalidate function in
a directory-only cache environment when you update data items on permanent
storage. For a description of cross-invalidation, see Figure 6-7 on page 6-23. The
principles of invalidation are the same for a directory-only cache.

The request does not cause the specified data items to be deleted from the cache
structure. Also, the system does not consider resources for a data item that is
specified on the CROSS_INVAL request as eligible for reclaim.

If your protocol relies on external serialization, you need to hold a lock to serialize
access to any data items. For serialization recommendations and sample scenarios
that show how to establish serialization, see “Serializing and Managing Access to
Shared Data” on page 6-25.

Timing and CROSS_INVAL Requests
When you issue the CROSS_INVAL request, consider the impact of timing issues
on serialization. If another user creates a new data item in the cache after you have
issued a CROSS_INVAL request with criteria that matches the data item but before
the request completes, the request might not invalidate copies of the new data
item. If you want to ensure that when your request completes, all other users'
copies of the data items matching your criteria have been invalidated, you must
hold serialization throughout the request processing. Serialization needs to remain
in effect for both the initial request, and any subsequent request restarts that might
be required as a result of a timeout, and the scope of the serialization must prevent
any other user from creating a new entry that matches the criteria on the
CROSS_INVAL request.

 Chapter 6. Using Cache Services (IXLCACHE) 6-103

Guide to the Topic

“CROSS_INVAL: Invalidating Other Users' Copies of Data Items” is divided into
two sections.

The first section, “IXLCACHE Functions for REQUEST=CROSS_INVAL” on
page 6-104, applies to all CROSS_INVAL requests, and includes the following
major topics:

� “Identifying Data Items to Cross-Invalidate” on page 6-104
� “Restarting a Request that Ends Prematurely” on page 6-104
� “Receiving Answer Area Information” on page 6-104

The second section, “Cross-Invalidating a Data Item: Summary” on page 6-105
summarizes a procedure for invalidating data items.

IXLCACHE Functions for REQUEST=CROSS_INVAL
The following functions apply when you specify REQUEST=CROSS_INVAL.

Identifying Data Items to Cross-Invalidate
To invalidate the local copies of a cached data item, specify the data item name on
the NAME keyword and omit the NAMEMASK keyword. The system selects only
the data item specified on NAME.

Optionally, you can code both NAME and NAMEMASK to provide a character
selection pattern. The NAMEMASK keyword defines a selection bit-mask. The
selection bit-mask together with the name specified on the NAME keyword defines
a character selection pattern that the system uses to select data item names. The
technique enables you to select multiple data item names. For information and
examples about using the character selection pattern, see on page 6-48.

Restarting a Request that Ends Prematurely
IXLCACHE REQUEST=CROSS_INVAL might complete prematurely because the
request exceed time-out criteria. When a request completes prematurely, the
system might not have invalidated all the data items specified on the request. Even
if you expect to invalidate copies of a single data item, you need to consider time
outs. To invalidate one or more remaining data items for the request, you can
restart the request.

For general information about restarting request, see “Restarting a Request that
Ends Prematurely” on page 6-49.

Receiving Answer Area Information
On most IXLCACHE requests, the system returns information related to the request
in the answer area. You specify the answer area on the ANSLEN and ANSAREA
keywords. With certain events, the information in the answer area might not be
valid. See “Determining Valid Information in the Answer Area” on page 6-47.

When the request completes, the system returns information to the answer area.
When the request is not valid, the system returns non-zero return and reason
codes.

6-104 OS/390 V2R8.0 MVS Sysplex Services Guide

For the mapping of the answer area, see the IXLYCAA mapping macro described
in OS/390 MVS Data Areas, Vol 3 (IVT-RCWK). For a description of answer area
fields and return and reason codes for the request, see OS/390 MVS Programming:
Sysplex Services Reference.

Cross-Invalidating a Data Item: Summary
You use the cross-invalidate function to invalidate the copies of one or more data
items for other users.

� To identify the data item, specify the data item name on the NAME keyword. If
you want to invalidate only the named data item, omit the NAMEMASK
keyword.

� To invalidate all data items whose name matches a specified character pattern,
code both the NAME and NAMEMASK keywords. NAME must specify a data
item name that contains the specified character pattern. NAMEMASK must
specify a bit-string with the bits that correspond to the specified character
pattern set to B'1'. For examples of how to use NAME and NAMEMASK, see
“Using Filters for Names on Requests” on page 6-48.

If the coupling facility time-out criteria are exceeded, the cross-invalidate request
completes prematurely. For the time-out of a request, the system returns a token
that you can use to restart the request from the point at which it timed-out. The
system returns the token in the CAARESTOKEN field of the answer area. To
restart a request that completes prematurely, code the IXLCACHE
REQUEST=CROSS_INVAL request as you previously coded it with the exception
of the RESTOKEN keyword. The RESTOKEN keyword must specify the token that
the system returned when the cross-invalidate request ended prematurely.

For More Information

There are other keywords that are required and some that are optional. For a
description of keywords that are applicable to all IXLCACHE requests, see:

� “Understanding Synchronous and Asynchronous Cache Operations” on
page 6-36

� “Accessing and Managing Data Within a Cache System” on page 6-14
� “Requesting Return and Reason Codes” on page 6-46
� “Defining an Answer Area (ANSAREA)” on page 6-46

SET_RECLVCTR: Overriding or Restoring the Default Reclaim
Algorithm

As part of the process of managing cache structure resources, you can provide a
reclaim vector that overrides the default resource reclaim algorithm. The reclaim
vector applies to the storage class that you specify. You can override the default
algorithm by providing a reclaim vector for some or all of the storage classes, or
use the default algorithm for all storage classes.

When you write a new data item to the cache structure, or read a data item that is
undefined in the cache, the system must allocate cache structure resources for that
data item. By default, when you have not defined a reclaim vector and unused
storage resources are not available, the system attempts to reclaim the least
recently used resources that belong to data items in the storage class specified on

 Chapter 6. Using Cache Services (IXLCACHE) 6-105

the request. If those resources are unavailable from the storage class specified on
the request, and you have not provided a reclaim vector, the system fails the
request. However, if you have provided a reclaim vector for the storage class, the
system uses the vector specifications to try to obtain resources from other storage
classes to satisfy the request.

Defining the Reclaim Vector
The reclaim vector defines the storage classes from which the system can reclaim
resources to satisfy WRITE_DATA or READ_DATA requests with the specified
storage class. The reclaim vector also defines how many times the system can
reclaim from each storage class (repeat factor).

Figure 6-15 shows three reclaim vectors, one for storage class 1, one for storage
class 2, and one for storage class 3. In the example of the reclaim vector for
storage class 1 requests, the first 3 reclaims to satisfy a request for a data item in
storage class 1 come from data items in storage class 1.

The system maintains a counter so that each reclaim from a storage class causes
the system to subtract 1 from the reclaim value until the value equals 0. Then the
system attempts reclaims from the next storage class based on the reclaim value of
that vector entry. The next 2 reclaims for storage class 1 requests come from
storage class 2, followed by 5 reclaims from storage class 3.

When the system processes the last reclaim from storage class n as specified by
the reclaim vector entry, it subtracts 1 from a counter based on the repeat factor.
Based on the repeat factor specified, the system refreshes the reclaim values
specified for each storage class entry in the vector and starts the reclaim process
again from the beginning of the vector until the repeat counter equals 0. When the
counter equals 0, the system deactivates the vector and uses the system default to
satisfy requests for that storage class.

The same reclaim processing applies to the vectors specified for storage classes 2
and 3.

Storage Class 3

Storage Class 2

2 bytes

REPEAT=2 REPEAT=2 REPEAT=2

Storage Class 1

Reclaim
Vector

For

Class 1
Storage

Reclaim
Vector

For

Class 2
Storage

Reclaim
Vector

For

Class n
Storage

473

305

412

Figure 6-15. Three Reclaim Vectors

6-106 OS/390 V2R8.0 MVS Sysplex Services Guide

To provide a reclaim vector or to restore the default reclaim algorithm, issue an
IXLCACHE REQUEST=SET_RECLVCTR request. When you provide a vector, you
must also indicate how many times the system is to use the vector before resuming
use of the default algorithm. The number of times that the system repeats the
process indicated by the reclaim vector is called the repeat factor (specified on the
REPEAT keyword). In Figure 6-15 on page 6-106, a repeat factor of 2
(REPEAT=2) for the storage class 1 reclaim vector indicates that the system
process the vector twice— 3 reclaims from storage class 1, 2 reclaims from storage
class 2, 5 reclaims from storage class 5, and repeat the sequence a second time
before it uses the default reclaim algorithm.

Guide to the Topic

“SET_RECLVCTR: Overriding or Restoring the Default Reclaim Algorithm” on
page 6-105 is divided into two sections.

The first section, “IXLCACHE Functions for REQUEST=SET_RECLVCTR,”
applies to all SET_RECLVCTR requests, and includes the following major
topics:

� “Specifying the Reclaim Vector”
� “Specifying the Storage Class”
� “Activating a Reclaim Vector” on page 6-110
� “Deactivating a Reclaim Vector” on page 6-110
� “Receiving Answer Area Information” on page 6-111

The second section, “Overriding or Restoring the Default Reclaim Algorithm:
Summary” on page 6-111, summarizes how to use IXLCACHE
REQUEST=SET_RECLVCTR.

IXLCACHE Functions for REQUEST=SET_RECLVCTR
The following functions apply when you specify REQUEST=SET_RECLVCTR.

Specifying the Storage Class
Each SET_RECLVCTR request must specify the storage class for which a reclaim
vector is to be activated or deactivated. To specify the storage class, code the
STGCLASS keyword.

Note: The first user to connect to the structure uses the IXLCONN macro to
define the total number of storage classes available to the cache structure.

Specifying the Reclaim Vector
On each request to activate a reclaim vector, the request must include the
RECLVCTR keyword to specify the reclaim vector. The reclaim vector consists of a
contiguous series of two-byte elements. You must define as many elements as
there are assigned storage classes. Each element corresponds to one storage
class: the first element, at offset 0, corresponds to storage class 1, the second
element to storage class 2, the third to storage class 3, and so forth.

Before you issue the SET_RECLVCTR request, you must initialize each element of
the reclaim vector to a value that indicates the number of times the system can
reclaim resources from the corresponding storage class.

 Chapter 6. Using Cache Services (IXLCACHE) 6-107

 Example Scenarios
The following scenarios illustrate how a reclaim vector algorithm works. Each
scenario describes a user action, the cache structure environment at the time the
user takes the action, the system response to the user action, and effects on the
vector reclaims after the user action.

The user uses three storage classes, 1, 2, and 3. Before the user performs the first
action, the user defines a reclaim algorithm for storage class 1 as follows:

...

 IXLCACHE REQUEST=SET_RECLVCTR,RECLVCTR=VECTCLS1,STGCLASS=SCLS,REPEAT=REPT,...

...

 SCLS DC X'ð1' STORAGE CLASS
 DS ðH

 REPT DC H'2' REPEAT FACTOR
 VECTCLS1 DC H'2' RECLAIMS TO BE MADE FROM STORAGE CLASS 1

 DC H'ð' RECLAIMS TO BE MADE FROM STORAGE CLASS 2
 DC H'1' RECLAIMS TO BE MADE FROM STORAGE CLASS 3

...

The request specifies that the system activate a reclaim vector to override the
system default for data items in storage class 1. The reclaim vector indicates that
the system can reclaim resources to satisfy the request from storage class 1 two
times, cannot reclaim resources from storage class 2, and can reclaim resources
from storage class 3 one time. The system can repeat this process two times
before the reclaim vector for storage class 1 is deactivated, at which time the
system begins to use the default reclaim algorithm.

Scenario 1 - First Request
The user issues IXLCACHE REQUEST=WRITE_DATA to write a new and changed
data item and assigns it to storage class 1.

Environment Environment at the time of the user action:

� No free storage available in cache structure.
� There is enough reclaimable storage in each of the three

storage classes to satisfy the request.

System Response The system reclaims storage from storage class 1 and
allocates it to the new data item. It subtracts 1 from the
reclaim counter for storage class 1 in the vector.

Vector Counts after the Request The system can perform subsequent storage
reclaims for data items assigned to storage class 1 as follows:

� From storage class 1: 1 reclaim (changed after this
request)

� From storage class 2: 0 reclaims
� From storage class 3: 1 reclaim

6-108 OS/390 V2R8.0 MVS Sysplex Services Guide

Scenario 2 - Second Request
The user issues IXLCACHE REQUEST=WRITE_DATA to write a new and changed
data item and assigns it to storage class 1.

Environment Environment at the time of the user action:

� No free storage available in cache structure.
� No reclaimable storage available in storage class 1.
� There is enough reclaimable storage in storage classes 2

and 3 to satisfy the request.

System Response The system fails the request because there is no free storage
and no reclaimable storage in storage class 1. It does not
subtract 1 from the reclaim counter for storage class 1.

Vector Counts after the Request On the next request, the system can perform
reclaims for data items assigned to storage class 1 as follows:

� From storage class 1: 1 reclaim. (unchanged after this
request)

� From storage class 2: 0 reclaims
� From storage class 3: 1 reclaim

Scenario 3 - Third Request
The user issues IXLCACHE REQUEST=WRITE_DATA to write a new and changed
data item and assigns it to storage class 1.

Environment Environment at the time of the user action:

� No free storage available in cache structure.
� There is enough reclaimable storage in each of the three

storage classes to satisfy the request.

System Response The system can reclaim storage from storage class 1 and
allocates it to the new data item. It subtracts 1 from the
reclaim counter for storage class 1 in the vector.

Vector Counts after the Request On the next request, the system can perform
storage reclaims for data items assigned to storage class 1 as
follows:

� From storage class 1: 0 reclaims (Changed after this
request)

� From storage class 2: 0 reclaims
� From storage class 3: 1 reclaims

Scenario 4 - Fourth Request
The user issues IXLCACHE REQUEST=WRITE_DATA to write a new and changed
data item and assigns it to storage class 1.

Environment Environment at the time of the user action:

� No free storage available in cache structure.
� There is enough reclaimable storage in each of the three

storage classes to satisfy the request.

System Response The system cannot reclaim storage from storage classes 1 or
2 because the vector counter indicates that the entries are 0.
The system reclaims storage from storage class 3 and

 Chapter 6. Using Cache Services (IXLCACHE) 6-109

allocates it to the new data item. It subtracts 1 from the
reclaim counter for storage class 3 in the vector.

Vector Counts after the Request On the next request, the system can perform
storage reclaims for data items assigned to storage class 1 as
follows:

� From storage class 1: 0 reclaims
� From storage class 2: 0 reclaims
� From storage class 3: 0 reclaims (Changed after this

request)

The system has now made one iteration through the reclaim vector and subtracts 1
from the repeat factor of 2 specified on IXLCACHE. The system resets the vector to
the original values for each storage class as follows:

� From storage class 1: 2 reclaims
� From storage class 2: 0 reclaims
� From storage class 3: 1 reclaims

It can make another iteration through the vector and repeat the reclaim process
based on the values. When it completes a second time, it subtracts 1 from the
current repeat counter value (1) for a value of zero. When the counter equals 0, the
system deactivates the vector and uses the default reclaim algorithm for storage
class 1.

Activating a Reclaim Vector
To activate and begin using a reclaim vector, code the REPEAT keyword specifying
a non-zero value. The value determines the number of times the system uses the
vector before it begins to uses the default algorithm for the specified storage class.

The vector that is activated must be specified on the RECLVCTR keyword. The
storage class to which the vector applies must be specified on the STGCLASS
keyword.

Deactivating a Reclaim Vector
The system automatically deactivates a reclaim vector and resumes use of the
default algorithm after using the vector the number of times specified on the
REPEAT keyword. To deactivate a vector and resume use of the default algorithm
sooner, issue IXLCACHE REQUEST=SET_RECLVCTR and specify a value of 0 for
the REPEAT keyword. The storage class whose vector is deactivated must be
specified on the STGCLASS keyword. The RECLVCTR keyword can be omitted.

Effect of Structure Alter on Reclaim Vectors
The IXLALTER function provides for the expansion or contraction of the size of a
structure and/or for the reapportionment of the entry-to-element ratio of the
structure. When the system receives an IXLALTER request for a cache structure,
all active reclaim vectors associated with all storage classes for the structure are
deactivated. The system resumes using the default reclaim algorithm for all storage
classes for the structure.

While the alter process continues, the system rejects any attempt to activate a
reclaim vector with non-zero return and reason codes.

6-110 OS/390 V2R8.0 MVS Sysplex Services Guide

At the completion of structure alter processing, you can again activate one or more
reclaim vectors. Ensure that when doing so, you take into consideration any
changes that were made to the structure's entry and element counts during the
alter process. Also, be aware that any reclaim vectors that were deactivated when
the structure alter process was initiated are not automatically reinstated at the
completion of alter processing.

Receiving Answer Area Information
On most IXLCACHE requests, the system returns information related to the request
in the answer area. You specify the answer area on the ANSLEN and ANSAREA
keywords. With certain events, the information in the answer area might not be
valid. See “Determining Valid Information in the Answer Area” on page 6-47.

When the request completes, the system returns information to the answer area.
When the request is not valid, the system returns non-zero return and reason
codes.

For the mapping of the answer area, see the IXLYCAA mapping macro described
in OS/390 MVS Data Areas, Vol 3 (IVT-RCWK). For a description of answer area
fields and return and reason codes for the request, see OS/390 MVS Programming:
Sysplex Services Reference.

Overriding or Restoring the Default Reclaim Algorithm:
Summary
You use the SET_RECLVCTR request to define and activate or deactivate a
reclaim vector that you provide for a specified storage class. When you deactivate
the reclaim vector, the system resumes using the default reclaim algorithm.

Each request must specify the storage class to which the request applies. To
specify the storage class, use the STGCLASS keyword.

� To define and activate a reclaim vector, the request must include the
RECLVCTR, REPEAT, and STGCLASS keywords. RECLVCTR defines the
vector for the specified storage class. REPEAT, which must specify a non-zero
value, defines the number of iterations the system can make through the vector
before automatically resuming use of the default algorithm.

� To deactivate a vector before the system automatically resumes using the
default algorithm, the request must include the REPEAT, and STGCLASS
keywords. REPEAT must specify a value of 0. STGCLASS specifies the
storage class whose vector you are deactivating. You can omit the RECLVCTR
keyword.

For More Information

There are other keywords that are required and some that are optional. For a
description of keywords that are applicable to all IXLCACHE requests, see:

� “Understanding Synchronous and Asynchronous Cache Operations” on
page 6-36

� “Accessing and Managing Data Within a Cache System” on page 6-14
� “Requesting Return and Reason Codes” on page 6-46
� “Defining an Answer Area (ANSAREA)” on page 6-46

 Chapter 6. Using Cache Services (IXLCACHE) 6-111

PROCESS_REFLIST: Marking Data Items as Referenced
As part of managing cache structure resources, you can mark specified data items
as recently referenced so that the system moves the data entry to the “recently
referenced” end of the storage class queue. When you issue PROCESS_REFLIST
for a data item, the system can consider the resources allocated to the data item
for reclaim depending on the position of the data entry for the data item on the
storage class queue. The system considers data entries that are less recently
referenced as more likely candidates for reclaim than data entries that are marked
as more recently referenced. (Of course, any data item that is marked as changed
is NOT considered for reclaim.) For more information on how the
referenced/unreferenced state of a data item affects reclaim, see “Managing
Storage Reclaim for Specific Data Items” on page 6-31.

You can use PROCESS_REFLIST as follows. As you reference data items in your
local buffer over time, you can include them in a list of data items that you want to
mark as recently referenced. Then, you can periodically issue PROCESS_REFLIST
to allow the system to mark the data items in the list as recently referenced and
move them to the end of the recently referenced storage queue so that the cache
resources for these data items are less likely to be reclaimed.

To mark one or more data items as recently referenced, issue an IXLCACHE
REQUEST=PROCESS_REFLIST request.

Guide to the Topic

“PROCESS_REFLIST: Marking Data Items as Referenced” is divided into two
sections.

The first section, “IXLCACHE Functions for REQUEST=PROCESS_REFLIST,”
applies to all PROCESS_REFLIST requests, and includes the following major
topics:

� “Identifying Data Items to Mark as Referenced”
� “Selecting the Buffering Method” on page 6-113
� “Specifying the Storage Class” on page 6-113
� “Receiving Answer Area Information” on page 6-113

The second section, “Marking a Data Item as Referenced: Summary” on
page 6-113 summarizes a procedure for marking data items as referenced.

IXLCACHE Functions for REQUEST=PROCESS_REFLIST
The following functions apply when you specify REQUEST=PROCESS_REFLIST.

Identifying Data Items to Mark as Referenced
To identify the data items that you want to mark as referenced, build a list of data
item names in a buffer. Each name must be 16 bytes long. The names must
occupy buffer storage with the first name beginning at buffer offset 0. Your
connection must have a registered interest in each name and each name must
belong to the storage class that you specify on the STGCLASS keyword.

The system processes only the data items in the list that follow these guidelines. If
you include a data item that does not follow these guidelines, the system ignores

6-112 OS/390 V2R8.0 MVS Sysplex Services Guide

the data item in the list, but does not indicate which of the data items are ignored
when the request completes.

The request must also include the NUMNAMES keyword that specifies the number
of names contained in the list of names that you build.

Selecting the Buffering Method
When you issue a REQUEST=PROCESS_REFLIST request, you must identify the
buffer that contains the list of data item names. You can use a single buffer (the
BUFFER keyword) or multiple buffers (the BUFLIST keyword). Either method
enables you to build a list that contains a maximum of 4096 names.

For information about whether to use a single buffer or multiple buffers and for
information on selecting buffer attributes, see “Design Considerations for Choosing
the Buffer Format” on page 6-41.

Specifying the Storage Class
The request must specify the storage class to which the data items are assigned.
To specify the storage class, code the STGCLASS keyword.

Receiving Answer Area Information
On most IXLCACHE requests, the system returns information related to the request
in the answer area. You specify the answer area on the ANSLEN and ANSAREA
keywords. With certain events, the information in the answer area might not be
valid. See “Determining Valid Information in the Answer Area” on page 6-47.

When the request completes, the system returns information to the answer area.
When the request is not valid, the system returns non-zero return and reason
codes.

For the mapping of the answer area, see the IXLYCAA mapping macro described
in OS/390 MVS Data Areas, Vol 3 (IVT-RCWK). For a description of answer area
fields and return and reason codes for the request, see OS/390 MVS Programming:
Sysplex Services Reference.

Marking a Data Item as Referenced: Summary
You use the PROCESS_REFLIST request to mark one or more data items as
recently referenced. You build a list of the data item names that are to be marked.
The list must be in a buffer that you identify on the BUFFER or BUFLIST keywords.
Your connection must have registered interest in all of the data items in the list, and
each data item must belong to the same storage class specified on the STGCLASS
keyword. The system processes data items that meet these criteria but does not
indicate which entries are in error when the request completes.

For More Information

There are other keywords that are required and some that are optional. For a
description of keywords that are applicable to all IXLCACHE requests, see:

� “Understanding Synchronous and Asynchronous Cache Operations” on
page 6-36

� “Accessing and Managing Data Within a Cache System” on page 6-14
� “Requesting Return and Reason Codes” on page 6-46
� “Defining an Answer Area (ANSAREA)” on page 6-46

 Chapter 6. Using Cache Services (IXLCACHE) 6-113

RESET_REFBIT: Marking Data Items as Unreferenced
As part of managing cache structure resources, you can mark specified data items
as unreferenced. When you issue RESET_REFBIT, the system returns a count of
the entries in the list that it has processed and the number of those processed
entries with the reference bit set on. For entries in the list with the reference bit set
on, the system resets the reference bit so that the data item appears as
unreferenced. (The system does not change the order of the entries on the storage
class queue as a result of the RESET_REFBIT request.) For more information on
how the referenced/unreferenced state of a data item affects reclaim, see
“Managing Storage Reclaim for Specific Data Items” on page 6-31.

To mark a data item as unreferenced, issue an IXLCACHE
REQUEST=RESET_REFBIT request. You can tailor the request to mark any of the
following:

� A specific named data item (NAME) or a selection of data items based on
filtering through a namemask (NAMEMASK)

� Any data item that is indicated as changed or locked for cast out
(CRITERIA=CHANGED) based on the name (NAME) or filtering through a
namemask (NAMEMASK)

If your protocol relies on external serialization, you need to hold a lock to serialize
access to any data items. For serialization recommendations and sample scenarios
that show how to establish serialization, see “Serializing and Managing Access to
Shared Data” on page 6-25.

Timing and RESET_REFBIT Requests

When you issue the RESET_REFBIT request, consider the impact of timing issues
on serialization. If another user creates a new data item in the cache after you have
issued a RESET_REFBIT request, but before the request completes, the request
might not mark the new data item as unreferenced. If you want to ensure that when
your request completes, all data items matching your criteria have been marked as
unreferenced, you must hold serialization throughout the request processing.
Serialization needs to remain in effect for both the initial request, and any
subsequent request restarts that might be required as a result of a timeout, and the
scope of the serialization must prevent any other user from creating a new entry
that matches the criteria on the RESET_REFBIT request.

Guide to the Topic

“RESET_REFBIT: Marking Data Items as Unreferenced” is divided into two
sections.

The first section, “IXLCACHE Functions for REQUEST=RESET_REFBIT” on
page 6-115, applies to all RESET_REFBIT requests, and includes the following
major topics:

� “Identifying Data Items to Mark as Unreferenced” on page 6-115
� “Restarting a Request that Ends Prematurely” on page 6-115
� “Receiving Answer Area Information” on page 6-115

The second section, “Marking a Data Item as Unreferenced: Summary” on
page 6-116 summarizes a procedure for marking a data item as referenced.

6-114 OS/390 V2R8.0 MVS Sysplex Services Guide

IXLCACHE Functions for REQUEST=RESET_REFBIT
The following functions apply when you specify REQUEST=RESET_REFBIT.

Identifying Data Items to Mark as Unreferenced
To identify the data items that you want to mark as unreferenced, use the following
combinations of the NAME, NAMEMASK, and CRITERIA keywords. Figure 6-16
describes which of the three keywords to code in order to mark the desired data
items as unreferenced.

Coding both NAME and NAMEMASK defines a character selection pattern that the
system uses to select names. For a general description of NAMEMASK and the
character selection pattern, see “Using Filters for Names on Requests” on
page 6-48.

Figure 6-16. Identifying Data Items to Mark as Unreferenced

To Mark as Unreferenced: Code:

A single data item NAME

A changed data item NAME
CRITERIA=CHANGED

All data items CRITERIA=ALL (the default)

Changed data items CRITERIA=CHANGED

Data items whose names satisfy a character
selection pattern.

NAME
NAMEMASK

Changed data items whose names satisfy a
character selection pattern.

NAME
NAMEMASK
CRITERIA=CHANGED

Restarting a Request that Ends Prematurely
The IXLCACHE REQUEST=RESET_REFBIT request can complete prematurely if
the request exceeds the time-out criteria for the coupling facility. (Time-out criteria
is model-dependent.) When a request completes prematurely, the system might not
have marked as unreferenced all the data items specified on the request. To mark
the remaining data items, you must restart the request. For general information
about restarting requests, see “Restarting a Request that Ends Prematurely” on
page 6-49.

Note that you do not specify a buffer on the IXLCACHE
REQUEST=RESET_REFBIT. If you want to keep track of the count for data entries
that are processed on the request and the count of data entries for which the
system resets the reference bit, you need to ensure that you include an answer
area (ANSAREA). Before you restart the prematurely completed request, check the
appropriate fields (CAADIRCOUNT for the total count and CAAREFCOUNT for the
count of entries that have been reset).

Receiving Answer Area Information
On most IXLCACHE requests, the system returns information related to the request
in the answer area. You specify the answer area on the ANSLEN and ANSAREA
keywords. With certain events, the information in the answer area might not be
valid. See “Determining Valid Information in the Answer Area” on page 6-47.

 Chapter 6. Using Cache Services (IXLCACHE) 6-115

When the request completes, the system returns information to the answer area.
When the request is not valid, the system returns non-zero return and reason
codes.

For the mapping of the answer area, see the IXLYCAA mapping macro described
in OS/390 MVS Data Areas, Vol 3 (IVT-RCWK). For a description of answer area
fields and return and reason codes for the request, see OS/390 MVS Programming:
Sysplex Services Reference.

Marking a Data Item as Unreferenced: Summary
You use the RESET_REFBIT request to mark as unreferenced specified data
items.

� To identify the data items that the system is to mark as unreferenced, use the
NAME, NAMEMASK, and CRITERIA keywords.

� Use these keywords together to identify a single data item or a group of data
items whose names match a specified character selection pattern or match the
criteria specified on the request.

If time-out criteria for the coupling facility are exceeded, the RESET_REFBIT
request can complete prematurely. When a request completes prematurely, the
system returns a token in the CAARESTOKEN field of the answer area. You can
use this token to restart the request from the point at which it completed
prematurely.

To restart a request, first process the data based on the count information that the
RESET_REFBIT returns in the ANSAREA. After processing the data, code the
IXLCACHE REQUEST=RESET_REFBIT request as you previously coded it with
the exception of the RESTOKEN keyword. The RESTOKEN keyword must specify
the token that the system returned.

For More Information

There are other keywords that are required and some that are optional. For a
description of keywords that are applicable to all IXLCACHE requests, see:

� “Understanding Synchronous and Asynchronous Cache Operations” on
page 6-36

� “Accessing and Managing Data Within a Cache System” on page 6-14
� “Requesting Return and Reason Codes” on page 6-46
� “Defining an Answer Area (ANSAREA)” on page 6-46

READ_DIRINFO: Reading Cache Directory Entries
To read directory information for one or more data items, issue an IXLCACHE
REQUEST=READ_DIRINFO request. You can read directory information for:

� A specific named data item (NAME) or a selection of data items based on
filtering through a namemask (NAMEMASK)

� Any data item that is indicated as changed or locked for cast out
(CRITERIA=CHANGED) based on the name (NAME) or filtering through a
namemask (NAMEMASK)

6-116 OS/390 V2R8.0 MVS Sysplex Services Guide

For each specified data item that is selected, the system returns directory
information to the local cache buffer. You specify whether you want all of the
directory information returned for each selected data item
(DIRINFOFMT=DIRENTRYLIST) or a subset of the information
(DIRINFOFMT=NAMELIST).

Timing and READ_DIRINFO Requests

When you issue the READ_DIRINFO request, consider the impact of timing issues
on serialization. If another user creates a new data item in the cache after you have
issued a READ_DIRINFO request with criteria that matches the data item but
before the request completes, the request might not include the directory entry for
the new data item. If you want to ensure that when your request completes it
includes all directory entries that match your criteria, you must hold serialization
throughout the request processing. Serialization needs to remain in effect for both
the initial request, and any subsequent request restarts that might be required as a
result of a timeout, and the scope of the serialization must prevent any other user
from creating a new entry that matches the criteria on the READ_DIRINFO request.

Guide to the Topic

“READ_DIRINFO: Reading Cache Directory Entries” on page 6-116 is divided
into two sections.

The first section, “IXLCACHE Functions for REQUEST=READ_DIRINFO,”
applies to all READ_DIRINFO requests, and includes the following major topics:

� “Identifying the Directory Entries to Read”
� “Selecting the Buffering Method” on page 6-118
� “Format of Returned Directory Information” on page 6-118
� “Restarting a Request that Ends Prematurely” on page 6-119
� “Receiving Answer Area Information” on page 6-123

The second section, “Reading Directory Entry Information: Summary” on
page 6-120 summarizes a procedure for reading directory information.

IXLCACHE Functions for REQUEST=READ_DIRINFO
The following functions apply when you specify REQUEST=READ_DIRINFO.

Identifying the Directory Entries to Read
To identify the data items whose directory information you want returned, use the
NAME, NAMEMASK, and CRITERIA keywords. Figure 6-17 describes which of the
three keywords to code in order to receive directory information from the desired
data items.

 Chapter 6. Using Cache Services (IXLCACHE) 6-117

Coding both NAME and NAMEMASK defines a character selection pattern that the
system uses to select names from the cache structure. For a general description of
NAMEMASK and the character selection pattern, see “Using Filters for Names on
Requests” on page 6-48.

Figure 6-17. Identifying Directory Entries to Read

To Read Information For: Code:

A specific data item NAME

All data items CRITERIA=ALL (the default)

All data items that are either changed or locked
for cast-out

CRITERIA=CHANGED

All data items that satisfy a character selection
pattern

NAME
NAMEMASK

All data items that are either changed or locked
for cast-out and whose names satisfy a
character selection pattern.

NAME
NAMEMASK
CRITERIA=CHANGED

Selecting the Buffering Method
The system returns the directory information to your local cache buffers. You can
receive information in either a single buffer (the BUFFER keyword) or in multiple
buffers (the BUFLIST keyword). Both methods enable you to receive up to 65536
(64K) bytes of data. For information about whether to use a single buffer or multiple
buffers and for information on selecting buffer attributes, see “Design
Considerations for Choosing the Buffer Format” on page 6-41.

If your local cache buffer is not large enough to hold all of the available information,
the system fills the buffer, ends the request, and returns a specific return and
reason code that indicates that the buffer has been filled. After you finish
processing the information that is in the buffer, you can restart the request to have
the system return the remaining information to the buffer. For information on
restarting a request, see “Restarting a Request that Ends Prematurely” on
page 6-49.

Format of Returned Directory Information
The READ_DIRINFO request specifies whether you want the system to return all of
the directory information for each selected data item or a subset of the directory
information. The information, which the system returns to the local cache buffer,
occupies buffer storage starting at offset 0.

Reading All Directory Information: To read all directory information for each
selected data item, code DIRINFOFMT=DIRENTRYLIST.

For each data item, the system returns a 128-byte block of directory information to
your local cache buffer. Each block consists of the following information:

� Data item name

� Contents of the user-data field for the data entry

� The number of the storage class to which the data item is assigned

� An indication of whether the data item is marked changed or unchanged

� An indication of whether there is data stored in the cache for the data item

� The parity assigned to the data item

6-118 OS/390 V2R8.0 MVS Sysplex Services Guide

� The state of the cast-out lock

� The contents of the cast-out lock

� The number of the cast-out class to which the data item is assigned (valid only
if the data entry is marked changed or locked for cast out)

� The number of cache structure elements allocated to the data item

� A bitstring that indicates registration of interest in the data item for all users.

The mapping macro IXLYDEIB maps the 128-byte directory block. For a description
of IXLYDEIB, see OS/390 MVS Data Areas, Vol 3 (IVT-RCWK).

In the answer area field CAADIRCOUNT, the system also provides a count of the
number of directory blocks returned to the local cache buffer.

Reading a Subset of Directory Information: To obtain a subset of directory
information for each selected data item, code DIRINFOFMT=NAMELIST.

For each data item, the system returns a 32-byte block of directory information to
your local cache buffer. Each block consists of the following information:

� Data item name
� Contents of the user-data field
� The number of cache structure elements allocated to the data item

Macro IXLYCANB maps the 32-byte directory block. For a description of
IXLYCANB, see OS/390 MVS Data Areas, Vol 3 (IVT-RCWK).

The system also indicates in field CAADIRCOUNT of the answer area a count of
the number of directory blocks for data items returned to the local cache buffer.

Restarting a Request that Ends Prematurely
The IXLCACHE REQUEST=READ_DIRINFO request can complete prematurely for
the following reasons:

� The local cache buffer cannot hold all of the available information.

� The request exceeds the time-out criteria for the coupling facility (Time-out
criteria is model-dependent.)

For general information about restarting a request, see “Restarting a Request that
Ends Prematurely” on page 6-49.

On most IXLCACHE requests, the system returns information related to the request
in the answer area. You specify the answer area on the ANSLEN and ANSAREA
keywords. With certain events, the information in the answer area might not be
valid. See “Determining Valid Information in the Answer Area” on page 6-47.

When the request completes, the system returns information to the answer area.
When the request is not valid, the system returns non-zero return and reason
codes.

For the mapping of the answer area, see the IXLYCAA mapping macro described
in OS/390 MVS Data Areas, Vol 3 (IVT-RCWK). For a description of answer area
fields and return and reason codes for the request, see OS/390 MVS Programming:
Sysplex Services Reference.

 Chapter 6. Using Cache Services (IXLCACHE) 6-119

Reading Directory Entry Information: Summary
You use the READ_DIRINFO request to read directory information for one or more
data items.

� To identify the data items whose directory entry you want to read, use the
NAME, NAMEMASK, and CRITERIA keywords.

� Use these keywords together to identify a single data item or a group of data
items whose names match a specified character selection pattern.

You can read all of the directory information for each data item or a subset of the
information. To specify how much information you want returned, use the
DIRINFOFMT keyword. To map the entire directory block for a data item, use the
mapping macro IXLYDEIB. To map a subset of the directory block for a data item,
use the mapping macro IXLYCANB.

To identify the buffers where the system is to return the information, code either
BUFFER or BUFLIST and their related keywords. The system returns the directory
information to contiguous buffer storage starting at offset 0.

The read directory entry request can complete prematurely if the buffer is not large
enough to hold all of the data that the system is returning, or if the coupling facility
time-out criteria are exceeded. When a request completes prematurely, the system
returns a token in the CAARESTOKEN field of the answer area. You can use this
token to restart the request from the point at which it completed prematurely.

To restart a request, first process the data that is in the buffer. After processing the
data, code the IXLCACHE REQUEST=READ_DIRINFO request as you previously
coded it with the exception of the RESTOKEN keyword. The RESTOKEN keyword
must specify the token that the system returned.

For More Information

There are other keywords that are required and some that are optional. For a
description of keywords that are applicable to all IXLCACHE requests, see:

� “Understanding Synchronous and Asynchronous Cache Operations” on
page 6-36

� “Accessing and Managing Data Within a Cache System” on page 6-14
� “Requesting Return and Reason Codes” on page 6-46
� “Defining an Answer Area (ANSAREA)” on page 6-46

READ_COCLASS: Reading A Cast-Out Class
To read information for all data items associated with a specific cast-out class,
issue an IXLCACHE REQUEST=READ_COCLASS request. You can use a
READ_COCLASS request to determine the following for a specified cast-out class:

� The names of all data items that belong to the cast-out class
� Whether a specific data item belongs to the cast-out class
� Which data items, whose names match a specified character selection pattern,

belong to the cast-out class.

6-120 OS/390 V2R8.0 MVS Sysplex Services Guide

For each specified data item that belongs to the cast-out class, the system returns
the name of the data item, user-defined data, if any, from the directory entry for the
data item, and the number of cache structure elements allocated to the data entry.

When it is time to cast out changed data that is associated with a specific cast-out
class, use the READ_COCLASS request to determine which data items belong to
the cast-out class. For each entry that the READ_COCLASS returns, you can then
issue the CASTOUT_DATA request, write the entry to permanent storage, and
build a list of names for each of the data items in the cast-out class that you can
use as input to the UNLOCK_CASTOUT request. When you have completed
building the list of names for the data items, you can issue a single
UNLOCK_CASTOUT request to release the cast-out locks for the data items.

If your protocol relies on external serialization, you need to hold a lock to serialize
access to any data items. For serialization recommendations and sample scenarios
that show how to establish serialization, see “Serializing and Managing Access to
Shared Data” on page 6-25.

Timing and READ_COCLASS Requests

When you issue the READ_COCLASS request, consider the impact of timing
issues on serialization. If another user creates a new data item in the cache after
you have issued a READ_COCLASS request with criteria that matches the data
item but before the request completes, the request might not contain information for
the new data item. If you want to ensure that when your request completes,
cast-out class information for all data items matching your criteria has been
included, you must hold serialization throughout the request processing.
Serialization needs to remain in effect for both the initial request, and any
subsequent request restarts that might be required as a result of a timeout, and the
scope of the serialization must prevent any other user from creating a new entry
that matches the criteria on the READ_COCLASS request.

Guide to the Topic

“READ_COCLASS: Reading A Cast-Out Class” on page 6-120 is divided into
two sections.

The first section, “IXLCACHE Functions for REQUEST=READ_COCLASS” on
page 6-122, applies to all READ_COCLASS requests, and includes the
following major topics:

� “Specifying the Data Item” on page 6-122
� “Specifying the Cast-Out Class” on page 6-122
� “Selecting the Buffering Method” on page 6-122
� “Format of Returned Cast-Out Class Data” on page 6-122
� “Restarting a Request that Ends Prematurely” on page 6-123
� “Receiving Answer Area Information” on page 6-123

The second section, “Reading a Cast-Out Class: Summary” on page 6-123
summarizes a procedure for reading cast-out class information.

 Chapter 6. Using Cache Services (IXLCACHE) 6-121

IXLCACHE Functions for REQUEST=READ_COCLASS
The following functions apply when you specify REQUEST=READ_COCLASS.

Specifying the Data Item
The NAME keyword, or the NAME and NAMEMASK keywords together indicate
which data items that belong to the specified cast-out class to select.

� To read information about all data items that belong to the specified cast-out
class, omit both NAME and NAMEMASK from the request.

� To read information about a specific data item that belongs to the cast-out
class, code NAME to provide the data item name. Omit NAMEMASK from the
request.

� To read information about all data items that belong to the cast-out class and
whose names satisfy a specified character selection pattern, code both NAME
and NAMEMASK.

When you code both NAME and NAMEMASK, you define a character selection
pattern that the system uses to select names from the specified cast-out class. For
a general description of NAMEMASK and the character selection pattern, see
“Using Filters for Names on Requests” on page 6-48.

Specifying the Cast-Out Class
Each request for cast-out class information must include the cast-out class number.
Specify the number on the COCLASS keyword. On the READ_COCLASS request,
you can only read information for one cast-out class at a time.

Note: The total number of cast-out classes defined for the cache structure is
specified on the IXLCONN macro of the first user who connects to the
structure. Cast-out classes are numbered consecutively from 1 to n where n
is the number of cast-out classes specified on IXLCONN.

Selecting the Buffering Method
The system returns the data from the read cast-out class request to the local
buffers that you specify. You can receive data in either a single buffer (the BUFFER
keyword) or in multiple buffers (the BUFLIST keyword). Both methods enable you
to receive up to 65536 (64K) bytes of data. For information about whether to use a
single buffer or multiple buffers and for information on selecting buffer attributes,
see “Design Considerations for Choosing the Buffer Format” on page 6-41.

If your local cache buffer is not large enough to hold all of the available data, the
system fills the buffer, ends the request, and returns a specific return and reason
code that indicates that the buffer has been filled. After you finish processing the
data that is in the buffer, you can restart the request to have the system return the
remaining data to the buffer. For information on restarting a request, see
“Restarting a Request that Ends Prematurely” on page 6-49.

Format of Returned Cast-Out Class Data
For each specified data item that belongs to the cast-out class, the system returns
a 32-byte block of information to your local cache buffer. Each block occupies
contiguous buffer storage starting at offset 0 and consists of three fields containing:

� The name of a data item belonging to the cast-out class
� Any directory entry user-data associated with the data item
� The number of cache structure elements allocated to the data item

6-122 OS/390 V2R8.0 MVS Sysplex Services Guide

Macro IXLYCANB maps the 32-byte block of information. For a description of
IXLYCANB, see OS/390 MVS Data Areas, Vol 3 (IVT-RCWK).

In the answer area field CAADIRCOUNT, the system also provides, a count of the
number of blocks that are returned to the buffer.

Restarting a Request that Ends Prematurely
The IXLCACHE REQUEST=READ_COCLASS request can complete prematurely
for the following reasons:

� The local cache buffer is not large enough to hold all of the available data.

� The request exceeds the time-out criteria for the coupling facility. (Time-out
criteria is model-dependent.)

For general information about restarting requests, see “Restarting a Request that
Ends Prematurely” on page 6-49.

Receiving Answer Area Information
On most IXLCACHE requests, the system returns information related to the request
in the answer area. You specify the answer area on the ANSLEN and ANSAREA
keywords. With certain events, the information in the answer area might not be
valid. See “Determining Valid Information in the Answer Area” on page 6-47.

When the request completes, the system returns information to the answer area.
When the request is not valid, the system returns non-zero return and reason
codes.

For the mapping of the answer area, see the IXLYCAA mapping macro described
in OS/390 MVS Data Areas, Vol 3 (IVT-RCWK). For a description of answer area
fields and return and reason codes for the request, see OS/390 MVS Programming:
Sysplex Services Reference.

Reading a Cast-Out Class: Summary
You use a read cast-out class request to obtain information about the data items
that belong to a specified cast-out class.

� To identify the cast-out class, code the COCLASS keyword to provide the
number of the cast-out class.

� You must identify the data items in which you are interested:

– To obtain information on all data items in a specific cast-out class, omit
both the NAME and NAMEMASK keywords.

– To obtain information on a specific data item in the specified cast-out class,
code NAME and omit NAMEMASK.

– To obtain information about all data items whose name matches a specified
character pattern and who are in the cast-out class, code both the NAME
and NAMEMASK keywords. NAME must specify a data item name that
contains the specified character pattern. NAMEMASK must specify a
bit-string where the bits that correspond to the specified character pattern
are set to B'1'. For examples that show how to use NAME and
NAMEMASK together, see on page 6-48.

� To identify the buffer where the system is to return the cast-out class
information, code either BUFLIST or BUFFER (depending on the buffering

 Chapter 6. Using Cache Services (IXLCACHE) 6-123

method you select) and their related keywords. The system returns the
information starting at offset 0. Macro IXLYCANB maps each of the 32-byte
elements of information.

The read cast-out class request can complete prematurely if the buffer is not large
enough to hold all of the data that the system is returning, or if the coupling facility
time-out criteria are exceeded. When a request completes prematurely, the system
returns a token in the CAARESTOKEN field of the answer area. You can use this
token to restart the request from the point at which it completed prematurely.

To restart a request, first process the data that is in the buffer After processing the
data, code the IXLCACHE REQUEST=READ_COCLASS request as you previously
coded it with the exception of the RESTOKEN keyword. The RESTOKEN keyword
must specify the token that the system returned.

For More Information

There are other keywords that are required and some that are optional. For a
description of keywords that are applicable to all IXLCACHE requests, see:

� “Understanding Synchronous and Asynchronous Cache Operations” on
page 6-36

� “Accessing and Managing Data Within a Cache System” on page 6-14
� “Requesting Return and Reason Codes” on page 6-46
� “Defining an Answer Area (ANSAREA)” on page 6-46

READ_COSTATS: Reading Cast-Out Class Statistics
Periodically, you might want to obtain statistics about your use of cast-out classes.
For each specified cast-out class, the system returns the total number of data
elements allocated to the data items in the cast-out class. To read cast-out
statistics, use the IXLCACHE REQUEST=READ_COSTATS request. The system
returns the statistics to the buffer that you specify on the request.

Guide to the Topic

“READ_COSTATS: Reading Cast-Out Class Statistics” is divided into two
sections.

The first section, “IXLCACHE Functions for REQUEST=READ_COSTATS” on
page 6-125, applies to all READ_COSTATS requests, and includes the
following major topics:

� “Specifying the Cast-out Classes” on page 6-125
� “Selecting a Buffering Method” on page 6-125
� “Format of Returned Cast-out Statistics” on page 6-125
� “Restarting A Request that Ends Prematurely” on page 6-127
� “Receiving Answer Area Information” on page 6-128

The second section, “Reading Cast-out Statistics: Summary” on page 6-128
summarizes how to use IXLCACHE REQUEST=READ_COSTATS.

6-124 OS/390 V2R8.0 MVS Sysplex Services Guide

IXLCACHE Functions for REQUEST=READ_COSTATS
The following functions apply when you specify REQUEST=READ_COSTATS.

Specifying the Cast-out Classes
The request must identify the range of cast-out classes whose statistics are to be
read. To identify the first class in the range, code the COCLASSB keyword. To
identify the last class in the range, code the COCLASSE keyword. The system
returns statistics for classes starting with COCLASSB through COCLASSE. To read
statistics for one class, COCLASSB and COCLASSE must specify the same
cast-out class.

Selecting a Buffering Method
You can receive cast-out class statistics in either a single buffer (the BUFFER
keyword) or in multiple buffers (the BUFLIST keyword). Both methods enable you
to receive up to 65536 (64K) bytes of data. For information about whether to use a
single buffer or multiple buffers and for information on selecting buffer attributes,
see “Design Considerations for Choosing the Buffer Format” on page 6-41.

If your local cache buffer is not large enough to hold all of the available information,
the system fills the buffer, ends the request, and returns a specific return and
reason code that indicates that the buffer has been filled. After you finish
processing the information that is in the buffer, you can restart the request to have
the system return the remaining information to the buffer. For information on
restarting a request, see “Restarting a Request that Ends Prematurely” on
page 6-49.

Format of Returned Cast-out Statistics
The format of the information returned from the READ_COSTATS request depends
on the level of the coupling facility in which the structure is allocated and on the
COSTATSFMT specification. For cache structures allocated in a coupling facility
with CFLEVEL=5 or higher, you can use the COSTATSFMT keyword to specify the
level of detailed information that is to be returned.

For cache structures allocated in a coupling facility with CFLEVEL=4 or lower, the
system returns the cast-out class statistics to your buffers as follows:

The First Word: The first word or four bytes of the buffer, beginning at offset 0,
contain two cast-out classes:

� The high-order two bytes contain the number of the first cast-out class specified
on the COCLASSB keyword (that is, the first cast-out class for which
information has been returned).

� The low-order two bytes contain the number of the last cast-out class (that is,
the last cast-out class for which information has been returned).

Under certain situations, the value returned in the low-order two bytes might not be
the value specified on the COCLASSE keyword. For instance, this value might be:

� The number of the last class read before the buffer became full. In this case,
the buffer cannot accommodate all of the requested information and only part
of the information is returned. You need to reissue the request to receive the
remaining information.

 Chapter 6. Using Cache Services (IXLCACHE) 6-125

� The number of the last class read when COCLASSE specified a number higher
than the maximum number of defined cast-out classes. (The first user who
connects to the cache structure defines the maximum number of cast-out
classes on the IXLCONN macro.)

Mapping macro IXLYCCIH maps the first word of the buffer. For a description of
IXLYCCIH, see OS/390 MVS Data Areas, Vol 3 (IVT-RCWK).

The Remainder of the Buffer: The data in the remainder of the buffer depends
on whether you have specified the COSTATSFMT keyword. COSTATSFMT is valid
only for structures allocated in a coupling facility with CFLEVEL=5 or higher.

� For structures allocated in a coupling facility with CFLEVEL=4 or lower, or
when COSTATSFMT=COCOUNTSLIST is specified or defaulted to, the
remainder of the buffer is as follows:

The remainder of the buffer consists of four-byte entries. There is a one-to-one
correspondence between each four-byte entry and a cast-out class in the range
of cast-out classes for which the information is returned. Each entry contains
the number of cache structure data elements allocated to the corresponding
cast-out class. The first buffer entry corresponds to the cast-out class specified
on the COCLASSB keyword. The next entry corresponds to the next
sequentially numbered cast-out class, and so forth.

The following chart summarizes the buffer format and contents upon return
from the request:

Mapping CCIHCOUNTS of IXLYCCIH maps the information returned for
structures allocated in a coupling facility with CFLEVEL=4 or lower or by
specifying COSTATSFMT=COCOUNTSLIST.

� For structures allocated in a coupling facility with CFLEVEL=5 or higher and for
which COSTATSFMT=COSTATSLIST is specified, the remainder of the buffer
is as follows:

The remainder of the buffer, starting at offset 32, consists of 16-byte entries.
There is a one-to-one correspondence between each 16-byte entry and a
cast-out class in the range of cast-out classes for which the information is
returned. Each entry contains the number of cache structure data elements
allocated to the corresponding cast-out class and eight bytes of user data. If
the structure has been allocated with a UDF order queue for each cast-out
class, the eight bytes is the user data of the first entry on the UDF order queue.

Offset Contents

+0 Number of the first cast-out class reported on

+2 Number of the last cast-out class reported on

+4 Number of data elements allocated for the cast-out class specified by
COCLASSB

+8 Number of data elements allocated for the next sequential cast-out class.

+(4 * n) Number of data elements allocated for the last cast-out class where n is
the total number of elements returned in the buffer.

6-126 OS/390 V2R8.0 MVS Sysplex Services Guide

If the structure has not been allocated with a UDF order queue, the eight bytes
is the user data of the first entry on the cast-out class queue. The first buffer
entry corresponds to the cast-out class specified on the COCLASSB keyword.
The next entry corresponds to the next sequentially numbered cast-out class,
and so forth.

The following chart summarizes the buffer format and contents upon return
from the request:

Mapping CCIHCCIBS of IXLYCCIH maps the information returned for structures
allocated in a coupling facility with CFLEVEL=5 or higher when
COSTATSFMT=COSTATSLIST is specified. For a description if IXLYCCIH, see
OS/390 MVS Data Areas, Vol 3 (IVT-RCWK).

Offset Contents

+0 Number of the first cast-out class reported on

+2 Number of the last cast-out class reported on

+4 Reserved

+32 Cast-out class entry data for the cast-out class specified by COCLASSB.

� Number of data elements allocated

 � User data

+64 Cast-out class entry data for the next sequential cast-out class.

+(32 * n) Number of data elements allocated for the last cast-out class where n is
the total number of elements returned in the buffer.

Restarting A Request that Ends Prematurely
If the buffer is not large enough to hold all of the data to be read, an IXLCACHE
REQUEST=READ_COSTATS can complete prematurely. When a request
completes prematurely, the system returns as much data as the buffer can hold. In
the first word of the buffer, the system returns the number of the first and last
cast-out classes whose statistics were read.

To restart a prematurely completed request, use the following procedure:

1. Process the cast-out statistics that the system returns. You must process these
statistics because the restarted request reuses the buffer.

2. Obtain the number of the last cast-out class whose statistics were read. This
number is in the low-order two-bytes of the first word in the buffer. Macro
IXLYCCIH maps the first word of the buffer and assigns symbolic names to
both the low-order two bytes and the high-order two bytes.

3. Add 1 to the number obtained in step 2, and specify this value on the
COCLASSB keyword.

4. Reissue the IXLCACHE REQUEST=READ_COSTATS request. To ensure that
you do not alter the intent of the request, the restarted request should specify
the same keywords and values (with the exception of the value specified on
COCLASSB) as the request that completed prematurely.

 Chapter 6. Using Cache Services (IXLCACHE) 6-127

A restarted request can also complete prematurely. Restart the request using the
procedure described.

Receiving Answer Area Information
On most IXLCACHE requests, the system returns information related to the request
in the answer area. You specify the answer area on the ANSLEN and ANSAREA
keywords. With certain events, the information in the answer area might not be
valid. See “Determining Valid Information in the Answer Area” on page 6-47.

When the request completes, the system returns information to the answer area.
When the request is not valid, the system returns non-zero return and reason
codes.

For the mapping of the answer area, see the IXLYCAA mapping macro described
in OS/390 MVS Data Areas, Vol 3 (IVT-RCWK). For a description of answer area
fields and return and reason codes for the request, see OS/390 MVS Programming:
Sysplex Services Reference.

Reading Cast-out Statistics: Summary
You read cast-out statistics to determine the total number of data entries that are
assigned to cast-out classes.

� To identify the range of cast-out classes whose statistics are to be read, code
the COCLASSB and COCLASSE keywords. COCLASSB identifies the number
for the cast-out class at the beginning of the range and COCLASSE for the
number of the cast-out class at the end of the range.

� To identify the buffers where the system is to return the cast-out statistics, code
either BUFLIST or the BUFFER and their related keywords.

� To specify the format of the information returned for structures allocated in a
coupling facility with CFLEVEL=5 or higher, code the COSTATSFMT keyword.

The system returns, to buffer offset 0, a fullword: the high-order two-bytes identify
the first cast-out class whose statistics were read. The low-order two-bytes identify
the last cast-out class whose statistics were read. IXLYCCIH maps the first word of
the buffer. Following this fullword are the entries that contain the cast-out class
statistics. The format of these entries is dependent on the level of coupling facility
in which the structure is allocated and the COSTATSFMT sepcification.

The request can complete prematurely if the buffer is not large enough to hold all of
the data to be returned. To restart the request, add 1 to the cast-out class number
that the system returned in the low-order two bytes of the first word in the buffer.
Specify the increment on the COCLASSB keyword and reissue the IXLCACHE
REQUEST=READ_COSTATS request as previously coded (except for the new
value of COCLASSB).

6-128 OS/390 V2R8.0 MVS Sysplex Services Guide

For More Information

There are other keywords that are required and some that are optional. For a
description of keywords that are applicable to all IXLCACHE requests, see:

� “Understanding Synchronous and Asynchronous Cache Operations” on
page 6-36

� “Accessing and Managing Data Within a Cache System” on page 6-14
� “Requesting Return and Reason Codes” on page 6-46
� “Defining an Answer Area (ANSAREA)” on page 6-46

READ_STGSTATS: Reading Storage Class Statistics
During processing when you are using a cache structure, you might periodically
need to obtain statistics about your use of the storage classes you have defined.
For example, you can use the statistics to help analyze how efficiently you are
using the cache structure. For a specified storage class, the system can return
information as described in Figure 6-18 on page 6-130.

To read storage class statistics, use the IXLCACHE REQUEST=READ_STGSTATS
request. The system returns the statistics to a storage area that you specify. You
must issue the request once for each storage class whose statistics you read.

Guide to the Topic

“READ_STGSTATS: Reading Storage Class Statistics” is divided into two
sections.

The first section, “IXLCACHE Functions for REQUEST=READ_STGSTATS,”
applies to all READ_STGSTATS requests, and includes the following major
topics:

� “Specifying the Storage Class”
� “Providing a Storage Area for Returned Statistics” on page 6-130
� “Description of Returned Statistics” on page 6-130
� “Receiving Answer Area Information” on page 6-131

The second section, “Reading Storage Class Statistics: Summary” on
page 6-132 summarizes how to use IXLCACHE
REQUEST=READ_STGSTATS.

IXLCACHE Functions for REQUEST=READ_STGSTATS
The following functions apply when you specify REQUEST=READ_STGSTATS.

Specifying the Storage Class
The request must identify the storage class whose statistics you want to read. To
identify the storage class, code the STGCLASS keyword.

 Chapter 6. Using Cache Services (IXLCACHE) 6-129

Providing a Storage Area for Returned Statistics
The request must identify a 256-byte storage area where the system can return the
storage statistics. To identify the storage area, code the STGSTATS keyword.

Description of Returned Statistics
The system returns the storage class statistics described below. Mapping macro
IXLYCSCS maps the statistics. See OS/390 MVS Data Areas, Vol 3 (IVT-RCWK)
for a description of IXLYCSCS.

Figure 6-18 (Page 1 of 2). IXLCACHE Storage Class Statistics Description

Field Name Description

CSCSREADHITC Read-hit - Number of times system returned data on a read
request.

CSCSRMDIRHITC Read-miss directory-hit - number of times the system
found the named data item identified to the structure with no
cached data.

CSCSRMASSUPRC Read-miss assignment suppressed - number of times the
system found the named data item not identified to the
structure and the allocation of the directory entry was
intentionally suppressed (as a result of ASSIGN=NO on the
READ_DATA request).

CSCSRMNAMEASC Read-miss name assigned - number of times the system
found the named data item not identified to the structure
and a directory entry was allocated (as a result of
ASSIGN=YES on the READ_DATA request).

CSCSRMTSCFULLC Read-miss target storage class full - number of times the
system found the named data item not identified to the
structure and a directory entry could not be allocated
because no storage resources were available.

CSCSWHITCB0C Write-hit change bit 0 - number of times unchanged data
was written.

CSCSWHITCB1C Write-hit change bit 1 - number of times changed data was
written.

CSCSWMNOTREGC Write-miss not-registered - number of times a request to
write data failed because required connection interest was
not previously registered.

CSCSWMINVSTATEC Write-miss invalid state - number of times a request to
write unchanged data failed because the named data item
already had cached changed data.

CSCSWMTSCFULLC Write-miss target storage class full - number of times a
request to write data failed because either the named data
item was not identified to the structure and no directory
entry resource was obtainable, or no data entry resource
could be obtained to contain data element resources.

CSCSDIRENTRYRCLC Directory entry reclaim - number of times a directory entry
was reclaimed.

CSCSDAENTRCLC Data entry reclaim - number of times a data entry was
reclaimed.

CSCSXIDIRRCLC XI for directory reclaim - number of times cross-invalidate
was performed as a result of a directory entry reclaim.

6-130 OS/390 V2R8.0 MVS Sysplex Services Guide

Figure 6-18 (Page 2 of 2). IXLCACHE Storage Class Statistics Description

Field Name Description

CSCSXIWRITEC XI for write - number of times cross-invalidate was
performed as a result of a request to write data.

CSCSXINMINVALC XI for name invalidation - number of times cross-invalidate
was performed as a result of a request to delete a named
data item.

CSCSXICMINVALC XI for complement invalidation - number of times
cross-invalidate was performed as a result of a user request
to perform cross-invalidation for the named data item.

CSCSCASTOUTC Cast-out - number of times data has been cast-out.

CSCSREFSIGMISSC Reference signal miss - number of named data items for
the storage class that reference list processing specified but
could not find in the structure.

CSCSTMCFULLC Target storage class full - number of times that the
allocation of the directory entry or data entry failed because
resources were unavailable and all named data items for the
storage class had changed cached data.

CSCSDIRENTRYC Directory entry - number of directory entries allocated for
named data items.

CSCSDATAREAELEC Data area element - number of data elements allocated for
named data items.

CSCSTOTCHNGDC Total changed - number of named data items assigned to
the specified storage class that have changed or
locked-for-cast-out cached data.

CSCSDATAREAC Data area - number of data entries allocated for named data
items.

CSCSCMPLREFLSTC Completed reference lists - number of
PROCESS_REFLIST requests in the list that were
processed.

CSCSPRTCREFLSTC Partially completed reference lists - number of
PROCESS_REFLIST requests in the list that were
processed incompletely because coupling facility time out
criteria was exceeded.

CSCSXILCVIREPL XI for local cache vector entry replacement - number of
times cross-invalidate was performed as a result of a
request that specified a local cache vector index for a data
item to replace an existing index.

CSCSWUXIC Write unchanged with XI counter - The number of times
cross-invalidate was performed as a result of a
WRITE_DATA request that specified CHANGED=NO and
CROSSINVAL=YES.

Receiving Answer Area Information
On most IXLCACHE requests, the system returns information related to the request
in the answer area. You specify the answer area on the ANSLEN and ANSAREA
keywords. With certain events, the information in the answer area might not be
valid. See “Determining Valid Information in the Answer Area” on page 6-47.

 Chapter 6. Using Cache Services (IXLCACHE) 6-131

When the request completes, the system returns information to the answer area.
When the request is not valid, the system returns non-zero return and reason
codes.

For the mapping of the answer area, see the IXLYCAA mapping macro described
in OS/390 MVS Data Areas, Vol 3 (IVT-RCWK). For a description of answer area
fields and return and reason codes for the request, see OS/390 MVS Programming:
Sysplex Services Reference.

Reading Storage Class Statistics: Summary
You read storage statistics to collect information that characterizes, by storage
class, your use of the cache structure.

� Specify the STGCLASS keyword to identify the storage class and the
STGSTATS keyword to identify where the system is to store the statistics.

� To map the statistics, use the IXLYCSCS macro.

For More Information

There are other keywords that are required and some that are optional. For a
description of keywords that are applicable to all IXLCACHE requests, see:

� “Understanding Synchronous and Asynchronous Cache Operations” on
page 6-36

� “Accessing and Managing Data Within a Cache System” on page 6-14
� “Requesting Return and Reason Codes” on page 6-46
� “Defining an Answer Area (ANSAREA)” on page 6-46

Coding a Complete Exit for IXLCACHE
Your complete exit provides a mechanism for the system to let you know when
your asynchronously processed IXLCACHE request completes. You provide the
address of your complete exit using the COMPLETEEXIT parameter when issuing
the IXLCONN macro to connect to the structure.

You will be informed of request completion through your complete exit in either of
the following situations:

� You specify MODE=ASYNCEXIT.

� You specify MODE=SYNCEXIT and the system processes your request
asynchronously.

Information Passed to the Complete Exit
When the complete exit gains control, it receives the following information about the
IXLCACHE request and its outcome in the complete exit parameter list (CMPL),
mapped by the IXLYCMPL macro:

CMPLCONTOKEN The IXLCACHE invoker's connect token.

CMPLCONNAME The IXLCACHE invoker's connect name.

CMPLCONDATA Connect-time data you specified when you issued the
IXLCONN macro to connect to the structure. The use of
this optional field is defined by the user. One possibility is

6-132 OS/390 V2R8.0 MVS Sysplex Services Guide

to allow a user to contain the address or ALET of a
connection-related control block or data structure.

CMPLCACHE Indicates the complete exit received control as a result of
an IXLCACHE request.

CMPLREBUILD Indicates whether the target structure was being rebuilt.
When a structure is being rebuilt, there is an interval in
which the new structure and the old structure can both be
the target of an IXLCACHE request.

0 The target structure was not being rebuilt or, if so, the
target structure was the original structure.

1 The target structure was being rebuilt, and the target
structure was the new structure.

CMPLRETCODE Return code from IXLCACHE request. Return code values
are defined in the IXLYCON macro.

CMPLRSNCODE Reason code from IXLCACHE request. Reason code
values are defined in the IXLYCON macro.

CMPLREQDATA Information provided to the complete exit by the issuer of
the IXLCACHE request. The use of this optional field is
user defined. One possibility is to store the address of a
control block that represents the asynchronously-processed
request. When the request makes status information
available upon completion, the user can return to the
control block and update status.

CMPLANSAREAALET Answer area ALET.

CMPLANSAREA@ Answer area address.

See OS/390 MVS Data Areas, Vol 3 (IVT-RCWK) for a description of the
IXLYCMPL macro.

 Environment
The complete exit receives control in the following environment:

Authorization: Supervisor state, and PSW key 0
Dispatchable unit mode: SRB
Cross memory mode: PASN=HASN=SASN. PASN, HASN, and SASN are equal

to the PASN at the time of the connect to the structure.
AMODE: 31-bit
ASC mode: Primary ASC mode
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held.
Control parameters: None.

 Input Specifications
Cache services pass information to the complete exit in registers and in the CMPL.

 Chapter 6. Using Cache Services (IXLCACHE) 6-133

Registers at Entry:
When the complete exit receives control, the GPRs contain the following
information:

Register Contents
0 Does not contain any information for use by the complete exit.
1 Address of a full word that contains the address of the CMPL.
2-12 Do not contain any information for use by the complete exit.
13 Address of a 72-byte work area for use by the complete exit routine.

The exit routine does not have to save and restore registers in this
work area. The exit routine can use this work area in any way it
chooses.

14 Return address.
15 Entry point address.

When the complete exit receives control, the ARs contain no information for use by
the complete exit.

 Return Specifications
Your exit must return control to the system by branching to the address provided on
entry in GPR 14.

 Programming Considerations
If you have more than one outstanding IXLCACHE request being processed
asynchronously, multiple instances of your complete exit might run concurrently as
the system processes your requests. Also, the order of execution of the complete
exit for asynchronous requests is unpredictable. For example if you specify two
requests with MODE=ASYNCEXIT, one to read data item A and another to read
data item B, the system might complete the read for data item B before the read for
data item A.

The CMPL data area is accessible to you only while your complete exit is running.
Once the exit returns to its caller, you can no longer access the CMPL data area.

In certain instances, the system must quiesce the activity of user exits in order to
perform cleanup processing. The following illustrates scenarios where this
processing occurs:

 � Connection Termination

When a user disconnects or abnormally terminates, the system will force to
completion any user exits executing on behalf of that user by issuing a
PURGEDQ against the appropriate units of work. Note that if a connector
terminates while a rebuild is in progress, any exits pertaining to both the
original and the new structures will be forced to completion. In addition to
forcing the currently executing user exits to completion, the system will also
prevent any new invocations of these exits by cancelling any events that are
pending presentation.

 � Rebuild Stop

When a connector provides an event exit response for the Rebuild Stop event,
the system will force to completion any exits that are executing on behalf of
that user's connection to the new structure by issuing a PURGEDQ against the
appropriate units of work. Similar to connector termination processing, the user

6-134 OS/390 V2R8.0 MVS Sysplex Services Guide

exits pertaining to the new structure will not be presented with any additional
events. Note that any user exits executing on behalf of the original structure are
unaffected by rebuild stop processing.

� Completion of a Rebuild

When a connector provides an event exit response for the Rebuild Cleanup
event, the system will force to completion any user exits that are executing on
behalf of that user's connection to BOTH the original and the new structures by
issuing a PURGEDQ against the appropriate units of work. No new events will
be presented to the user exits on behalf of the original structure (as it is being
discarded). Normal user exit processing will resume for the rebuilt structure
upon completion of the rebuild process.

A user exit must be sensitive to conditions that can occur as a result of actions
taken by the system and must be able to handle these as appropriate. For
example, if a user exit has suspended itself, when the PURGEDQ is issued the
system abends the user exit's unit of work with a retryable X'47B' abend and
gives control to the user exit's recovery routine. (Note that although the recovery
routine can retry, the user exit can not re-suspend itself because the system will fail
any request to suspend a unit of work that has been the target of a PURGEDQ.) If
the recovery routine percolates back to the system, its associated connection is
terminated.

| Managing Cache Structure Utilization
| The cache structure is allocated with a fixed amount of storage. This storage can
| be subdivided into directory entries and data elements. If an IXLCACHE request
| requires that an object be available but none is, a “structure-full” condition occurs.
| When the structure becomes full, you will no longer be able to perform a number of
| IXLCACHE functions. Affected functions could include:

| � The ability to create a new cache entry.

| � The ability to update an existing cache entry, regardless of whether its size
| would increase, decrease, or remain the same.

| The system returns counts of the objects allocated in the structure in the connect
| answer area (IXLYCONA). The values reflect the state of the structure at the time
| of the connect.

| � CONACACHECHGDIRENTRYCOUNT — Approximate number of changed
| directory entries in use

| � CONACACHEDIRENTRYCOUNT — Approximate number of directory entries
| supported by the structure

| � CONACACHECHGDIRELEMENTCOUNT — Approximate number of changed
| data elements in use

| � CONACACHEMAXELEMENTCOUNT — Approximate maximum number of
| data elements supported by the structure.

| Taking action to alleviate the storage problem before the structure becomes full is
| especially critical because the CONACACHEDIRENTRYCOUNT and
| CONACACHEMAXELEMENTCOUNT values are only approximate. As a result, you
| could receive a return code indicating that the structure is full even though the
| answer area counts of in-use entries or elements that are changed (and therefore

 Chapter 6. Using Cache Services (IXLCACHE) 6-135

| cannot be reclaimed by the coupling facility) are below the limits indicated in the
| CONA.

| A reason for the CONA counts being approximate is that the coupling facility at
| times uses some of the structure's objects for its own processing. Those objects
| are not included in your “in-use” counts.

| Another result of the CONA counts being approximate is that the IXLCACHE
| request of one connector might be rejected due to a structure full condition while a
| subsequent request by a different connector might succeed. Alternatively, a
| request by a connector might be rejected while a subsequent request by the same
| connector might succeed. Furthermore, deleting a cache entry when the structure is
| full might not result in the immediate availability of the storage for the directory
| entry or data elements. As a result, your request could fail if you attempt to create
| an entry of the same size as the one you deleted.

| Applications using the cache structure are responsible for managing structure
| utilization. The system does not prevent the structure from becoming full nor take
| any automatic action to remedy the condition. Therefore, IBM recommends that
| you take steps to correct a storage shortage before your application is affected. To
| do so, you need to consider the following:

| � How to detect when the structure is becoming full

| � How full you will permit the structure to become before you take remedial action

| � How the storage shortage will be corrected.

| Detecting When a Cache Structure Is Becoming Full
| One way to monitor cache structure utilization is to issue the IXLMG macro
| periodically and check the following fields:

| � IXLYAMDSTRC_TDAEC, which returns the approximate maximum number of
| data elements allowed in the structure

| � IXLYAMDSTRC_TDEC, which returns the approximate maximum number of
| entries allowed in the structure

| � IXLYAMDSTRC_TSCC, which returns the approximate number of changed
| entries in use in the structure

| � IXLYAMDSTRC_TCDEC, which returns the approximate number of changed
| data elements in use in the structure

| These values can be used to calculate the structure's approximate percentage
| fullness in terms of entries and elements.

| Responding When the Structure Is Getting Full
| When your monitoring indicates that the structure is getting full, you can take
| several actions. First, until you resolve the storage problem, your application could
| minimize its issuance of IXLCACHE requests that create or modify cache entries.
| Your application can also issue a message to the operator to warn that the
| structure is getting full and to requst that the operator perform certain actions.

| You can issue IXLCACHE REQUEST=READ_STGSTATS or IXLMG to determine
| how full each storage class in the structure is becoming. See “Managing Cache

6-136 OS/390 V2R8.0 MVS Sysplex Services Guide

| Structure Resources” on page 6-28 for a description of how storage in the structure
| can be reclaimed.

| If the structure is running out of elements but has plenty of entries (or vice versa),
| you can rebuild or alter the structure with a different ratio of elements to entries
| without changing the structure's size. No operator intervention is required since the
| structure is not changing size.

| If the structure needs more directory entries or data elements, you can rebuild or
| alter the structure with more storage. Rebuilding or altering the structure with more
| storage might require operator intervention.

| Rebuilding the Structure to Increase the Storage Capacity
| You can rebuild the structure to increase capacity only if the CFRM policy that
| defines the structure allows for a larger size. If the structure is already the
| maximum size allowed by the CFRM policy, you must request that the operator
| modify the CFRM policy to allow a larger structure size and reactivate the modified
| policy.

| If the active CFRM policy allows for a larger cache structure, you can issue the
| IXLREBLD macro to rebuild the structure with a larger size. If you prefer to involve
| the operator, your application can issue a message to notify the operator that the
| structure needs to be rebuilt. The operator must issue the SETXCF
| START,REBUILD command to initiate structure rebuild.

| Altering the Structure to Increase the Storage Capacity
| With SP 5.2 and above and a structure allocated in a coupling facility with
| CFLEVEL=1 or higher, you can alter the size of the structure to increase capacity
| or the entry-to-element ratio to reapportion the structure's storage. As with the
| rebuild function, you can alter the structure only if the CFRM policy that defines the
| structure allows for a larger size. You can issue the IXLALTER macro or notify the
| operator to issue the SETXCF START,ALTER command to initiate structure alter.

 Chapter 6. Using Cache Services (IXLCACHE) 6-137

6-138 OS/390 V2R8.0 MVS Sysplex Services Guide

Chapter 7. Using List Services (IXLLIST)

List services allow database products, subsystems, and authorized applications
running in the same sysplex to use a coupling facility to share data organized in a
list structure. The list structure consists of a set of lists and an optional lock table.
Information is stored on each list as a series of list entries. Lists can be used as
arrays, stacks, or queues. List entries can also be kept in sorted order by key
value. The lock table can be used to serialize on resources in the list structure,
such as a particular list or list entry.

You can use the list structure and its associated services to distribute work
requests among members of the sysplex or to maintain shared status information.
For instance, different lists in the list structure could represent different classes of
data or states of work items. A user could move a list entry from one list to another
to reflect a change in the class or the state of the work represented by the list
entry.

The IXLLIST macro, the interface to list services, allows you to:

� Read, write, move, or delete an entry in the list structure

� Combine operations, such as the following, using a single IXLLIST request:

– Read an entry and delete it
– Move an entry and update it
– Move an entry and read it

� Read or delete multiple entries with a single IXLLIST request

� Perform a serialized update to a list entry by performing a lock operation (such
as obtain, release, or test) and a list entry operation as part of the same
IXLLIST request. The ability to perform a lock operation together with a list
entry operation helps applications protect the integrity of data in the list
structure.

The lock table consists of an array of exclusive locks. The purpose and scope of
each entry in the lock table is entirely user-defined.

IXLLIST also provides high-performance list transition monitoring that allows you to
detect when a list changes from the empty state to the nonempty state (in which it
has one or more entries) without having to access the coupling facility to check the
list. For instance, if you are using the list structure as a distribution mechanism for
work requests, list transition monitoring allows users to detect easily the presence
or absence of incoming work requests on their queues.

With a coupling facility of CFLEVEL=3 or higher, IXLLIST also provides two
additional monitoring functions for keyed list structures — event queue monitoring
and sublist monitoring.

� An event queue exists in the list structure for each connected user. Its purpose
is to be a repository for event monitor controls objects (EMCs) that represent
events . An example of an event is the change in the state of a sublist from the
empty state to the nonempty state. Event queue monitoring allows users to
determine efficiently whether there are events queued on their event queue.

� A sublist is a subset of a list in which each entry in the sublist has the same
key. As with list monitoring, the sublist monitoring function allows users to

 Copyright IBM Corp. 1994, 1999 7-1

detect when the sublist has changed from the empty state to the nonempty
state. However, the system reports the state transition by queueing or
withdrawing EMCs from the user's event queue. It is this queueing or
withdrawing of EMCs to or from the user's event queue that causes the event
queue transitions to nonempty or empty. Event queue monitoring monitors
these transitions.

You can choose to be notified of list transitions and/or event queue transitions by
having your list transition exit receive control or you can issue the IXLVECTR
macro to test whether a list or event queue you are monitoring has changed from
empty to nonempty.

The system processes each IXLLIST request atomically , that is, a request is
processed from start to finish without interruption, ensuring that the list structure
data can never be viewed or accessed by other connections while it is being
modified. The serialized list structure allows you to serialize multiple IXLLIST
requests so that they are performed atomically as seen by other users of the
structure who are observing the same serialization protocols.

Guide to the Topics

The following topics help you understand the list structure and the functions
provided by the IXLLIST macro:

� “List Structure Concepts” on page 7-3

� “WRITE: Writing to a List Entry” on page 7-57

� “READ, READ_MULT, READ_LIST: Reading List Entries” on page 7-64

� “MOVE: Moving a List Entry” on page 7-79

� “DELETE, DELETE_MULT, DELETE_ENTRYLIST: Deleting List Entries” on
page 7-87

� “READ_LCONTROLS: Reading List Controls” on page 7-96

� “WRITE_LCONTROLS: Writing List Controls” on page 7-98

� “LOCK: Performing a Lock Operation” on page 7-100

� “MONITOR_LIST: Monitoring List Transitions” on page 7-102

� “MONITOR_EVENTQ: Monitoring an Event Queue” on page 7-105

� “MONITOR_SUBLIST, MONITOR_SUBLISTS: Monitoring Sublists” on
page 7-107

� “READ_EMCONTROLS: Reading Event Monitor Controls” on page 7-112

� “READ_EQCONTROLS: Reading Event Queue Controls” on page 7-113

� “DEQ_EVENTQ: Retrieving Events from the Event Queue” on page 7-115

� “Coding a Complete Exit” on page 7-116

� “Coding a Notify Exit” on page 7-119

� “Coding a List Transition Exit” on page 7-122

� “Managing List Structure Utilization” on page 7-123

7-2 OS/390 V2R8.0 MVS Sysplex Services Guide

List Structure Concepts
This section discusses basic concepts relating to the list structure and the functions
it provides, such as:

� What is a list structure?
� How is data maintained in the list structure?
� What functions does the list structure provide?
� How do you reference list entries?
� What are event monitor controls?
� What are the notify, complete, and list transition exits?
� What are synchronous and asynchronous list operations?
� What is a serialized list?

What is a List Structure?
A list structure consists of a set of lists and an optional lock table of exclusive
locks, which you can use to serialize the use of lists, list entries, or other resources
in the list structure. Each list is pointed to by a header and can contain a number of
list entries. A list entry consists of list entry controls and can also include a data
entry, an adjunct area, or both. Both data entries and adjunct areas are optional.
However, data entries are optional for each list entry while a list structure either has
or doesn't have adjunct areas. Figure 7-1 shows a list structure that contains an
optional lock table. A list structure that includes a lock table is called a serialized
list structure.

Figure 7-1. Serialized List Structure

The parts of the coupling facility list structure are:

 Chapter 7. Using List Services (IXLLIST) 7-3

List header Anchors the list to the list structure and contains control information
associated with the list (list controls). The first user to connect to the
list structure designates the number of list headers it is to have, and
allocates the list structure.

List entry An entry on the list. A list entry consists of:

� List entry controls , which contain control information associated
with the list entry.

� An optional data entry , which holds user-specified data. Data
entries are composed of units of storage called data elements .
In a coupling facility of CFLEVEL=0, data entries can be
composed of 0 to 16 data elements. In a coupling facility of
CFLEVEL=1 or higher, data entries can be composed of 0 to
255 data elements. In either case, a data entry can contain up to
64K (65536 bytes) of data.

� An adjunct area used to hold up to 64 bytes of data. You could
use the adjunct area to maintain control information about the
contents of the data entry. If your data is always 64 bytes or
less, you could use adjunct areas to hold your data and omit the
use of data entries.

Each list entry can reside on only one list at a time. Unused list
entries do not reside on any list.

Lock table An array of exclusive locks that can be used to serialize access to
list structure resources such as lists or list entries. Lock table users
create and maintain the association between a lock table entry and
its associated resource. The lock table can be used:

� Together with list entry operations such as reading or writing list
entry data

� Independently of list entry operations

List Structure Enhancements
With a coupling facility of CFLEVEL=3 or higher, a keyed list structure can
optionally support event queues that are associated with sublist monitoring. (A
sublist is a subset of a list — see “Understanding List Entry Key Assignment” on
page 7-10 for a description of a sublist.) The system uses the event queues to hold
control objects called event monitor controls (EMCs), which contain information
about the user and the sublist being monitored. Whenever a monitored sublist
transitions from an empty to a nonempty state, an EMC is queued to the user's
event queue. The system withdraws the EMC from the user's event queue when
the sublist transitions from a nonempty to an empty state.

Figure 7-2 on page 7-5 shows the optional parts of a keyed list structure allocated
in a coupling facility of CFLEVEL=3 or higher.

7-4 OS/390 V2R8.0 MVS Sysplex Services Guide

Figure 7-2. Event Queues in a List Structure

The additional parts of the keyed list structure in a coupling facility of CFLEVEL=3
or higher are:

Event queue controls Contain control information about the state of the event
queue and monitoring data. There is an event queue
and event queue controls associated with each user
who has connected to the keyed list structure.

Event monitor controls Contain information about the user and the sublist being
monitored. There is an event monitor controls object for
each user and sublist combination when the user has
registered interest in monitoring a particular sublist. (For
example, an EMC exists for User 1 and the sublist
specified by List 1 and Key 5; another EMC exists for
User 2 and the sublist specified by List 1 and Key 6.) An
EMC object can reside in the list structure in association
with a particular monitored sublist or on the monitoring
user's event queue.

 Chapter 7. Using List Services (IXLLIST) 7-5

Figure 7-2 shows that for the sublist (List=1, Key=5) there are two EMCs allocated.
When the sublist transitioned to a nonempty state, the EMCs were queued to the
appropriate users' event queues. If the sublist transitioned to an empty state, the
system would withdraw the EMCs from the users' event queues.

The figure also shows that for the sublist (List=1, Key=6), there are as yet no list
entries. However, there are two EMCs allocated — for users 2 and 8. When the
sublist transitions to a nonempty state, the system will queue these EMCs to the
appropriate users' event queues.

How Is Data Maintained in a List Structure?
Data in the list structure is stored in list entries, each of which can consist of a data
entry of up to 16 data elements in a CFLEVEL=0 coupling facility (or up to 255 data
elements in a CFLEVEL=1 or higher coupling facility) and an optional adjunct data
area. Figure 7-3 shows the components of a list entry in detail.

Figure 7-3. Components of a List Entry

Component Size When Attributes Are Determined
When Attributes Can Be
Changed

Data element 256, 512,
1024, 2048,
or 4096 bytes

The first connector to the list
structure selects the element size

Element size is fixed for the life
of the list structure but you can
change this attribute when the
structure is rebuilt

Data entry When you perform a write operation,
you designate the number of data
elements to be allocated to the target
data entry

You can change the number of
data elements in the target data
entry when you perform a write
operation

0 to 16
elements
CFLEVEL=0

The first connector to the structure
specifies the actual maximum
number of data elements per data
entry (16 or less) using the
MAXELEMNUM parameter of the
IXLCONN macro

0 to 255
elements
CFLEVEL=1
or higher

The first connector to the structure
specifies the actual maximum
number of data elements per data
entry (255 or less) using the
MAXELEMNUM parameter of the
IXLCONN macro

Adjunct area 64 bytes The first connector to the list
structure specifies whether the list
structure has adjunct areas

The presence or absence of
adjunct areas is fixed for the life
of the list structure but you can
change this attribute when the
structure is rebuilt.

The number of data element sizes and range in number of elements per data entry
provides a tremendous choice of data entry sizes. The maximum data entry size is
64K bytes, except in a structure that has an element size of 256 bytes. Because
the maximum number of elements per data entry is 255, the maximum data entry
size with 256-byte data elements is 65280 bytes (255 x 256). All other
combinations of element size and entry size allow a maximum of 64K (65536
bytes). Although a data entry is composed of a number of data elements, list
operations treat the data entry as a single entity; data elements cannot be read

7-6 OS/390 V2R8.0 MVS Sysplex Services Guide

or written individually . The adjunct area can be used to hold additional,
user-specified information about the data entry.

Figure 7-4 shows a list containing list entries with various numbers of data
elements.

Figure 7-4. List Containing Entries with Various Numbers of Data Elements. List entry controls not shown.

What Functions Does the List Structure Provide?
Figure 7-5 summarizes the functions you can perform on a list structure using the
IXLLIST macro. This table is intended to give you a brief overview of the functions,
each of which is discussed in detail later in this chapter. Functions that are
available only for structures allocated in a certain level of coupling facility are noted.

Figure 7-5 (Page 1 of 3). Summary of IXLLIST Macro Functions

WRITE Update an existing list entry or create a new one

CFLEVEL=1 or higher:

� Assign a list entry key from a list control value.

� Write a list entry based on the success of a list authority comparison or
enhanced version number comparison.

READ Read the contents of a list entry

CFLEVEL=1 or higher:

� Read the contents of a list entry based on the success of a list authority
comparison or enhanced version number comparison.

READ_LIST Read the contents of multiple list entries on a particular list or list entries on a
particular list with a certain version number

CFLEVEL=1 or higher:

� Select for processing by extended filtering by entry key value, version
number, and/or list authority value.

 Chapter 7. Using List Services (IXLLIST) 7-7

Figure 7-5 (Page 2 of 3). Summary of IXLLIST Macro Functions

READ_MULT Read the contents of all list entries in the structure or only those:

� With a certain version number
� On a certain list
� On a certain list with a certain version number.

CFLEVEL=1 or higher:

� Select for processing by extended filtering by entry key value, version
number, and/or list authority value.

MOVE Move a list entry to another list or to a different position on the same list.
Options are:

� Move a list entry
� Move a list entry and read its contents
� Move a list entry and update its contents
� Create a new list entry if it does not already exist.

CFLEVEL=1 or higher:

� Assign a list entry key from a list control value.

� Move a list entry based on the success of a list authority comparison or
enhanced version number comparison.:

DELETE Delete a list entry

CFLEVEL=1 or higher:

� Delete a list entry based on the success of a list authority comparison or
enhanced version number comparison.

DELETE_MULT Delete all list entries in the structure or only those:

� With a certain version number
� On a certain list
� On a certain list with a certain version number.

CFLEVEL=1 or higher:

� Select for processing by extended filtering by entry key value, version
number, and/or list authority value.

DELETE_ENTRYLIST Delete the list entries you identify in a list of entries passed as input.

CFLEVEL=1 or higher:

� Select for processing by extended filtering by entry key value, version
number, and/or list authority value.

READ_LCONTROLS Read a list's control information

CFLEVEL=1 or higher:

� Read additional control information.

WRITE_LCONTROLS Alter a list's control information

CFLEVEL=1 or higher:

� Initialize additional control information.

READ_EMCONTROLS CFLEVEL=3 or higher:

� Read control information about your registered monitoring interest in a
particular sublist.

READ_EQCONTROLS CFLEVEL=3 or higher:

� Read control information about your event queue.

7-8 OS/390 V2R8.0 MVS Sysplex Services Guide

Figure 7-5 (Page 3 of 3). Summary of IXLLIST Macro Functions

DEQ_EVENTQ CFLEVEL=3 or higher:

� Read and dequeue event monitor controls from your event queue.

LOCK Perform a lock operation on a lock table entry without performing any
associated list entry operation

MONITOR_LIST Start or stop monitoring the list transitions of a particular list

MONITOR_SUBLIST CFLEVEL=3 or higher:

� Start or stop monitoring the transitions of a particular sublist.

MONITOR_SUBLISTS CFLEVEL=3 or higher:

� Start monitoring the transitions of a set of sublists.

MONITOR_EVENTQ CFLEVEL=3 or higher:

� Start or stop monitoring your event queue for the presence of event
monitor controls.

Referencing List Entries
All list entries have list entry IDs, which are assigned by list services when list
entries are created. In addition, list structures can support list entry names or list
entry keys. The use of names or keys is optional but all list entries in a particular
list structure must have entry names, entry keys, or neither. The terms are defined
as follows:

Entry ID (ENTRYID) An identifier permanently assigned to each list entry
by the system. Each list entry ID is:

� Unique within the structure
� Used only once during the life of the structure

Entry name (ENTRYNAME) A unique name permanently assigned to a list entry
by its creator. List entry names:

� Must be unique within the structure
� Can be re-assigned to a different list entry when

a list entry is deleted.

Entry key (ENTRYKEY) A key value assigned to a list entry. Key values:

� Need not be unique within the structure
� Can be changed when the list entry is moved
� Can be assigned automatically when requested

when the list structure is allocated in a coupling
facility with CFLEVEL=1 or higher.

Within each list, keyed entries are ordered in
hexadecimal collating sequence by key. Keys can
be any 16-byte value. Because entries with the
same key are maintained consecutively on a list,
you could create a sublist (two or more contiguous
list entries on a particular list) of list entries with the
same key. List entries in a sublist of entries with the
same key have special referencing requirements
which are covered later.

 Chapter 7. Using List Services (IXLLIST) 7-9

Entry version number A field associated with each list entry which you can
use to maintain the list entry's version number. You
can use the version number to:

� Indicate a change to a list entry's contents
� Select target list entries on some types of

IXLLIST requests
� Implement a serialization mechanism (similar to

compare and swap) that operates on a single
list entry basis.

For list operations involving a single list entry (WRITE, READ, MOVE, DELETE)
you can specify the target list entry in one or more of the following ways, depending
on the request:

1. By list position on a specific list (“Specifying a List Entry by List Position” on
page 7-11).

2. By list position and entry key on a specific list (“Specifying a List Entry by List
Position and Key” on page 7-12).

3. By list cursor on a specific list (“Using the List Cursor” on page 7-22).

4. By list entry ID (“Specifying a List Entry by Entry ID” on page 7-28).

5. By list entry name (“Specifying a Named List Entry by Entry Name” on
page 7-28).

Note: All methods of referencing list entries provide comparable performance.

For list operations involving multiple list entries (READ_LIST, READ_MULT,
DELETE_ENTRYLIST, DELETE_MULT), you can specify the target list entries in
one or a combination of the following ways, depending on the request:

1. By version number (targets all list entries in the structure that successfully
complete a version number comparison operation)

2. By list number (targets all list entries on a particular list)

3. By providing a list of entry names or entry IDs as input to the IXLLIST request
(targets the list entries you identify specifically).

4. By entry key (targets all list entries in the structure with a certain entry key
value. Valid only for structures allocated in a CFLEVEL=1 or higher coupling
facility.)

Combining different criteria, such as version number, list number, and key, gives
you many ways to select list entries. These options are explained further under the
requests to which they pertain.

Understanding List Entry Key Assignment
List services assign entry key values to list entries when an entry is created
(WRITE) or moved (MOVE). You can have list services assign the list entry key on
a WRITE or MOVE request, you can explicitly specify an entry key on a WRITE or
MOVE request, or you can leave an existing entry key value unchanged. See
“Creating a New List Entry” on page 7-60 and Figure 7-35 on page 7-82.

For structures that are allocated in a coupling facility with CFLEVEL=1 or higher,
you can have a list entry key assigned automatically. The value of the key is
derived from a list control associated with the list — LISTKEY, the list key value,

7-10 OS/390 V2R8.0 MVS Sysplex Services Guide

and is limited by another list control — MAXLISTKEY, the maximum list key value,
an upper boundary for the value. You can set these two values with a
WRITE_LCONTROLS request and read them with a READ_LCONTROLS request.

List services use the list key value and the maximum list key value when
automatically assigning an entry key. You specify on your WRITE or MOVE request
with the LISTKEYTYPE keyword whether you want the entry key to be set only if,
as a result of the request, an entry is created, is moved, or is either created or
moved. Optionally, you also can specify that an increment (LISTKEYINC) is to be
applied to the list key value after the entry key has been automatically assigned. If
adding the increment to the list key value would result in a value that exceeds the
maximum list key value, the list operation is suppressed and you receive
notification of the failure with reason code IXLRSNCODEMAXLISTKEY. When such
a failure occurs, you should first determine whether you specified an incorrect list
key increment. Depending on the protocol you are using for assigning list key
values, you might want to issue a WRITE_LCONTROLS request to update either
the list key value to a lower value or the maximum list key value to a higher value.

Available Options for Automatic List Entry Key Assignment: For a structure
allocated in a CFLEVEL=1 or higher coupling facility, you can use the
LISTKEYTYPE keyword to specify how to use the list control list key value when
assigning the list entry key. The LISTKEYTYPE values are:

NOLISTKEY Do not use automatic entry key assignment from the list control
value. If a key is to be used, explicitly assign it in the WRITE or
MOVE request.

CREATE Set the entry key to the list control list key value only if the entry is
created as a result of the request.

MOVE Set the entry key to the list control list key value only if the entry is
moved as a result of the request.

ANY Set the entry key to the list control list key value if the entry is
either created or moved as a result of the request.

Specifying a List Entry by List Position
To designate a list entry by list position, specify the list number (LISTNUM) and the
list position (LISTPOS).

List number (LISTNUM) Designates a specific list in the list structure. The first
connector to the list structure uses the LISTHEADERS
parameter on the IXLCONN macro to specify the number
of lists to be allocated in the list structure. List numbers
in a list structure range from 0 to the LISTHEADERS
value minus one.

List position (LISTPOS) Designates the head or tail of list position. Possible
values are HEAD or TAIL.

You can create a LIFO (last in, first out) or FIFO (first in,
first out) queue or a stack by using LISTPOS to control
how list entries are added to and removed from the list.

If there is only one list entry on the list, it is selected
whether you specify LISTPOS=HEAD or LISTPOS=TAIL.

 Chapter 7. Using List Services (IXLLIST) 7-11

Figure 7-6 on page 7-12 illustrates the use of LISTPOS
to reference list entries.

Figure 7-6. Use of List Position

Specifying a List Entry by List Position and Key
To designate a list entry by list position and key, specify the list number
(LISTNUM), the list position (LISTPOS), and the entry key value (ENTRYKEY).

The optional KEYREQTYPE parameter allows you to indicate a range of acceptable
key values for the target list entry. If a list entry with the key specified by
ENTRYKEY does not exist, the value of the KEYREQTYPE parameter determines
which list entry is selected. The KEYREQTYPE values are:

EQUAL The target list entry's key must match the ENTRYKEY
key. Specifying KEYREQTYPE=EQUAL is the same as
specifying ENTRYKEY without KEYREQTYPE.

LESSOREQUAL The target list entry's key must be less than or equal to
the ENTRYKEY key.

GREATEROREQUAL The target list entry's key must be greater than or equal to
the ENTRYKEY key.

If you specify LESSOREQUAL or GREATEROREQUAL and there is no list entry
whose key matches the ENTRYKEY key, the list entry is selected whose key is
closest to the ENTRYKEY key.

For instance, if list entries represent work items and entry keys represent their
priority (lowest=1, highest=5), you could select the list entry on the list with the
highest priority by specifying KEYREQTYPE=LESSOREQUAL and ENTRYKEY=5:

� If there is a list entry with an entry key of 5, it will be selected
� If there are no list entries with an entry key of 5 but a list entry with an entry

key of 4 is present, the list entry with entry key 4 would be selected.

If there is more than one list entry with the specified key, the value of the LISTPOS
parameter determines whether the entry selected is at the head or tail of the sublist
of list entries with the same key. Figure 7-7 on page 7-13 shows a sublist and
illustrates how the LISTPOS parameter determines the list entry selected.

7-12 OS/390 V2R8.0 MVS Sysplex Services Guide

Figure 7-7. Use of List Position with Entry Key

If there is only one list entry with the specified key, it is selected whether you
specify LISTPOS=HEAD or LISTPOS=TAIL.

In a sublist of list entries with the same key, only the first and last entries are
accessible by list entry key because you can only request that an operation be
performed on the head or tail list entry. A keyed list entry that is neither at the head
nor the tail of the sublist cannot be referenced by entry key. Instead, you must use
the list cursor or the list entry ID to reference it. Figure 7-8 shows keyed list entries
that cannot be referenced by list entry key:

Figure 7-8. Example of Keyed List Entries that Cannot Be Referenced by Entry Key

If multiple list entries share the entry key specified by KEYREQTYPE, list services
use the value of the LISTPOS parameter to determine whether to select the first or
last list entry with that entry key:

� If LISTPOS=HEAD, list services select the first list entry with that entry key.
� If LISTPOS=TAIL, list services select the last list entry with that entry key.

 Chapter 7. Using List Services (IXLLIST) 7-13

Figure 7-9. Use of KEYREQTYPE and LISTPOS Parameters

Using the Entry Key in Multiple List Operations
For a structure allocated in a CFLEVEL=1 or higher coupling facility, you can use
the entry key to select entries for processing. The KEYCOMP keyword allows you
to specify an entry key value with which the current list entry is to be compared. If
the comparison fails (that is, the current list entry key does not equal the
KEYCOMP value), then no processing is performed for the current entry and
processing continues with the next entry to be considered.

Understanding the List Cursor
A list cursor is associated with each list. It acts as a pointer that you can move
back and forth on the list. Its most natural use is to enable a set of users to
cooperate in the processing of a list. For instance, if the list represented units of
work to be performed, the list cursor could be used as follows. After initializing the
list cursor to point to a list entry, users seeking work would:

� Read the entry pointed to by the list cursor (the next entry that needs
processing) and move the list cursor to the next entry. (The list service
performs these two actions atomically on a READ request with
UPDATECURSOR=YES and CURSORUPDTYPE=NEXT or NEXTCOND.)

� Process the entry just read.

In this example, once the list cursor reaches the end of the list, the list service
resets the list cursor to zero. When a list cursor points to a list entry, it contains the
entry ID of that list entry.

7-14 OS/390 V2R8.0 MVS Sysplex Services Guide

For list structures allocated in a coupling facility with CFLEVEL=1 or higher, when
you are running on an MVS SP 5.2 system with version one of the IXLLIST macro:

� There are additional cursor update options

� The list cursor update can be conditional, that is, the update occurs only if
another condition is true at the time.

� The cursor can be made to point to the current entry instead of the previous or
next entry.

Initializing the List Cursor
When you allocate the list structure, the list cursors are all set to zero. A list cursor
must be initialized to point to a list entry before you can use it to designate an entry
with LOCBYCURSOR. There are two ways to set the list cursor to point to a list
entry before processing. One way is to use a WRITE_LCONTROLS request to
initialize the cursor and set its direction. The second way to initialize a list cursor is
to designate an entry and then use CURSORUPDTYPE to set the cursor to some
location relative to the designated entry (either the entry itself or the previous or
next entry).

� For list structures that are allocated in a coupling facility with CFLEVEL=1 (and
SP 5.2 and IXLLIST version one), you can use the the WRITE_LCONTROLS
request to initialize the list cursor. The SETCURSOR parameter of
WRITE_LCONTROLS allows you to set both the cursor location and the cursor
direction. The options available are:

– Set the cursor to the first list entry on the list, and set the cursor direction to
proceed in a head-to-tail direction.

– Set the cursor to the last list entry on the list, and set the cursor direction to
proceed in a tail-to-head direction.

� To initialize the list cursor to an identified list entry, issue an IXLLIST request,
referencing the target list entry using another means such as ENTRYID,
ENTRYNAME, or list position. Code UPDATECURSOR=YES on this request to
initialize the list cursor for use on future requests. UPDATECURSOR=YES will
set the list cursor to the list entry before or after the target entry or to the
current entry depending on the value of CURSORUPDTYPE and the direction
in which the cursor is progressing. The CURSORUPDTYPE parameter controls
how the list cursor is to be updated. See “Controlling How the List Cursor Is
Updated” on page 7-17.

Figure 7-10 on page 7-16 and Figure 7-11 on page 7-16 illustrate list cursor
initialization. The IXLLIST invocation shown in step 2 in Figure 7-11 on page 7-16
is intended only as an example of an IXLLIST request that could be used to
initialize the list cursor. You can initialize a list cursor using any of the IXLLIST
requests involving a list entry operation.

 Chapter 7. Using List Services (IXLLIST) 7-15

1.

2.

3.

Figure 7-10. Initializing a List Cursor with an IXLLIST WRITE_CONTROLS Request

1.

2.

3.

Figure 7-11. Initializing a List Cursor with Another IXLLIST Request

7-16 OS/390 V2R8.0 MVS Sysplex Services Guide

Controlling How the List Cursor Is Updated
The CURSORUPDTYPE parameter controls how the list cursor is to be updated
when UPDATECURSOR=YES is specified. You have several options for controlling
the cursor location, depending on the version of the IXLLIST macro you are using,
the release of MVS on which your application is running, and the CFLEVEL of the
coupling facility in which the structure is allocated. The options are:

NEXT Update the list cursor to point to the list entry before or after the
target entry. The direction of the cursor update depends on the
cursor direction for the list, as specified by LISTDIR or
LISTPOS, if LISTDIR is not specified. If the request is to create
a new entry with a MOVE request, the cursor for the list
identified by MOVETOLIST is updated in the direction indicated
by the value of MOVETOPOS.

CURSORUPDTYPE=NEXT is the default; its processing is
identical to the UPDATECURSOR=YES processing in version
zero of the IXLLIST macro. You can use
CURSORUPDTYPE=NEXT for structures allocated in a coupling
facility of any CFLEVEL.

Figure 7-12 illustrates the use of CURSORUPDTYPE=NEXT.

1.

2.

3.

Figure 7-12. Updating the List Cursor to the Next Entry

NEXTCOND Update the list cursor to point to the list entry before or after the
target entry only if the list cursor points to the target entry and
the entry is deleted or moved to another list. Otherwise, the list
cursor is not updated. The direction of the cursor update

 Chapter 7. Using List Services (IXLLIST) 7-17

depends on the list cursor direction (which can be set with the
SETCURSOR parameter on a WRITE_LCONTROLS request).

If the entry is the last entry on the list and the list cursor
direction is set in a head-to-tail direction, or if the entry is the
first entry on the list and the list cursor direction is set in a
tail-to-head direction, then list services reset the list cursor to
binary zeros.

You can use CURSORUPDTYPE=NEXTCOND only for
structures allocated in a coupling facility of CFLEVEL=1 or
higher with MVS SP 5.2 or above.

Figure 7-13 and Figure 7-14 on page 7-19 illustrate the use of
CURSORUPDTYPE=NEXTCOND.

1.

2.

3.

Figure 7-13. Updating the List Cursor Conditionally — Example 1

7-18 OS/390 V2R8.0 MVS Sysplex Services Guide

1.

2.

3.

Figure 7-14. Updating the List Cursor Conditionally — Example 2

CURRENT Update the list cursor to point to the target entry. If this request
deletes the list entry or moves it to another list, the list cursor for
the list is reset to zero.

You can use CURSORUPDTYPE=CURRENT only for structures
allocated in a coupling facility of CFLEVEL=1 or higher with
MVS SP 5.2 or above.

Figure 7-15 on page 7-20 and Figure 7-16 on page 7-20
illustrate the use of CURSORUPDTYPE=CURRENT.

 Chapter 7. Using List Services (IXLLIST) 7-19

1.

2.

3.

(s) (c) (m) (j)

Figure 7-15. Updating the List Cursor to the Current Entry — Example 1

1.

2.

3.

(s) (c) (m) (j)

(s) (m) (j)

(s) (b) (c)

(a) (b)

Figure 7-16. Updating the List Cursor to the Current Entry — Example 2

7-20 OS/390 V2R8.0 MVS Sysplex Services Guide

CURRENTCOND Update the list cursor to point to the target entry only if the list
cursor value currently is zero and this request is not deleting the
target list entry or moving it to another list. If the request deletes
the list entry or moves it to another list, the list cursor remains
zero.

You can use CURSORUPDTYPE=CURRENTCOND only for
structures allocated in a coupling facility of CFLEVEL=1 or
higher with MVS SP 5.2 or above.

Figure 7-17 and Figure 7-18 on page 7-22 illustrate the use of
CURSORUPDTYPE=CURRENTCOND.

1.

2.

3.

(s) (c) (m) (j)

Figure 7-17. Conditionally Updating the List Cursor to the Current Entry — Example 1

 Chapter 7. Using List Services (IXLLIST) 7-21

1.

2.

3.

(s) (c) (m) (j)

Figure 7-18. Conditionally Updating the List Cursor to the Current Entry — Example 2

Using the List Cursor
Once the list cursor is initialized, code the LOCBYCURSOR parameter to specify a
target list entry using a list cursor. Issue the READ_LCONTROLS request for a
particular list to determine the value to which its list cursor is set. The value of the
list cursor is returned in the LAALISTCURSOR field of the answer area, an output
area returned by IXLLIST.

For a structure allocated in a CFLEVEL=1 or higher coupling facility, for which you
have set the cursor with a WRITE_LCONTROLS SETCURSOR request, you can
use the READ_LCONTROLS request to determine the current value of the list
cursor direction indicator. The value of the list cursor direction is returned in the
LAACURSORDIR field of the list answer area. See “READ_LCONTROLS: Reading
List Controls” on page 7-96 for more information.

� For version zero of IXLLIST (SP 5.1 and above), code the
UPDATECURSOR=YES parameter to move the list cursor to the entry before
or after the target entry, depending on the value of LISTDIR or LISTPOS.

You can code the UPDATECURSOR=YES parameter without coding the
LOCBYCURSOR parameter, so you can move the list cursor even if you don't
specify the target list entry by list cursor. Figure 7-19 on page 7-23 illustrates
this scenario.

7-22 OS/390 V2R8.0 MVS Sysplex Services Guide

1.

2.

3.

Figure 7-19. Updating the List Cursor without Using LOCBYCURSOR

� For version one of IXLLIST (SP 5.2 and above), code the
CURSORUPDTYPE=NEXT parameter to move the list cursor to point to the list
entry before or after the target entry, depending on the value of LISTDIR or
LISTPOS. The CURSORUPDTYPE=NEXT option is identical to the
UPDATECURSOR processing in IXLLIST version zero.

List services always move the list cursor before performing the list entry operation
except when you request an operation that causes a new entry to be created. For
example, if a WRITE request causes a new entry to be created, list services update
the cursor for the list on which the new entry is created after the entry has been
created. See Figure 7-20 on page 7-24. If a MOVE request causes a new entry to
be created, list services updates the cursor for the list on which the new entry is
created after the entry has been created. See Figure 7-21 on page 7-24.

 Chapter 7. Using List Services (IXLLIST) 7-23

1.

2.

3.

(s) (c) (m) (j)

Figure 7-20. Updating the List Cursor when Creating an Entry with WRITE

1.

2.

3.

(s) (c) (m) (j)

(x) (a)

(a)

Figure 7-21. Updating the List Cursor when Creating an Entry with MOVE

7-24 OS/390 V2R8.0 MVS Sysplex Services Guide

If the list cursor is set to zero and you specify LOCBYCURSOR on your IXLLIST
request, the result is an entry-not-found condition. If the request mandates that the
target entry must exist, then your request fails. If the request indicates that an entry
be created if an existing entry is not found, then a new entry is created.

Resetting the List Cursor to Zero
The following circumstances cause the list cursor to stop pointing to a valid list
entry and get reset to zero:

� If you specify UPDATECURSOR=NO and the entry to which the list cursor
points is deleted or moved to another list. Since the list cursor no longer points
to a list entry on that list, the list cursor is reset to zero. Figure 7-22 on
page 7-26 illustrates this scenario.

� If you specify UPDATECURSOR=YES with LISTDIR=TOHEAD and
CURSORUPDTYPE=NEXT and the list cursor is already pointing to the head
entry on the list. Since there is no entry before the head entry, the list cursor is
reset to zero. Figure 7-23 on page 7-26 illustrates this scenario.

� If you specify UPDATECURSOR=YES with LISTDIR=TOTAIL and
CURSORUPDTYPE=NEXT and the list cursor is already pointing to the tail
entry on the list. Since there is no entry after the tail entry, the list cursor is
reset to zero. Figure 7-24 on page 7-27 illustrates this scenario.

� For a structure allocated in a coupling facility of CFLEVEL=1 or higher,

– If you specify CURSORUPDTYPE=NEXTCOND and the cursor direction is
set in a tail-to-head direction and the list cursor is already pointing to the
head entry on the list

– If you specify CURSORUPDTYPE=NEXTCOND and the cursor direction is
set in a head-to-tail direction and the list cursor is already pointing to the
tail entry on the list.

� For a structure allocated in a coupling facility of CFLEVEL=1 or higher, if you
specify CURSORUPDTYPE=CURRENT and the entry to which the list cursor
points is deleted or moved to another list.

When the list cursor is reset to zero, you must re-initialize it as described above
before using it again to designate an entry with LOCBYCURSOR.

 Chapter 7. Using List Services (IXLLIST) 7-25

1.

2.

3.

Figure 7-22. List Cursor After the List Entry is Deleted

1.

2.

3.

Figure 7-23. List Cursor When Moved Before the First List Entry

7-26 OS/390 V2R8.0 MVS Sysplex Services Guide

1.

2.

3.

Figure 7-24. List Cursor When Moved After the Last List Entry

1.

2.

3.

Figure 7-25. List Cursor When Moved Conditionally Before First Entry

 Chapter 7. Using List Services (IXLLIST) 7-27

1.

2.

3.

(s) (c) (m) (j)

Figure 7-26. List Cursor When List Entry Is Deleted

Specifying a List Entry by Entry ID
To designate a list entry by entry ID, specify the entry ID (ENTRYID). The entry ID,
which is assigned by the system when a list entry is created, is one of the list entry
controls returned in the answer area for certain requests such as READ, WRITE,
MOVE, and DELETE. The description of each request contains a section describing
the answer area information returned for that request. Refer to the answer area
information for each request to determine whether a list entry ID is returned.

Specifying a Named List Entry by Entry Name
To designate a named list entry by entry name, specify the entry name
(ENTRYNAME). The entry name, which is assigned by the creator of the list entry,
is one of the list entry controls returned in the answer area for certain requests
such as READ, WRITE, MOVE, and DELETE. The description of each request
contains a section describing the answer area information returned for that request.
Refer to the answer area information for each request to determine whether a list
entry name is returned.

Understanding List Structure Monitoring
Depending on the CFLEVEL of the coupling facility in which the list structure is
allocated, the list structure monitoring functions allow you to determine whether a
particular list or event queue is empty (contains no entries) or nonempty (contains
one or more entries). The monitoring functions do not incur the overhead of
accessing the coupling facility. Instead, the system maintains list or event queue
information in a list notification vector allocated in high-speed processor storage on
your own system.

7-28 OS/390 V2R8.0 MVS Sysplex Services Guide

A change from empty to nonempty in a list or event queue within the list structure is
called a list or event queue transition. Not only does the list structure monitoring
function offer you a faster way to determine the state of a list or event queue, but it
also offers the option of being informed of list and event queue transitions by
means of a list transition exit.

� With a coupling facility of any CFLEVEL, you can monitor the transition of a list
from empty to nonempty.

� With a coupling facility of CFLEVEL=3 or higher, you also can monitor the
transition of an event queue from empty to nonempty. Monitoring an event
queue is the method by which you can, indirectly, monitor sublists within a
keyed list.

The List Notification Vector
When you connect to the list structure and indicate your interest in using the list
structure monitoring function, the system allocates a list notification vector for your
use and returns a token to you representing this vector. The list notification vector
shows the state (empty or nonempty) of each list or event queue you are
monitoring. Each connector to the list structure that indicates interest in list
monitoring (by coding the VECTORLEN parameter on the IXLCONN macro) or
event queue monitoring (by coding the VECTORLEN and EMCSTGPCT
parameters on the IXLCONN macro) is allocated a list notification vector.

A list notification vector consists of an array of entries, each of which can be
associated with a particular list header or with the user's event queue. The number
of entries must be a multiple of 32. The assignment of particular vector entries to
monitor particular lists or to monitor the user's event queue is under the user's
control with the IXLLIST MONITOR_LIST and MONITOR_EVENTQ request types.
Note that the user can change this monitoring assignment dynamically over time
(so that at any given point in time, none, some, or all of the allocated vector entries
might be actively in use for monitoring purposes). However, the user should take
care to manage the assignment of monitoring to particular vector entries such that
any given vector entry is never monitoring more than one thing at a time. In such a
case, the results are unpredictable.

When a transition occurs for a monitored list or event queue, the system
automatically updates the associated entry in the list notification vector to reflect the
empty or nonempty state of the list or event queue. The IXLVECTR macro provides
the interface to the list notification vector. To determine whether a list or event
queue you are monitoring is empty or non-empty, invoke the IXLVECTR macro with
either the TESTLISTSTATE or LTVECENTRIES parameter. You can use the
IXLVECTR macro with the MODIFYVECTORSIZE parameter to change the size of
your list notification vector, so you can, for instance, monitor more lists.

See “Using the IXLVECTR Macro” on page 9-3 for more information.

Options for Detecting a List or Event Queue Transition
You can detect list or event queue transitions two different ways:

� By having your list notification exit receive control when the list or event queue
changes from empty to nonempty. Your list notification exit then invokes the
IXLVECTR macro to check the state (empty or nonempty) of each list or event
queue you are monitoring.

 Chapter 7. Using List Services (IXLLIST) 7-29

� By coding a polling routine to invoke the IXLVECTR macro periodically to check
the state of each list or event queue you are monitoring.

For each list or event queue you monitor, you can choose how you want to detect
list or event queue transition. You can monitor some using a list notification exit and
others by whatever method you choose, such as polling the list notification vector.

Understanding the Event Queue
Within a keyed list structure allocated in a coupling facility of CFLEVEL=3 or higher,
the system creates an event queue and an event queue controls object associated
with each user. The event queue is created when the list structure is allocated with
keyed list entries and is deleted when the list structure is deallocated. When you
are monitoring an event (such as the state change of a sublist), the system queues
or withdraws an event monitor controls (EMC) object to or from your associated
event queue. For example, an EMC can be queued to your event queue when:

� An empty to nonempty state transition occurs for a monitored sublist.

� You register monitoring interest in a sublist at a time that the sublist is
nonempty.

An EMC can be withdrawn from your event queue when:

� A nonempty to empty state transition occurs for a monitored sublist. In this
case, the system returns the EMC to association with its sublist.

An EMC can be dequeued from your event queue when:

� You specifically request that the EMCs be retrieved and dequeued from the
event queue. The EMC remains associated with its sublist.

An EMC can be deleted from the list structure when:

� You deregister monitoring interest in a sublist. In this case, the system discards
the EMC.

� You disconnect from the structure or your connection terminates. The system
deletes all EMCs associated with the connector.

The list services function uses the event queue for notifying a user that a state
transition has occurred in one or more sublists that the user is monitoring. When a
user registers interest in monitoring a sublist, list services creates an event monitor
controls object (EMC) that associates and identifies both the user and the particular
sublist. When the sublist transitions to a nonempty state, (or if the user registers
interest in a sublist that is already in the nonempty state), the EMC is queued to the
user's event queue. When the sublist transitions to an empty state, the EMC is
withdrawn from the user's event queue but continues to be associated with the user
and the monitored sublist.

By monitoring his event queue for the presence or absence of EMCs, the user is
able to monitor one or more sublists in the structure. Each EMC uniquely identifies
the sublist for which a transition has occurred.

7-30 OS/390 V2R8.0 MVS Sysplex Services Guide

Monitoring the Event Queue
The IXLLIST REQUEST=MONITOR_EVENTQ request allows you to start and stop
monitoring your event queue for the presence of event monitor controls objects. To
start monitoring the event queue, you must provide the list notification vector index
that is associated with the event queue. List services uses the vector index to
indicate whether the event queue is in the empty or nonempty state.

As with list monitoring, you can be notified about the transition of the event queue
from empty to nonempty by having the system drive your list transition exit. You
can also create your own polling protocol to poll the list notification vector to
determine when a change has occurred.

Understanding Event Queue Controls
Event queue controls contain information about each event queue. Each user's
event queue has its own set of event queue controls. The IXLLIST
REQUEST=READ_EQCONTROLS request allows you to read your event queue's
controls. Event queue control information includes the following:

� Vector index associated with the monitored event queue
� Number of event monitor controls that are currently queued to the event queue
� Approximate number of empty to nonempty event queue transitions that have

occurred
� Indicator as to whether the user wants the list transition exit (identified by the

LISTTRANEXIT keyword on IXLCONN) given control when the event queue
transitions from empty to nonempty

� Indicator as to whether the user is currently monitoring the event queue

Understanding Event Monitor Controls
Information about a user and a designated sublist being monitored by the user is
stored in an event monitor controls (EMC) object for the user. There can be at
most one EMC per user per sublist being monitored. The information in an event
monitor controls object includes the following:

� List number of the list with which the EMC is associated.
� List entry key of the sublist with which the EMC is associated.
� User notification control data either supplied by the connector when this EMC

was established to monitor the sublist or updated by a subsequent
MONITOR_SUBLIST or MONITOR_SUBLISTS request.

� Connection identifier of the user with which the EMC is associated.

The IXLLIST REQUEST=MONITOR_SUBLIST and
REQUEST=MONITOR_SUBLISTS request types allow you to create EMCs and
update their user notification control data.

There are two additional IXLLIST request types that allow you to reference EMCs:

� The IXLLIST REQUEST=READ_EMCONTROLS request allows you to
determine if an EMC for a specific sublist is queued to your event queue. If the
EMC exists, the system returns the EMC information, including the user
notification controls data, in an answer area that you specify on the request. If
the EMC does not exist, the system returns reason code
IXLRSNCODENOENTRY.

� The IXLLIST REQUEST=DEQ_EVENTQ request allows you to atomically read
the EMCs and dequeue them from the event queue with a single command.

 Chapter 7. Using List Services (IXLLIST) 7-31

The system removes the EMCs from your event queue but maintains their
association with the sublist(s) you are monitoring. The system returns the EMC
information in a buffer area that you specify on the request. The system also
returns a count of how many EMCs were read and dequeued from the event
queue and a count of how many EMCs remain queued on the event queue.

Understanding Sublist Monitoring
Sublist monitoring differs from list or event queue monitoring in the way in which
the user is notified of a change in the state of the sublist. While sublist monitoring
is in effect, the system will queue or withdraw EMCs to or from your event queue to
indicate the empty or nonempty state of the sublist. An event queue is present for
each structure user when the structure is a keyed list structure that resides in a
coupling facility with CFLEVEL=3 or higher. To determine whether a sublist
transition has occurred, monitor your event queue for the presence or absence of
EMCs.

With a keyed list structure allocated in a coupling facility with CFLEVEL=3 or
higher, you can register interest in monitoring a single sublist within a list or multiple
sublists within one or more lists.

� The IXLLIST REQUEST=MONITOR_SUBLIST request allows you to register or
deregister interest in monitoring a single sublist . You identify the sublist to be
monitored by list number and entry key. You can also specify 16 bytes of user
data, called the user notification controls, to reside in the EMC.

� The IXLLIST REQUEST=MONITOR_SUBLISTS request allows you to register
interest in monitoring multiple sublists (from 1 to 1024) with a single
command. Information about the sublists in which you wish to register interest
is stored in a buffer area that you specify. The information about each sublist is
mapped by the macro IXLYMSRI and includes the following:

– List number of the sublist to be monitored
– List entry key of the sublist to be monitored
– 16 bytes of user-defined data, called user notification controls, to reside in

the EMC.

On a MONITOR_SUBLISTS request you also must provide a storage area,
called a MOSVECTOR, which is used to return the “monitored object state” for
each sublist that was processed by the request. The monitored object state
indicates whether a sublist was empty or nonempty at the time you registered
monitoring interest; thus the MOSVECTOR provides you with information on the
initial state of the sublists in which you've registered a monitoring interest.

Each bit in the MOSVECTOR area corresponds one-to-one with an IXLYMSRI
entry in the input buffer for the request. Only those bits in the MOSVECTOR
that correspond to IXLYMSRI entries that were actually processed by the
current request are valid; all other bits in the MOSVECTOR are unpredictable.

A MONITOR_SUBLISTS request can complete prematurely for a variety of
reasons, such as a model dependent timeout, an incorrectly-specified list
number, or a lack of available event monitor controls. When this occurs, the
user should handle the set of registrations that were performed on the current
request (including observing the monitored object states in the MOSVECTOR
area) before reissuing the MONITOR_SUBLISTS request to continue
processing additional IXLYMSRI entries, because the second request will not
return valid information for any entries other than those that are actually
processed by the second request. On completion of the second request, the

7-32 OS/390 V2R8.0 MVS Sysplex Services Guide

state of the MOSVECTOR bits corresponding to IXLYMSRI entries that were
processed by the first request is unpredictable.

See “MONITOR_SUBLIST, MONITOR_SUBLISTS: Monitoring Sublists” on
page 7-107 for a description of the MONITOR_SUBLIST and
MONITOR_SUBLISTS functions of IXLLIST.

Once you have determined that one or more EMCs are queued to your event
queue, you can issue an IXLLIST REQUEST=DEQ_EVENTQ request to read the
information in the EMCs to identify the sublists that have transitioned from empty to
nonempty.

Reviewing Sublist and Event Queue Monitoring
The following points outline the use of an event queue to accomplish sublist
monitoring:

� A keyed list structure is allocated in a coupling facility with CFLEVEL=3 or
higher. The connector specifies both a local vector and a percentage of storage
for event monitor control objects.

� Connectors to the structure register interest in monitoring their event queues
and specify the vector index to be associated with the event queue. (IXLLIST
REQUEST=MONITOR_EVENTQ)

� When a connector registers interest in monitoring one or more sublists, the
system creates an EMC to uniquely associate the user with each sublist.
(IXLLIST REQUEST=MONITOR_SUBLIST, IXLLIST
REQUEST=MONITOR_SUBLISTS)

� When a monitored sublist transitions to a nonempty state, an EMC is queued to
the user's event queue. Users are notified either through their list transition exit
or their own polling protocol.

� Users read EMCs from their event queues and examine the EMC contents to
identify a monitored sublist that has transitioned. The operation that reads the
EMCs also dequeues them from the event queue. (IXLLIST
REQUEST=DEQ_EVENTQ)

You must be aware of certain timing considerations when monitoring state
transitions of both a sublist and an event queue. Some examples are:

1. The queueing of an EMC to an event queue occurs asynchronously with
respect to the command that caused the queueing to be performed. For
example,

� You add the first entry to a sublist that you are monitoring.

� You read and dequeue the EMCs from your event queue.

Result: The EMC for the sublist that just transitioned to a nonempty state might
or might NOT have been queued to your event queue by the time the
DEQ_EVENTQ command is processed. Thus the EMC representing the
now-nonempty sublist might or might not be read by the DEQ_EVENTQ
command.

2. The withdrawal of an EMC from an event queue occurs asynchronously with
respect to the command that caused the withdrawal to be performed. For
example,

 Chapter 7. Using List Services (IXLLIST) 7-33

� You delete the last entry from a sublist that you are monitoring.

� You read and dequeue the EMCs from your event queue.

Result: The EMC for the sublist for which the last entry was deleted might or
might NOT have been withdrawn from your event queue by the time the
DEQ_EVENTQ command is processed. Thus the EMC representing the
now-empty sublist might or might not be read by the DEQ_EVENTQ command.

3. The list notification signal that sets the state of the local vector entry that
represents the empty or nonempty state of the event queue occurs
asynchronously with respect to the state change of the event queue. For
example,

� You read and dequeue all EMCs from your event queue so that it is now
empty.

� You test the local vector entry with which you are monitoring your event
queue.

Result: The local vector entry might or might NOT indicate that the event queue
is now empty.

In all cases, the coupling facility preserves the ordering of individual EMCs on the
event queue and list notification signals for setting a given vector index.

� For any particular EMC, the coupling facility preserves the ordering of queueing
and withdrawal processes, so that the final location of the EMC — either on or
off the event queue — is always correct.

� For any given vector entry, the coupling facility preserves the ordering of list
notification signals to set the vector entry, so that the final state of the vector
entry — either empty or nonempty — is always correct.

Understanding List Entry Controls
Information relating to the list entry is stored in the list entry controls of each entry.
List entry control information can include the following:

 � List number
� List entry ID
� List entry name or list entry key, if applicable
� List entry version number
� List entry size

Most of the list entry controls listed above have already been discussed in
“Referencing List Entries” on page 7-9. List entry size indicates the number of data
elements that comprise the data entry.

Understanding List Controls
List controls, not to be confused with list entry controls, contain information relating
to each list. Each list has its own set of list controls. The READ_LCONTROLS
request allows you to read a list's controls. The WRITE_LCONTROLS request
allows you to change the values of certain list controls. The remaining list controls
are under the exclusive control of list services. Their values are updated as part of
IXLLIST request processing.

7-34 OS/390 V2R8.0 MVS Sysplex Services Guide

List Controls That Can Be Updated Using WRITE_LCONTROLS
The following list controls can be updated using WRITE_LCONTROLS:

� The list limit, which can be either of the following:

– The maximum number of list entries allowed on the list
– The maximum number of data elements allowed on the list.

The choice of limit type is specified using the LISTCNTLTYPE parameter on
the IXLCONN macro when the structure is allocated. The initial value of the list
limit for each list is the maximum number of list entries or data elements for the
entire structure. So, in effect, you could place all list entries in the list structure
on a single list.

� The list description. An optional, user-defined description of the list. The list
description for each list is initialized to zeros when the structure is allocated.

� The list authority. Applications optionally can define a list authority value that
must be specified when users update list controls. The list authority value for
each list is initialized to zeros when the structure is allocated.

For a list structure allocated in a CFLEVEL=1 or higher coupling facility, several
IXLLIST requests can be made conditional upon the success of a list authority
comparison. Some IXLLIST requests can also update the list authority.

� The list key. LISTKEY specifies an optional list key value that is associated with
the list. The list key can be assigned to a list entry automatically when a list
entry is created or moved. Some IXLLIST requests can also update the list key
value by specifying a list key increment. LISTKEY is valid only for structures in
a coupling facility with CFLEVEL=1 or higher. See “Understanding List Entry
Key Assignment” on page 7-10.

� The maximum list key. MAXLISTKEY specifies an optional list key value that
provides an upper boundary for the list key. IXLLIST commands that specify
automatic list key assignment can also increment the current list key value.
When the maximum list key value is exceeded, the system will not
automatically assign a list key to a list entry. MAXLISTKEY is valid only for
structures in a coupling facility with CFLEVEL=1 or higher.

� The location of the list cursor and the list cursor direction. SETCURSOR is an
optional method (for structures allocated in a CFLEVEL=1 or higher coupling
facility) of setting the list cursor to the first list entry on the list with a list cursor
direction of head-to-tail or to the last list entry on the list with a list cursor
direction of tail-to-head.

List Controls That Cannot be Updated Using
WRITE_LCONTROLS
The following list controls cannot be updated using WRITE_LCONTROLS. They
are updated automatically by list services:

� The current number of list entries or data elements on the list (choice is
determined by the value of LISTCNTLTYPE as described above). This field is
initialized to zero when the structure is allocated.

� The approximate number of times the list has changed from empty to
nonempty. This field is initialized to zero when the structure is allocated.

� The number of list monitoring information entries associated with the list. See
“Obtaining List Monitoring Information” on page 7-96 for additional information

 Chapter 7. Using List Services (IXLLIST) 7-35

about list monitoring information entries. This field is initialized to the
model-dependent maximum number of connectors to the structure.

� For structures allocated in a CFLEVEL=0 coupling facility, the value of the list
cursor (entry ID to which it points or zero). This field is initialized to zero when
the structure is allocated.

List Controls That Can Be Updated Using READ, WRITE, MOVE,
and DELETE
You can update the list authority using a READ, WRITE, MOVE, or DELETE
request. Your update occurs only if you explicitly specify a list number (LISTNUM)
and the request completes successfully.

You also can update the list key using a WRITE or MOVE request that specifies
automatic key assignment.

Understanding the List Authority Value
The list authority value provides a way of ensuring that only users authorized to do
so issue certain requests for list services. You can use the list authority to select
entries on a list for processing and for some requests you can update the list
authority with a new value when the request completes successfully.

Using the List Authority Value to Select Entries for Processing
For structures allocated in a coupling facility with CFLEVEL=1 or higher, you can
use the list authority value to provide conditional processing. For single-entry
requests (READ, WRITE, MOVE, DELETE), processing can be made conditional
on the success of a comparison between the current a list authority value that you
specify in the request itself. You can specify that the comparison is to be either an
equal operation or a less-than-or-equal operation. You must explicitly provide the
list number as part of the request. If the list authority comparison is successful, the
request is processed; if not, the system returns reason code
IXLRSNCODEBADLISTAUTH to indicate why the request was not processed. The
current list authority value is also returned in the list answer area.

For multiple-entry requests (READ_LIST, READ_MULT, DELETE_MULT,
DELETE_ENTRYLIST), the same type of filtering can be used. If the list authority
comparison is successful, the request is processed and continues with the next
entry to be processed. If the comparison is not successful, the request is not
processed and continues with the next entry in the list.

Updating the List Authority Value
For structures allocated in a coupling facility with CFLEVEL=1 or higher, you can
update the list authority value for a list associated with an entry. On a single-entry
request, you can specify a new list authority value (NEWAUTH) which will be used
to update the current list authority value. You must explicitly provide the list number
as part of the request. The update to the list authority value only occurs if the
request is successful.

By adhering to a protocol of updating the list authority value when you update a list
entry's contents, you can avoid corrupting or deleting changes made to the entry by
other users. For instance, you could establish the following procedure for updating
list entries:

1. Read a list entry.

7-36 OS/390 V2R8.0 MVS Sysplex Services Guide

2. Update its contents.
3. Increment, decrement, or set the list authority value of the updated copy of the

list entry.
4. Write the changes back to the list entry using the AUTHCOMP parameter to

ensure that the list entry is updated only if its list authority value is still the
same as when you read it.

If the list authority comparison fails, the write request is not performed and you
must start the update process again after re-reading the current list entry.

Understanding the User Exits
User-written exits play a critical role in the operation of many of the list structure
services. Users provide their exit addresses when they issue the IXLCONN macro
to connect to the list structure. The following exits are used with a list structure:

Complete exit Informs users when their asynchronous requests have
completed processing. See “Coding a Complete Exit” on
page 7-116.

Notify exit Informs users when list services detect contention for list
structure locks they hold (see “Coding a Notify Exit” on
page 7-119). If the structure includes a lock table, users must
provide a notify exit to receive notification when they hold a
lock for which there is contention. The notify exit can release
the lock, take other actions to speed up the release of the lock,
or ignore the notification. See “Coding a Notify Exit” on
page 7-119.

List transition exit Informs users when monitored lists or the user's monitored
event queue changes from the empty state to the nonempty
state. This is the only list structure exit that is optional. See
“Coding a List Transition Exit” on page 7-122.

Understanding Synchronous and Asynchronous List Operations
You can request that your IXLLIST request be processed synchronously or
asynchronously. In addition, for requests that run asynchronously, you can also
choose the way you want to be notified of request completion. You select the type
of processing and the method of request completion notification using a single
parameter – the MODE Parameter. Figure 7-27 on page 7-39 lists each MODE
parameter option. However, before discussing the MODE parameter, an
explanation of synchronous and asynchronous IXLLIST processing is necessary.

 Synchronous processing

Synchronous processing of an IXLLIST request is defined as follows: your
program regains control only when the IXLLIST request has completed
processing. In certain cases, however, the system cannot process the IXLLIST
request synchronously without suspending your program.

If a synchronous IXLLIST request cannot be processed without suspending
your program, IXLLIST either suspends your program or processes the request
asynchronously. Your program is suspended only if you explicitly permit it by
coding MODE=SYNCSUSPEND. Otherwise, even though you have requested
synchronous processing, your request is processed asynchronously.

 Chapter 7. Using List Services (IXLLIST) 7-37

The following circumstances cause MODE=SYNCSUSPEND requests to be
suspended and other synchronous IXLLIST requests to be processed
asynchronously:

� The necessary resources for the request (such as a subchannel) are not
currently available.

� You specified the BUFFER parameter with more than 4096 bytes of buffer
storage.

� You specified the BUFLIST parameter with more than one buffer,
regardless of the total amount of data for the request.

� A dump of the structure is in progress.

� The system might also choose to convert synchronous requests to
asynchronous processing, based on performance considerations or other
criteria.

The system indicates its intention to process your synchronous request
asynchronously by returning a return code of IXLRETCODEWARNING with a
reason code of IXLRSNCODEASYNC when you issue the IXLLIST request.

 Asynchronous processing

When the system processes a request asynchronously, your program regains
control after issuing the request and the IXLLIST request runs independently.
When your request runs asynchronously, you need a way to determine when it
has completed processing. All IXLLIST requests except those coded with
MODE=SYNCSUSPEND could be processed asynchronously . For
non-SYNCSUSPEND requests, both synchronous (MODE=SYNCxxx) and
asynchronous (MODE=ASYNCxxx), you must specify how you want to be
informed of asynchronous request completion.

The MODE parameter

The MODE parameter options that specify synchronous processing have the
format SYNCxxx, where xxx (except for SYNCSUSPEND) indicates the way
you want to be informed of request completion if your request is processed
asynchronously.

The MODE parameter options that specify asynchronous processing have the
format ASYNCxxx, where xxx indicates the way the system will inform you of
request completion if your request is processed asynchronously. You can
choose to have the system inform you of asynchronous request completion in
any of the following ways:

� Post an ECB (event control block):

 – MODE=SYNCECB
 – MODE=ASYNCECB

� Return an asynchronous request token to be specified on the IXLFCOMP
macro, which you invoke to obtain the results of the the IXLLIST request:

 – MODE=SYNCTOKEN
 – MODE=ASYNCTOKEN

Issuing IXLLIST requests with MODE=SYNCTOKEN or
MODE=ASYNCTOKEN enables you to issue multiple IXLLIST requests,
continue with other work while the requests are being processed, and
obtain request results at your convenience using the IXLFCOMP macro.

7-38 OS/390 V2R8.0 MVS Sysplex Services Guide

See “Using the IXLFCOMP Macro with MODE=ASYNCTOKEN or
MODE=SYNCTOKEN” on page 7-40 for more information.

� Give control to your complete exit:

 – MODE=SYNCEXIT
 – MODE=ASYNCEXIT

In addition, you can choose not to be informed of request completion by coding
MODE=ASYNCNORESPONSE.

Figure 7-27 presents the options for IXLLIST request processing and asynchronous
request completion notification:

Figure 7-27. Options for IXLLIST Request Processing and Completion Notification

MODE Parameter Value Actions Specified

SYNCECB Attempt to process the request synchronously but if the request
must be processed asynchronously, post an ECB to indicate
request completion.

ASYNCECB Process the request asynchronously and post an ECB to indicate
request completion.

SYNCTOKEN Attempt to process the request synchronously but if the request
must be processed asynchronously, return an asynchronous
request token representing the request.

To obtain request results, invoke the IXLFCOMP macro with the
asynchronous request token you received. For more information,
see “Using the IXLFCOMP Macro with MODE=ASYNCTOKEN or
MODE=SYNCTOKEN” on page 7-40.

ASYNCTOKEN Process the request asynchronously and return an asynchronous
request token representing the request.

To obtain request results, invoke the IXLFCOMP macro with the
asynchronous request token you received. For more information,
see “Using the IXLFCOMP Macro with MODE=ASYNCTOKEN or
MODE=SYNCTOKEN” on page 7-40.

SYNCEXIT Attempt to process the request synchronously but if the request
must be processed asynchronously, give control to the complete
exit when the request completes. For more information about the
complete exit, see “Coding a Complete Exit” on page 7-116.

ASYNCEXIT Process the request asynchronously and give control to the
complete exit when the request completes.

SYNCSUSPEND Process the request synchronously. If necessary, suspend the
program until the request completes processing. Note that this is
the only MODE option that could cause your program to be
suspended. To use this option, your program must be enabled for
I/O and external interrupts.

ASYNCNORESPONSE Process the request asynchronously. Do not provide notification of
request completion.

 Chapter 7. Using List Services (IXLLIST) 7-39

Using the IXLFCOMP Macro with MODE=ASYNCTOKEN or
MODE=SYNCTOKEN
If you specify MODE=ASYNCTOKEN, or if you specify MODE=SYNCTOKEN and
your request is processed asynchronously, you must invoke the IXLFCOMP macro
to obtain the results of your IXLLIST request. You can use the IXLFCOMP macro
either to determine whether your request has completed or to have your unit of
work suspended until the request completes.

If the return code from IXLFCOMP indicates that your request has completed, the
results are available in the output areas you have specified on the IXLLIST macro
invocation.

For more information about the IXLFCOMP macro, see “Using the IXLFCOMP
Macro” on page 9-1.

Understanding the Serialized List Structure
A serialized list structure is a list structure that contains a lock table. The lock table
is an array of exclusive locks, whose purpose and scope are application-defined.
Lock table locks can provide a serialization mechanism for lists, list entries, or any
other list structure entity you designate. The first connector to the list structure
specifies whether it is to be a serialized list structure, and if so, the number of lock
entries to be allocated in the lock table. Figure 7-1 on page 7-3 shows a serialized
list structure.

This topic will help you understand how to use the serialized list structure and how
to design protocols to handle lock contention, recovery, and cleanup. Some of this
information, as well as additional detail about the lock-related parameters is
provided in “LOCK: Performing a Lock Operation” on page 7-100.

Overview of Locking Functions
IXLLIST offers a variety of specialized locking operations beyond the usual obtain,
release, or test. Some of the unique locking functions include:

� Obtaining a lock only if it is held by a certain connection

� Releasing a lock only if it is held by a certain connection

� Performing a list entry operation only if the specified lock is not held

� Performing a list entry operation only if the specified lock is held by a certain
connection ID

� Determining whether a lock is held by a specified connection ID

� Determining the lock table index of the next lock that is held, or held by a
specified connection ID

Another key aspect of IXLLIST lock operations is that they can be performed
together with or independently of list entry operations. For instance, in a single
operation, you can obtain a lock for a list and update a list entry on that list.
Alternatively, you can obtain the lock without performing the list entry operation.
When you request a lock operation together with a list entry operation, the list entry
operation is not performed unless the lock operation is successful.

Applications can use the locking functions provided by the serialized list structure in
many different ways. Some examples:

7-40 OS/390 V2R8.0 MVS Sysplex Services Guide

� To serialize accesses to each list, an application can define a lock table with
one lock per list. Having a lock for each list also enables users to serialize list
operations involving multiple list entries.

For instance, a user could obtain the lock, perform a READ_LIST while holding
the lock, then release the lock. Having a lock for each list also allows an
application to perform recovery actions on a single list basis.

Users that perform operations on single list entries on a list can use the
NOTHELD option to avoid interfering with users performing a series of list entry
operations on the list while holding the lock. The NOTHELD option requests
that a list entry operation be performed only if the specified lock is not held.

� To deny access to a list structure when performing recovery processing, an
application can define a lock to serialize access to the list structure. List
structure users can use the NOTHELD option to allow them to perform list
operations only if the lock for the list structure is not held (and therefore
recovery is not in progress.)

A lock can be in any of the following states:

� Held by a single user
� Held by the system

 � Not held

When the system is transferring lock ownership from one user to another or
performing other internal lock-related processing, the lock state is defined as held
by the system.

Locks that are held by the system cannot be obtained or stolen. A reason code of
IXLRSNCODELOCKHELDBYSYS is returned on any request you issue for a lock in
this state except: unconditional SET or NOTHELD requests, which are just queued
by the system until the lock operation can be processed (see “Understanding Lock
Contention and the Notify Exit” on page 7-42 for more information.)

Figure 7-28 on page 7-41 shows the IXLLIST locking functions. The lock
operations (specified by the LOCKOPER parameter) perform different functions
depending on whether you specify a comparative lock value using the
LOCKCOMP parameter. The comparative lock value is a connection ID — your
own or that of another connection. Users receive a connection ID when they issue
the IXLCONN macro to connect to the list structure.

Figure 7-28 (Page 1 of 2). List Structure Lock Operations

Lock Operation With LOCKCOMP Without LOCKCOMP

SET Transfer ownership of the lock
to the requesting connection if
the lock is currently held by
the connection identified by
LOCKCOMP (also known as
lock stealing)

Obtain ownership of the
specified lock

RESET Free the specified lock if it is
held by the connection
identified by LOCKCOMP
(another form of lock stealing)

Release ownership of the
specified lock

 Chapter 7. Using List Services (IXLLIST) 7-41

Conditional and Unconditional Lock Requests: Lock requests can be
conditional or unconditional. When you issue a conditional lock request
(LOCKMODE=COND), your program regains control either with or without the lock
request being satisfied. If the lock request could not be processed, your request
simply fails.

When you issue an unconditional lock request (LOCKMODE=UNCOND), your
program regains control only when the lock request has been processed
successfully. If the request cannot be satisfied immediately, it is queued until it can
be satisfied. Note that only the SET and NOTHELD requests give you an explicit
choice of conditional or unconditional processing (using the LOCKMODE
parameter.) Other requests might always be conditional, always unconditional, or
either depending on the other parameters specified (for example, the RESET
request is always conditional when LOCKCOMP is specified and always
unconditional when LOCKCOMP is omitted.)

Figure 7-28 (Page 2 of 2). List Structure Lock Operations

Lock Operation With LOCKCOMP Without LOCKCOMP

NOTHELD Not applicable. Perform the specified list
operation (such as a read or
write operation) only if the
specified lock is free

HELDBY Perform the specified list
operation (such as a read or
write operation) only if the lock
is held by the connection
identified by LOCKCOMP

Perform the specified list
operation (such as a read or
write operation) only if the
specified lock is held by the
requesting connection

TEST Determine whether the
specified lock is held by the
connection identified by
LOCKCOMP

Determine whether the
requesting connection holds
the specified lock

READNEXT Return the lock table index of
the next lock held by the
connection identified by
LOCKCOMP

Return the lock table index
and connection ID
associated with the next lock
in the lock table that is held.

Understanding Lock Contention and the Notify Exit
An unconditional request for a lock that is held by another connection or by the
system, causes a condition known as contention . A conditional request does not
cause contention; the system simply fails the request and returns control to the
calling program.

In a serialized list structure, there are only two cases where contention is created:

� A lock is held by a connection (or by the system) and another connection
issues an unconditional SET request (without LOCKCOMP) for the lock.

� A lock is held by a connection (or by the system) and another connection
issues an unconditional NOTHELD request for the lock.

Contention Processing: When your IXLLIST request causes contention, the
system does the following:

1. Suspends your unit of work or processes your IXLLIST request asynchronously.

7-42 OS/390 V2R8.0 MVS Sysplex Services Guide

� If you specified MODE=SYNCSUSPEND, the system suspends your unit of
work until the lock is available and your request can be processed.

� If you specified any other MODE value, the system processes your request
asynchronously. You are informed of request completion by the method
specified on the MODE parameter.

2. Queues your request on a sysplex-wide queue for the lock. Requests on each
queue usually are processed in FIFO order. However, lock operations such as
those issued in recovery processing for a failed connection, preempt the lock
requests on the queue.

3. Gives control to the lock owner's notify exit to inform the connection of the lock
contention (described in detail below).

The Notify Exit: A lock owner's notify exit receives control each time a new lock
request is queued for the lock. A lock owner's notify exit also receives control when
the lock owner has just obtained a lock and there are existing requests queued for
that lock. In this case, the new owner's notify exit is immediately given control once
for each of the pending lock requests. The intent in both cases is to give the lock
owner information about the number of pending lock requests and the identity of
each connection requesting the lock.

The notify exit can use the information provided to decide whether to release the
lock, ignore the pending request, or take some other application-specific action. The
notify exit can compare the current owner's importance to that of the pending
request and respond accordingly.

The system supplies the notify exit with the following information each time it
receives control:

� The index of the lock for which there is contention
� The current state of the lock
� The connection ID and connection name associated with the lock request

causing the contention
� The lock request (SET or NOTHELD) causing the contention

Information presented to the notify exit is described in more detail under “Coding a
Notify Exit” on page 7-119.

If the notify exit releases the lock, the lock becomes available to satisfy the first
eligible lock request, which might not be the lock request that caused the notify exit
to be given control. For instance, suppose there are five outstanding lock requests
for a lock. The lock owner's notify exit receives control five times. On the fifth time,
the notify exit releases the lock. If the lock request at the head of the queue were
eligible to be processed, the lock would go to that connection.

Designing Protocols for Using the Serialized List Structure
The use of a serialized list structure requires a set of protocols for sharing locks.
You should consider issues such as the following when you design your locking
protocols:

� What list structure resource does each lock represent?

� How will I maintain information about the lock requests so my notify exit can
make decisions to resolve lock contention?

 Chapter 7. Using List Services (IXLLIST) 7-43

� How will I manage multiple, asynchronous lock requests – both my own and
those of other serialized list structure users?

� How will my notify exit decide how to handle lock contention?

� How will a lock be released if the owning connection cannot free it?

� How will my application handle recovery for work that was being performed by
a failed connection?

Maintaining Information about the Lock Request
To help manage lock contention and facilitate the recovery of lock resources, you
need to maintain lock ownership information such as:

� The identity of the lock owner

� The function being performed with the lock

� When the lock was obtained

Identifying the Lock Owner: When your program issues the IXLCONN macro to
connect to the list structure, it becomes a list structure connector and acquires
several types of identification:

Connection token (CONTOKEN) A system-assigned token to be used on all
subsequent list structure operations. You
receive a new one each time you connect or
reconnect.

Connection ID (CONID) A system-assigned ID to identify your
connection to other list structure connectors.
You receive a connection ID each time you
connect but you receive the same connection ID
as you had last time if you reconnect.

Connection name (CONNAME) A connection name to describe your connection.
You can choose the name yourself using the
IXLCONN macro, or have the system assign
your connection a name.

While you receive a new connection token and a new connection ID every time you
connect to the list structure, you can use the same connection name each time.
Your connection name allows you to be recognized by other connectors as the
same entity with a different connection token and connection ID.

If multiple programs in the same address space issue IXLLIST requests, they share
the same connect token, connection ID, and connection name. In this case, you will
need to use additional, non-connection-related identifiers to indicate the lock-owning
program.

Distinguishing One Lock Request from Another: You need the ability to
distinguish one lock request from another. For instance, there could be two lock
requests, issued by the same connector, and specifying the same list operation and
lock function. This might happen if your program issues IXLLIST requests on behalf
of other programs. You need a way to distinguish between identical lock requests
for the following reasons:

7-44 OS/390 V2R8.0 MVS Sysplex Services Guide

� To determine which lock request caused your complete exit to receive control
(if you are using a complete exit):

You can use the REQDATA parameter to pass information to identify the
specific IXLLIST request to your complete exit.

� To allow your notify exit, when it receives control, to identify the owner of the
lock for which there is contention:

You can use the LOCKDATA parameter, specified with LOCKOPER=SET
(obtain a lock), to associate 16 bytes of user-defined information with the lock
when you obtain it. This information is presented to your notify exit when it
receives control due to contention for a lock you hold. You could use the
LOCKDATA parameter to:

– Identify the program that owns the lock

– Identify the lock request (possibly including a time stamp) that caused the
lock to be obtained

– Identify the user on whose behalf you are obtaining the lock

– Pass the address of a shared control block containing information about
each connection using the list structure, including information about each
lock owner or lock requestor that could be used to resolve lock contention

� To provide recovery for a lock that is held by a failed or failing connection.

Managing Multiple, Asynchronous Lock Requests
Your program can issue multiple, asynchronous requests to obtain the same lock.
Each request is processed independently. The order in which requests are
processed might differ from the order in which they are submitted .
Furthermore, due to the nature of asynchronous processing, the order of certain
events could deviate from what you would expect. For instance:

� Your notify exit could receive control to inform you of contention for a lock you
requested before you are informed that you have obtained the lock.

Note: You own a lock you have requested only when you are informed (in the
manner specified on your IXLLIST invocation) that your request has
completed successfully. Unless you have received this confirmation, you
cannot assume you hold the lock.

� Your notify exit could receive control to handle contention for a lock you no
longer own. If you have, in the recent past, obtained and released the same
lock you own currently, your notify exit could receive control due to contention
arising from your previous instance of lock ownership.

To handle situations like these correctly, you should use the LOCKDATA and
REQDATA parameters to pass any information your exits will require to determine if
they need to take action. Your exits must also be prepared to handle cases, such
as those listed above, where they receive control but need not take any action.

If you request a lock that you already hold (perhaps on behalf of a different user),
your request is treated like any other user's request for that lock; it is placed on a
queue behind any existing requests for that lock.

Important: A deadlock will occur if the unit of work responsible for releasing a lock
is suspended while waiting to obtain the same lock.

 Chapter 7. Using List Services (IXLLIST) 7-45

Recovering Locks Held by Failed or Failing Connections
Confiscating a lock held by another user is called lock stealing . It is usually
reserved for situations in which the owner is perceived to have failed or to be
failing. When a lock is stolen, its owner is not notified .

You can steal a lock for either of the following reasons:

� To obtain it for yourself (LOCKOPER=SET with LOCKCOMP specifying the
CONID of the current lock owner).

� To make it available again (LOCKOPER=RESET with LOCKCOMP specifying
the CONID of the current lock owner).

When a lock is stolen, outstanding lock requests are unaffected; if you steal a lock
and have other outstanding requests for the same lock, those requests remain
queued and waiting to be processed even if you now have the lock. To cancel
these requests, you must issue the IXLPURGE macro specifying the REQID of the
request.

If you obtain a lock to serialize multiple IXLLIST requests and your protocol
includes lock stealing, you should use LOCKOPER=HELDBY on each IXLLIST
request once you hold the lock to ensure that the request is performed only if the
lock is still yours.

Recovering Persistent Locks: When a persistent connector to a serialized list
structure fails while holding locks, the system leaves the locks as persistent locks
until they are cleaned up either by surviving peer connectors or by a new instance
of the failed connector that reconnects.

Because persistent locks could be unavailable for a considerable amount of time,
all requests for locks held by failed persistent connectors are automatically failed
with a return code of IXLRETCODEPARMERROR and a reason code of
IXLRSNCODEPERSISTENTLOCK. To obtain persistent locks, they must be stolen.

When your event exit receives control to inform you of a connection failure, you can
determine whether the failed connection was persistent (specified CONDISP=KEEP
on the IXLCONN macro) by checking the EEPLSUBJDISPOSITIONKEEP bit in the
Event Exit Parameter List (EEPL). If you have a peer recovery protocol, you should
clean up the locks held by the failed connection as follows:

1. Determine why the failed connector was holding the locks.

2. Perform any required clean up for the failed connection.

3. Steal locks from the failed connector as appropriate.

4. Provide an event exit response for the failure.

Note: After you and your peer connections have finished processing required by
your own protocol, the system performs cleanup based on whether the
failing connection is to be made failed-persistent or undefined. If you want
to save or restore information or obtain locks, you must do so before the
system begins its own recovery processing.

The system's lock recovery actions depend on:

� Whether the failed connection is persistent

7-46 OS/390 V2R8.0 MVS Sysplex Services Guide

� Whether RELEASECONN=YES (release the connection) was specified as an
event exit response by any surviving peer connectors. See “Deleting
Failed-Persistent Connections” on page 5-62 for more information about event
exit responses relating to failed connections.

If RELEASECONN=NO is specified by all peer connections for a failed persistent
connector, the system releases only locks associated with the failed connector that
are held by the system. Locks held by the failed connector are considered
persistent locks and are not released. All requests by surviving connectors for
persistent locks are failed with a return code of IXLRETCODEPARMERROR and a
reason code of IXLRSNCODEPERSISTENTLOCK. To obtain persistent locks, they
must be stolen.

For all other cases (non-persistent connector or RELEASECONN=YES for
persistent connector), the system releases both the locks held by the failed
connector and the locks associated with the failed connector that are held by the
system.

When you issue the IXLFORCE macro to delete a failed persistent connector, the
system releases any persistent locks the connector holds at that time. The process
of releasing the persistent locks continues after the IXLFORCE request completes;
the only guarantee is that the persistent locks will be reset before the connection ID
of the failed persistent connector is re-assigned to another connector.

Reconnecting with Persistent Locks: When a failed persistent connector
reconnects to a serialized list structure, the locks previously held by the connector,
which remained as persistent locks, are reassigned to the connector. When a lock
becomes persistent, the system sets its LOCKDATA field to zero. Once the
connector is reassigned its persistent locks, the locks are no longer persistent.
They are ordinary locks subject to normal serialized list processing. The
LOCKDATA value of zero identifies a lock as having been persistent.

When you reconnect to a serialized list structure and you might own persistent
locks, you should perform recovery processing for the work you were doing at the
time of the failure. When you are finished with this recovery processing, you should
reset any locks you no longer need. To identify the locks you own, scan the lock
table using LOCKOPER=READNEXT with a LOCKCOMP containing your
connection ID.

Once a failed persistent connector reconnects to the list structure, the connector's
notify exit will begin receiving control when contention occurs for locks held by that
connector. When the notify exit receives control for contention involving a formerly
persistent lock, the NEPLOWNERPERSISTENTLOCK bit in the notify exit
parameter list (NEPL) is set to indicate that the LOCKDATA associated with the
lock is not valid (the LOCKDATA field is set to zero because the lock became
persistent).

Summary of Recovery Steps for Failed Connector to a Serialized List
Structure: The previous sections described in detail the considerations involved in
planning recovery actions for a failed connector to a serialized list structure. This
section presents the key steps in time order to help you understand the sequence
of events associated with the failure of a persistent connector:

1. A persistent connector fails while holding locks.

 Chapter 7. Using List Services (IXLLIST) 7-47

2. Peer connectors are notified of the failure through their event exits.

3. Peer connectors respond to this failure by performing recovery processing for
the failed connector's work in progress and for locks held by the failed
connector. Recovery could involve stealing locks held by the failed connector.
Locks that are stolen from the failed connector by peer connections will not
become persistent locks.

4. Peer connections provide an event exit response.

5. When all event exit responses are received by the system, it cleans up the
failed connection.

6. If any peer connector indicated RELEASECONN=YES on its event exit
response, the failed connector becomes undefined.

If the failed connector becomes failed persistent:

� The system releases all locks associated with the connector that are held by
the system.

� All locks still held by the failed connector become persistent locks and have
their LOCKDATA fields reset to zero.

� The connector becomes failed persistent.

� The system fails requests by surviving connectors to obtain the failed
connector's persistent locks.

� The system honors requests by surviving connectors to steal the failed
connector's persistent locks.

� When a new instance of the failed connector reconnects to the structure:

– It is reassigned its persistent locks, which now have their LOCKDATA fields
set to 0. The reassigned locks are no longer considered persistent when
they are reassigned to the connector; they are now ordinary locks held by
the connector, subject to normal serialized list processing.

– Its notify exit can begin receiving control at once if there are requests for a
lock held by the connector.

– The connector should issue the IXLLIST macro with
LOCKOPER=READNEXT to identify any reassigned (previously persistent)
locks it holds, and take appropriate recovery actions to handle the work that
was in progress at the time of the failure.

– The connector should release the reassigned (previously persistent) locks
once it has performed the recovery actions since the persistent locks and
their resources have been cleaned up.

If the failed connector becomes undefined:

� The system releases all locks associated with the connector — those that are
owned by the connector and those that are held by the system on the
connector's behalf.

� The connector becomes undefined.

� There are no persistent locks since the connector is no longer persistent.

7-48 OS/390 V2R8.0 MVS Sysplex Services Guide

Understanding the List Entry Version Number
You can use the version number field associated with each list entry to indicate
when the contents of the list entry have changed, to select list entries for certain
types of IXLLIST requests, or to implement a serialization mechanism (similar to
compare and swap) on a single list entry basis.

Setting the List Entry Version Number
The READ, WRITE, and MOVE requests allow you to set or change the version
number of the target list entry by specifying the VERSUPDATE parameter. The
version number can be:

� Assigned a particular value (VERSUPDATE=SET,NEWVERS=newvers)
� Incremented by one (VERSUPDATE=INC)
� Decremented by one (VERSUPDATE=DEC).

Note: When a list entry is created, its version number is set to zero. If you specify
VERSUPDATE=INC or VERSUPDATE=DEC when you create a new list
entry, the system uses zero as the value to be incremented or
decremented.

Using the Version Number to Select List Entries for Processing
On READ, WRITE, MOVE, and DELETE requests, you can require the target list
entry to compare successfully with a version number and type of comparison that
you specify in order to be selected for processing. With structures allocated in a
coupling facility with CFLEVEL=1 or higher, you can specify that a version number
be equal or less-than-equal to a designated version number with the
VERSCOMPTYPE keyword. If the version number for the target list entry does not
meet the version comparison criteria you specify, the IXLLIST request fails.

On READ_LIST, READ_MULT, DELETE_MULT, and DELETE_ENTRYLIST
requests, you can require that all selected list entries have a version number which
compares successfully with a version number and type of comparison you specify.
If the comparison fails, no processing is performed for the current list entry and
processing continues with the next entry to be considered.

Using the Version Number to Serialize List Entry Operations
By adhering to a protocol of updating the version number when you update a list
entry's contents, you can avoid corrupting or deleting changes made to the entry by
other users. For instance, you could establish the following procedure for updating
list entries:

1. Read a list entry
2. Update its contents
3. Increment, decrement, or set the version number of the updated copy of the list

entry
4. Write the changes back to the list entry using the VERSCOMP parameter to

ensure that the list entry is updated only if its version number is still the same
as when you read it.

If the version number comparison fails, the write request is not performed and you
must start the update process again after re-reading the current list entry.

 Chapter 7. Using List Services (IXLLIST) 7-49

Selecting the Buffer Format
Most IXLLIST requests require that you provide a buffer for one of the following
reasons:

� To receive information read from list entries or list controls
� To hold information to be written to list entries or list controls
� To hold the names or IDs of list entries to be deleted

You can pass data or receive data using either a single buffer (BUFFER parameter)
or multiple buffers (BUFLIST parameter). Both the BUFFER and BUFLIST
parameters enable you to pass or receive up to 65536 (64K) bytes of data.

The parameters used to specify the buffers are discussed below. These include
BUFFER, BUFLIST, and their associated parameters. Unless otherwise noted, this
information applies to all IXLLIST requests. This topic provides an overview of the
buffer formatting requirements and options. Additional information is presented in
OS/390 MVS Programming: Sysplex Services Reference under the parameter
descriptions for each IXLLIST request.

There are also performance considerations for choosing the format of your buffers.
These are discussed after the buffer options and parameters are presented.

BUFFER and Its Associated Parameters
BUFFER The BUFFER parameter specifies a single contiguous buffer. It consists

of a virtual storage area containing information to be passed to the
request or received from a request. The requirements for the storage
area depend on the request.

� For READ, WRITE, MOVE, DELETE, and MONITOR_SUBLISTS
requests, the storage area must meet the following requirements:

For a buffer up to 4096 bytes in size, the buffer must:

– Be 256, 512, 1024, 2048, or 4096 bytes
– Start on a 256-byte boundary
– Not cross a 4096-byte (page) boundary
– Not start below storage address 512

For a buffer greater than 4096 bytes in size, the buffer must:

– Be a maximum of 65536 bytes
– Be a multiple of 4096 bytes
– Start on a 4096-byte boundary
– Not start below storage address 512

� For DELETE_ENTRYLIST, READ_LIST, and READ_MULT
requests, the buffer must:

– Be between 4096 and 65536 bytes in size
– Be a multiple of 4096 bytes
– Start on a 4096-byte boundary
– Not start below storage address 512

� For READ_LCONTROLS and DEQ_EVENTQ requests, the buffer
must:

– Be 4096 bytes
– Start on a 4096-byte boundary
– Not start below storage address 512

7-50 OS/390 V2R8.0 MVS Sysplex Services Guide

BUFSIZE The BUFSIZE parameter, to be coded with BUFFER, specifies the size
of the data buffer, in bytes.

Note that even though the BUFFER format does not support the BUFALET
keyword, the BUFFER can still be ALET-qualified. If the caller is in AR mode, the
IXLLIST macro extracts the AR associated with the BUFFER area and passes it on
the request.

BUFLIST and Its Associated Parameters
BUFLIST The BUFLIST parameter specifies the address of a storage area

(the buffer list) that contains the addresses of up to 16 buffers.
These buffers do not have to be contiguous, however, the
system treats them as if they form a single buffer. Data is
transferred to or from the set of buffers in order of ascending
buffer number. The buffer list, shown in Figure 7-29, has the
following characteristics:

� The buffer list consists of a 128-byte storage area containing
a list of 0 to 16 buffer addresses.

� Each entry in the buffer list consists of an 8-byte field in
which the high-order (left-most) 4 bytes are reserved and the
low-order (right-most) 4 bytes contain the address of a buffer.

Note: Only the number of buffer list entries that you specify
with the BUFNUM parameter must be formatted in
this manner. For instance, if you specify a BUFNUM
value of 5, all buffers beyond the fifth are ignored.

4 bytes
reserved

4 bytes
reserved

Buffer
address

Buffer
address

8 bytes

128 bytes
Entry 1 Entry 16

Figure 7-29. Format of Buffer List Specified by the BUFLIST Parameter

All buffers in the buffer list must be the same size. Other
requirements depend on the request:

� For READ, WRITE, MOVE, DELETE, and
MONITOR_SUBLISTS requests, the buffers must:

– Be 256, 512, 1024, 2048, or 4096 bytes
– Start on a 256-byte boundary
– Not cross a 4096-byte boundary
– Not start below storage address 512

� For DELETE_ENTRYLIST, READ_LIST, READ_MULT,
DEQ_EVENTQ, and READ_LCONTROLS requests, the
buffers must:

– Be 4096 bytes

 Chapter 7. Using List Services (IXLLIST) 7-51

– Start on a 4096-byte boundary
– Not start below storage address 512

Note: For READ_LCONTROLS and DEQ_EVENTQ requests,
requests, only one buffer can be specified.

BUFALET The BUFALET parameter specifies the ALET of each buffer in
the buffer list. All the buffers must be in the same address or
data space.

BUFNUM The BUFNUM parameter indicates the number of buffers defined
in the BUFLIST list. For READ_LCONTROLS and
DEQ_EVENTQ requests, because the system allows only one
buffer to be passed, you cannot specify the BUFNUM parameter.
For all other requests, when BUFLIST is specified, BUFNUM is
required.

BUFINCRNUM The BUFINCRNUM parameter specifies the size of each
BUFLIST buffer in 256-byte increments. Valid values are 1, 2, 4,
8, and 16. For example, a BUFINCRNUM value of 4 indicates
that each buffer in the buffer list is 1024 bytes (4 * 256).

For DELETE_ENTRYLIST, READ_LIST, READ_MULT,
READ_LCONTROLS, and DEQ_EVENTQ requests, the system
requires your buffers to consist of sixteen 256-byte increments
and you cannot specify the BUFINCRNUM parameter.

BUFADDRTYPE The BUFADDRTYPE parameter specifies whether the buffer
addresses are real addresses (BUFADDRTYPE=REAL) or virtual
addresses (BUFADDRTYPE=VIRTUAL).

Design Considerations for Choosing the Buffer Format
Choosing the buffer format and attributes involves a number of considerations. This
topic helps you evaluate the available options and decide which ones are most
suitable for you. The questions addressed are the following:

� How much buffer storage should I use?
� Should I use BUFFER or BUFLIST?
� If I use BUFLIST, how many buffers should I use?

Your buffer storage should be just sufficient to hold the data you are passing or
receiving. If you are writing data to a data entry and you want to create a data entry
with extra space for use later on, specify a greater number of data elements
(ELEMNUM parameter) than necessary to hold your data. Specifying more data
elements than your data requires does not affect performance.

The choice of whether to use a single buffer or multiple buffers depends on:

� Whether you are issuing IXLLIST multiple times

� Whether (if are performing a write operation) the data resides in contiguous
storage

� Whether (if are performing a read operation) the data is to be placed in
contiguous storage

� Whether your buffer addresses are real addresses or virtual addresses

� How concerned you are about performance.

7-52 OS/390 V2R8.0 MVS Sysplex Services Guide

When you specify a single buffer, IXLLIST creates a buffer list for that buffer in the
same manner as if you specified BUFLIST. If you invoke IXLLIST multiple times,
you obtain better performance if you create the buffer list yourself and use
BUFLIST as opposed to using BUFFER and having IXLLIST build the buffer list on
each invocation. On WRITE requests, using BUFLIST prevents you from having to
move data from multiple storage areas into a single buffer before passing it to
IXLLIST.

A single buffer less than or equal to 4096 bytes in size provides the best
performance because if you specify more than 4096 bytes of buffer storage, or
specify BUFLIST with more than one buffer, your request will always be processed
asynchronously. (Note that requests are also processed asynchronously for other
reasons such as unavailability of a required resource.)

If you choose to use multiple buffers, you must determine how many to use and
what their size should be. You can achieve the best performance with multiple
buffers if you use the fewest, largest buffers possible.

The buffer size need not equal the data element size, but if you find it useful, you
can set it up that way. To create a buffer size equal to a structure element, specify
the same value for BUFINCRNUM as you specified on the IXLCONN macro's
ELEMINCRNUM parameter.

Design Considerations for Defining Buffer Storage Areas
The IXLLIST request types that allow you to specify buffer storage areas generally
result in data being transferred directly between the data buffer storage and the
coupling facility storage. The coupling facility transfers data using real storage
addresses; therefore, the data buffer storage must be fixed in a specific, known real
storage location and remain so until the coupling facility has transferred all data for
the request.

When defining the buffer storage areas for an IXLLIST request, consider the
following:

� The cross-memory mode of your application
� The use of real versus virtual storage

The data buffers for an IXLLIST request can be addressable in the caller's primary,
secondary, or home address space, from the PASN access list, or from the DU
access list. The system assigns ownership of a data buffer to the address space
either in which the buffer storage resides or that has an associated data space in
which the buffer storage resides.

Determining Buffer Storage Ownership
XES always assumes that the storage for the data buffers is owned by the home
address space (the “requestor's” or “client's” address space) at the time of the
IXLLIST request. However, XES also allows the buffers to be owned by the
primary address space (the “connector's” or “server's address space”) at the time of
the request when the following conditions both exist:

� The connector's space is not equal to the requestor's home space
� The connector's space is non-swappable

Thus, the possible address space environments for your application are:

� Requestor (Home) equals Connector (Primary)

 Chapter 7. Using List Services (IXLLIST) 7-53

� Requestor (Home) does not equal Connector (Primary) with buffer storage
owned by Connector's address space

� Requestor (Home) does not equal Connector (Primary) with buffer storage
owned by Requestor's address space

In general, the IXLLIST service allows you to designate your data buffer storage
using real or virtual storage addresses. However, it is of the utmost importance that
the data buffer storage be fixed in a specific, known, real storage location and
remain so until all data transfer is complete.

Using Real Versus Virtual Storage: The IXLLIST service allows you to designate
the data buffer storage in three different ways:

� By real storage address

� By pageable virtual storage address (including pageable subpools,
disabled-reference (DREF) subpools, and page-fixed storage that might not
remain page-fixed in a particular real storage location until the completion of
the request)

� By nonpageable virtual storage address (including fixed subpools and storage
that might not remain page-fixed in a particular real storage location until the
completion of the request)

(For information about whether a subpool is pageable, fixed, or DREF storage, see
OS/390 MVS Programming: Authorized Assembler Services Guide.

Specifying the PAGEABLE parameter with BUFFER and BUFLIST is a way to
identify to the system whether the storage area you pass is in pageable or
potentially pageable storage.

Real storage address

When data buffer storage is designated by real address, XES takes no
responsibility for its ownership or its attributes. The IXLLIST invoker is entirely
responsible for management of the storage binds.

For example, suppose a swappable connector

Obtains a pageable virtual storage buffer in storage associated with the
connector's address space
Pagefixes the storage
Loads the real address of the buffer storage
Passes those real storage addressses to XES on a request

If the connector's address space were to be swapped out at some point after
loading the real addresses, the system could free and then reassign the real
storage frames backing the data buffer. (Page-fixed storage does not remain fixed
in real storage when the owning address space is swapped out.) Then, if those
real addresses were subsequently used to transfer data to or from the coupling
facility, the results would be unpredictable because XES is unaware that the bind
between the real addresses and the data buffer virtual storage has been broken.

To summarize: When data buffer storage is passed by real address, it is the caller's
responsibility to manage the binds between the data buffer virtual storage and the
real storage addresses provided to the coupling facility. The caller must ensure that

7-54 OS/390 V2R8.0 MVS Sysplex Services Guide

the data buffer virtual storage remains bound to the real storage addresses
provided until the request completes.

Pageable virtual storage address

When data buffer storage is designated by pageable virtual storage address
(PAGEABLE=YES on the IXLLIST request), XES takes full responsibility for the
ownership and its attributes regardless of what address space owns the storage.
XES performs the required page fixing to fix the buffer in real storage while the
IXLCACHE request transfers data to or from the coupling facility. XES establishes
the storage binds between the data buffer virtual storage and the real storage
backing it and then releases those binds when the data transfer is complete.

If the storage-owning address space were to be swapped out while the
XES-established storage binds exist, XES does not allow the swap-out to complete
until those storage binds have been broken. The following three scenarios describe
actions taken by XES at the time of the swap-out:

1. Coupling facility data transfer has not yet been initiated.

XES breaks the real storage binds associated with the request. When the
address space is swapped-in again, XES re-establishes the storage binds for
the request by once again fixing the data buffer virtual storage in real storage
(which most likely is a different real storage location than the data buffer
previously occupied). XES subsequently uses these real storage addresses for
the coupling facility data transfer.

2. Coupling facility data transfer is actively in progress.

XES delays the swap-out until the coupling facility data transfer completes.
When the address space is swapped-in again, the data transfer for the request
is complete and there is no need to re-establish the storage binds for the
request.

3. Coupling facility data transfer has completed.

XES breaks the real storage binds associated with the request (or, the storage
binds might already have been broken, depending on when the swap-out
occurred). When the address space is swapped-in again, the data transfer for
the request is complete and there is no need to re-establish storage binds for
the request.

To summarize: When data buffer storage is passed by pageable virtual storage
address, XES is responsible for managing the binds between the data buffer virtual
storage and the real storage used to transfer data to or from the coupling facility.

Nonpageable virtual storage address

When data buffer storage is designated by non-pageable virtual storage address
(PAGEABLE=NO on the IXLLIST request), XES takes full responsibility for the
ownership and its attributes if and only if the storage is owned by the requestor's or
connector's address space. XES establishes the storage binds between the data
buffer virtual storage and the real storage backing it and then releases those binds
when the data transfer associated with the request is complete.

If the storage-owning address space (the requestor's or connector's address space)
were to be swapped out while the XES-established storage binds exist, XES does
not allow the swap-out to complete until those storage binds have been broken.

 Chapter 7. Using List Services (IXLLIST) 7-55

The following three scenarios describe actions taken by XES at the time of the
swap-out:

1. Coupling facility data transfer has not yet been initiated.

XES breaks the real storage binds associated with the request. When the
address space is swapped-in again, XES re-establishes the storage binds for
the request (which most likely is a different real storage location than the data
buffer previously occupied). XES subsequently uses these real storage
addresses for the coupling facility data transfer.

2. Coupling facility data transfer is actively in progress.

XES delays the swap-out until the coupling facility data transfer completes.
When the address space is swapped-in again, the data transfer for the request
is complete and there is no need to re-establish the storage binds for the
request.

3. Coupling facility data transfer has completed.

XES breaks the real storage binds associated with the request (or, the storage
binds might already have been broken, depending on when the swap-out
occurred). When the address space is swapped-in again, the data transfer for
the request is complete and there is no need to re-establish storage binds for
the request.

To summarize: When data buffer storage is passed by nonpageable virtual storage
address, XES is responsible for managing the binds between the data buffer virtual
storage and the real storage used to transfer data to or from the coupling facility if
and only if the storage is owned by the requestor's or connector's address space.

Notes:

1. If you specify PAGEABLE=NO and your request is processed synchronously,
you can free storage when you receive control back from IXLLIST and check
the return code to verify that your request was performed synchronously.

2. Figure 7-30 shows how long you must keep storage areas fixed for each
processing mode if you specify PAGEABLE=NO and the system processes
the request asynchronously.

Deciding Whether to Provide Page-Fixed Storage: The system can page-fix
and page-free the storage (if you specify PAGEABLE=NO) much faster than you
can using PGSER services. However, if you are issuing IXLLIST multiple times and
reusing the same storage areas to pass information, you still might obtain better
performance if you page-fix the buffers once and specify PAGEABLE=NO rather
than having the system page-fix storage for you on each IXLLIST invocation. The
choice for best performance depends on the number of times you are invoking
IXLLIST.

Figure 7-30. When Storage Areas Passed to IXLLIST Can Be Made Pageable

MODE Value When Storage Can Be Made Pageable

ASYNCECB or
SYNCECB

After ECB is posted

ASYNCTOKEN or
SYNCTOKEN

When your program regains control from the IXLFCOMP
service and the request has completed .

SYNCEXIT When your completion exit receives control.

7-56 OS/390 V2R8.0 MVS Sysplex Services Guide

Another consideration in choosing whether to page-fix the storage or have the
system do it is that IXLLIST page-fixes the storage only until the request completes.
If you need fixed storage for other reasons than to meet IXLLIST requirements, you
should fix the storage yourself and specify PAGEABLE=NO.

See “Using Real Versus Virtual Storage” on page 7-54 for more information about
specifying pageable and nonpageable virtual storage.

Specifying the Buffer Storage Key
The BUFSTGKEY parameter, specified with BUFFER or BUFLIST, and
PAGEABLE=YES, identifies the storage key associated with the buffers.

Specifying a storage key helps provide data integrity by allowing list services to
check that the buffer is accessible in the key intended by the caller. This is
particularly important when the buffer is owned by a client address space and is
passed by the server address space to IXLLIST.

IXLLIST performs the storage key check, allowing the server address space to
avoid having to transfer the data into its own storage before passing it to IXLLIST.

If you omit BUFSTGKEY with PAGEABLE=YES, the system uses the PSW key of
the IXLLIST requestor as the default storage key and performs key checking using
the caller's PSW key.

You cannot specify the BUFSTGKEY parameter with PAGEABLE=NO. The system
does not do any storage key checking when non-pageable buffers are used. It is
the IXLLIST invoker's responsibility to do any storage key checking that might be
required for non-pageable buffer storage.

WRITE: Writing to a List Entry
Use the WRITE request to update an existing list entry or create a new one.

Understanding the Write Operation
Assuming the list structure has been allocated to contain both data entries and
adjunct areas, you can write data to any of the following with the WRITE operation:

� The data entry only
� The adjunct area only
� Both the data entry and the adjunct area.

The only exception is when you create a new list entry in a structure that has
adjunct areas; if you don't specify data to be written to the adjunct area, the adjunct
area of the new list entry is initialized to zeros.

If the list structure contains adjunct areas, each list entry always contains an
adjunct area. For list structures with both data entries and adjunct areas, it is
possible to have list entries with either of the following:

� An adjunct area but no data entry
� A data entry and an adjunct area

 Chapter 7. Using List Services (IXLLIST) 7-57

Guide to the Topic

“WRITE: Writing to a List Entry” is divided into three sections:

� The first section provides information applicable to all WRITE requests:

– “Specifying the Type of Write Operation” on page 7-58
– “Specifying the Size of the Data Entry to Hold the Data” on page 7-58
– “Selecting the Buffer Format” on page 7-50
– “Specifying the Buffer Storage Key”
– “Requesting a Lock Operation as Part of a WRITE Request” on

page 7-59

� The second section, “Updating an Existing List Entry” on page 7-60,
explains how to update an existing entry.

� The third section, “Creating a New List Entry” on page 7-60, explains how
to create a new entry.

Specifying the Type of Write Operation
You specify the ENTRYTYPE parameter to indicate whether you want to update an
existing list entry, create a new one, or to indicate that a new list entry is to be
created only if an existing one (with the attributes you have specified) cannot be
found:

ENTRYTYPE=OLD Indicates that the write request is to be performed only if the
specified target list entry already exists.

ENTRYTYPE=NEW Indicates that a new list entry is to be created.

ENTRYTYPE=ANY Indicates that the WRITE request should be performed as
follows:

� If a list entry with the specified attributes exists already, it
is to be updated.

� If a list entry with the specified attributes does not exist, a
new list entry is to be created.

Specifying the Size of the Data Entry to Hold the Data
If you are writing data entry information to the list entry you are updating or
creating, you use the ELEMNUM parameter to specify the size of the data entry
(number of data elements) needed for the data. When you write to a data entry, the
size of the data entry is changed to the number of elements indicated by
ELEMNUM. Figure 7-31 shows the result of specifying zero, too few, too many,
and the correct number of data elements to hold the contents of a given amount of
buffer storage.

7-58 OS/390 V2R8.0 MVS Sysplex Services Guide

Figure 7-31. Results of Specifying the Number of Data Elements on a WRITE Request

Number of
Data
Elements
Specified Result

Enough to
hold data

Specified number of data elements is allocated.

More than
number
needed to
hold data

Specified number of data elements is allocated. Extra space is padded
with binary zeros.

Fewer than
number
needed to
hold data.

The data is truncated to fit the allotted space.

Zero Existing data entry deleted, if there is one. No data elements are
allocated.

Specifying the List Entry Version Number on a WRITE Request
For information about:

� Using the list entry version number to maintain data integrity on a WRITE
request

� Updating the version number on a WRITE request

see “Understanding the List Entry Version Number” on page 7-49.

Specifying the List Authority Value on a WRITE Request
For information about:

� Using the list authority value to select an entry for processing
� Updating the list authority value

see “Understanding the List Authority Value” on page 7-36.

Requesting Automatic Key Assignment on a WRITE Request
For information about requesting automatic key assignment on a write request, see
“Understanding List Entry Key Assignment” on page 7-10.

Passing Data for a WRITE Request
You can write data to a list entry's data entry, adjunct area, or both. You pass data
to be written to the data entry in a single buffer or multiple buffers. Both methods
enable you to pass up to 65536 (64K) bytes of data. You pass data to be written to
the adjunct area in a single 64-byte storage area. See “Selecting the Buffer Format”
on page 7-50 for a description of the buffer format options and their performance
considerations.

Requesting a Lock Operation as Part of a WRITE Request
To perform a serialized write operation, one in which a lock operation is performed
together with a write operation, specify the LOCKOPER parameter on the IXLLIST
macro. If the list service cannot perform both the lock operation and the write
operation, it performs neither and fails the request.

 Chapter 7. Using List Services (IXLLIST) 7-59

You can specify the following LOCKOPER values on a WRITE request:

 � SET
 � RESET
 � NOTHELD
 � HELDBY

See “LOCK: Performing a Lock Operation” on page 7-100 for detailed information
about the LOCKOPER parameter.

Updating an Existing List Entry
When you update an existing list entry (ENTRYTYPE=OLD) or might do so
(ENTRYTYPE=ANY), you can designate the target list entry in several ways:

� To specify the head or tail entry on a particular list, code the list position
(LISTPOS) and the list number (LISTNUM).

� To specify a particular entry regardless of where it resides in the list structure,
code one of the following:

– The entry name (ENTRYNAME), for named entries only.
– The entry ID (ENTRYID).

You can code the LISTNUM parameter to stipulate that the selected entry must
reside on a certain list.

� To specify a keyed list entry at the head or tail of a sublist of list entries with
the same key, code the list entry's key (ENTRYKEY), the position on the sublist
(LISTPOS), and the list number (LISTNUM).

� To specify the list entry associated with the list cursor for a certain list, code the
LOCBYCURSOR and LISTNUM parameters.

See “Understanding the List Cursor” on page 7-14 for information about using
the list cursor with a WRITE request.

If you omit the LISTPOS parameter, the default value, is HEAD. So in effect, there
is always a value for LISTPOS if one is needed.

Creating a New List Entry
If your write request will cause (ENTRYTYPE=NEW) or might cause
(ENTRYTYPE=ANY) a new list entry to be created, you can either provide the
information necessary to create and position the new list entry or have the list
service position the new list entry according to the defaults for the parameters you
omit. In addition to specifying the list number (LISTNUM) of the list to receive the
new entry, you need to provide the following information.

For a list structure with entry names: You must provide a list entry name
(ENTRYNAME) for the list service to use if it creates a new list entry for you.

The list service uses the value of LISTPOS to determine whether to place the new
list entry at the head or tail of the target list. If you specify LISTPOS=HEAD, the list
service places the list entry at the head of the list. If you specify LISTPOS=TAIL,
the list service places the list entry at the tail of the list.

 � For ENTRYTYPE=ANY:

7-60 OS/390 V2R8.0 MVS Sysplex Services Guide

– If you specify both the ENTRYID and ENTRYNAME parameters, the list
service uses the value of ENTRYID to check for an existing list entry, and
the value of ENTRYNAME to assign a name to a new entry.

– If a list entry already exists with the specified name, the list entry is
updated.

� For ENTRYTYPE=NEW: if a list entry already exists with the name you have
specified for the new entry, the WRITE request fails.

For a list structure with entry keys: You can provide a list entry key
(ENTRYKEY), have the list service assign a list entry key as shown in Figure 7-32,
or have the list service automatically assign a list entry key from the list control
value. List entries in each list are maintained by key in ascending order. The list
service places a new list entry on the target list as follows:

When you specify automatic list entry key assignment with LISTKEYTYPE, the list
service uses the key value that was automatically assigned to follow the same
placement rules as if you had explicitly specified ENTRYKEY.

If you specify a locking operation (LOCKOPER) to be performed with a write
operation, the list service performs the locking operation as described under
Figure 7-36 on page 7-100.

Figure 7-32. Rules for Placement of Keyed List Entry for REQUEST=WRITE

ENTRYKEY
Specified?

LISTPOS
Value

Existing Entries
With Same Key?

Position for New
List Entry

Yes HEAD or TAIL No Positioned to
maintain ascending
order of keys.

Yes HEAD Yes Before the first list
entry with the same
key.

Yes TAIL Yes After the last list
entry with the same
key.

No HEAD Not applicable At head of list. List
entry key initialized
to binary zeros.

No TAIL Not applicable At tail of list. List
entry key initialized
to binary ones.

Creating a New Keyed List Entry in a CFLEVEL=3 or Higher
Coupling Facility
If your write request will cause a new keyed list entry to be created on an empty
sublist and the target sublist is being monitored, then the system queues all EMCs
associated with the transitioning sublist to the respective users' event queues.

 Chapter 7. Using List Services (IXLLIST) 7-61

Creating a List Entry With No Data
You can create a list entry with no data entry, by specifying an ELEMNUM value of
0. This option might be useful under circumstances such as the following:

� You want to establish list entries as place holders to receive data during later
processing and you don't know what size to make the data entries.

� You are using adjunct areas to hold data instead of data entries.

Receiving Answer Area Information from a WRITE Request
When you invoke IXLLIST, list services return information related to your request in
the answer area specified using the ANSLEN and ANSAREA parameters.

Determining if the Answer Area is Valid
Under certain conditions, the system will not be able to return answer area
information. For example, if you issue an IXLLIST request and specify
asynchronous processing, or your synchronous request is run asynchronously, the
answer area will not be valid when your program regains control.

To determine whether the answer area is valid for an IXLLIST request you have
issued, check the explanation for the return code and reason code combination you
have received in OS/390 MVS Programming: Sysplex Services Reference.

The location of the return code and reason code to be checked depends on how
your program is notified of request completion:

� If you issue IXLLIST and receive control back directly (not through a complete
exit) or you issue the IXLFCOMP macro to handle request completion, check:

– GPR 15 or the RETCODE field for the return code
– GPR 0 or the RSNCODE field for the reason code

� If you issue IXLLIST and specify a complete exit to receive control, check:

– The CMPLRETCODE field for the return code
– The CMPLRSNCODE field for the reason code

These fields are mapped by the IXLYCMPL macro, shown in OS/390 MVS
Data Areas, Vol 3 (IVT-RCWK).

The following list describes the answer area information returned when the answer
area is valid. The answer area is mapped by the IXLYLAA macro, which is shown
in OS/390 MVS Data Areas, Vol 3 (IVT-RCWK).

LAARETCODE The return code from the IXLLIST service. Return code
values are defined in the IXLYCON macro.

LAARSNCODE The reason code associated with the return code from the
IXLLIST service. Reason code values are defined in the
IXLYCON macro.

LAALCTL The list entry controls for the list entry that was updated or
created. Returned for successful WRITE requests. The
area is mapped by IXLYLCTL.

For a WRITE request that failed because the target list
entry did not meet the list number or version number
criteria specified by LISTNUM or VERSCOMP, the list entry

7-62 OS/390 V2R8.0 MVS Sysplex Services Guide

controls for the list entry that failed to meet the selection
criterion.

For a WRITE request that failed because the entry name
(ENTRYNAME) specified for the new list entry already
existed, the list entry controls for the list entry already
having the specified name.

LAALISTDESC The user-specified description of the list. Returned for
WRITE requests that failed because of an authority
mismatch. Returned only for structures allocated in a
coupling facility with CFLEVEL=1 or higher.

LAALISTAUTH The list authority for the list. Returned for WRITE requests
that failed because of an authority mismatch. Returned only
for structures allocated in a coupling facility with
CFLEVEL=1 or higher.

LAATOTALCNT The total number of list entries in use in the structure.
Returned for requests that completed successfully.

LAATOTALELECNT The total number of data elements in use in the structure.
Returned for requests that completed successfully.

LAALISTCNT The number of list entries or data elements on the list that
was the target of the write operation. Returned for requests
that completed successfully. The value specified for
LISTCNTLTYPE on the IXLCONN macro when the list
structure was allocated determines whether this field
represents a count of list entries or data elements.

LAACONID For a WRITE request specifying the LOCKOPER
parameter, LAACONID contains, under the following
circumstances:

� HELDBY parameter specified and the lock was not
held by the connection specified by LOCKCOMP or
taken as the default.

� NOTHELD parameter specified with
LOCKMODE=COND and the request failed because
the lock is held by another connection.

� NOTHELD parameter specified with
LOCKMODE=UNCOND and the request failed because
the lock is held by a failed persistent connection.

� SET parameter specified with LOCKMODE=COND and
the request failed because the lock is held by another
connection.

� SET parameter specified with LOCKCOMP and the
lock was not held by the specified connection.

� SET parameter specified with LOCKMODE=UNCOND
and the request failed because the lock is held by a
failed persistent connection.

� RESET parameter specified without LOCKCOMP and
the request failed because you do not hold the lock.

� RESET parameter specified with LOCKCOMP and the
lock was not held by the specified connection.

Either of the following:

 Chapter 7. Using List Services (IXLLIST) 7-63

� The connection identifier of the lock owner, if the lock
specified by the LOCKINDEX parameter is held

� Zeros, if the lock specified by the LOCKINDEX
parameter is free

LAALISTKEY The current value of the list key from the list controls.
Returned for WRITE requests that failed because the
maximum list key value would be exceeded. Returned only
for structures allocated in a coupling facility with
CFLEVEL=1 or higher.

LAAMAXLISTKEY The current value of the maximum list key from the list
controls. Returned for WRITE requests that failed because
the maximum list key value would be exceeded. Returned
only for structures allocated in a coupling facility with
CFLEVEL=1 or higher.

LAAENTRYCREATED Flag to indicate that the request created a new entry.
Returned for successful WRITE requests. Returned only for
structures allocated in a coupling facility with CFLEVEL=1
or higher.

READ, READ_MULT, READ_LIST: Reading List Entries
You can perform three types of read operations on list entries in a list structure:

REQUEST=READ Reads the contents of a single list entry.

REQUEST=READ_LIST Reads the contents of multiple list entries on a specified
list or read the contents of list entries on a specified list
or only those:

� With a version number that satisfies a comparison
criteria, using VERSCOMP and VERSCOMPTYPE

� With a list authority value that satisfies a
comparison criteria, using AUTHCOMP and
AUTHCOMPTYPE

� With a list entry key that satisfies a comparison
criteria, using KEYCOMP

� With any combination of the above

REQUEST=READ_MULT Read the contents of all list entries in the structure or
only those:

� On a certain list
� With a version number that satisfies a comparison

criteria, using VERSCOMP and VERSCOMPTYPE
� With a list authority value that satisfies a

comparison criteria, using AUTHCOMP and
AUTHCOMPTYPE

� With a list entry key that satisfies a comparison
criteria, using KEYCOMP

� With any combination of the above

7-64 OS/390 V2R8.0 MVS Sysplex Services Guide

Guide to the Topic

“READ, READ_MULT, READ_LIST: Reading List Entries” is divided into the
following sections.

� “READ: Reading a Single List Entry” on page 7-65 presents information
about the READ request.

� “READ_LIST: Reading Multiple List Entries from a List” on page 7-68
presents information about the READ_LIST request.

� “READ_MULT: Reading Multiple List Entries from One or More Lists” on
page 7-76 presents information about the READ_MULT request.

READ: Reading a Single List Entry
Use the READ request to read information from a specific list entry. You can use
any of the following to identify the target list entry:

� To specify the head or tail entry on a particular list, code the list position
(LISTPOS) and the list number (LISTNUM).

� To specify a particular entry regardless of where it resides in the list structure,
code one of the following:

– The entry name (ENTRYNAME), for named entries only.
– The entry ID (ENTRYID)

You can code the LISTNUM parameter to stipulate that the selected entry must
reside on a certain list.

� To specify a keyed list entry at the head or tail of a sublist of list entries with
the same key, code the list entry's key (ENTRYKEY), position on the sublist
(LISTPOS), and list number (LISTNUM).

� To specify the list entry associated with the list cursor for a certain list, code the
LOCBYCURSOR and LISTNUM parameters.

See “Understanding the List Cursor” on page 7-14 for information about using
the list cursor on a READ request.

If you omit the LISTPOS parameter, the default value is HEAD. So in effect, there
is always a value for LISTPOS if one is needed.

You indicate the types of information you want read by coding the parameter for the
storage area to receive the information. To receive data entry information, code the
BUFFER parameter or the BUFLIST parameter. To receive adjunct area
information, code the ADJAREA parameter.

Specifying the List Entry Version Number on a READ Request
For information about:

� Using the list entry version number to select the list entry to be read
� Updating the version number on a READ request

see “Understanding the List Entry Version Number” on page 7-49.

 Chapter 7. Using List Services (IXLLIST) 7-65

Specifying the List Authority Value on a READ Request
For information about:

� Using the list authority value to select an entry for processing
� Updating the list authority value

see “Understanding the List Authority Value” on page 7-36.

Requesting a Lock Operation as Part of a READ Request
To perform a serialized read operation, one in which a lock operation is performed
along with a read request, specify the LOCKOPER parameter on the IXLLIST
macro. If the list service cannot perform both the lock operation and the read
operation, it performs neither and fails the request.

You can specify the following LOCKOPER values on a READ request:

 � SET
 � RESET
 � NOTHELD
 � HELDBY

See “LOCK: Performing a Lock Operation” on page 7-100 for detailed information
about the LOCKOPER parameter.

Receiving Data from a READ Request
See “Selecting the Buffer Format” on page 7-50 for a description of the buffer
format options and their performance considerations.

Obtaining the List Entry Information from the Output Areas
The READ request returns the list entry information as follows:

� Data entry information : In the storage areas specified by BUFFER or
BUFLIST.

� Adjunct area information : In the storage area specified by ADJAREA.

� List entry controls : In the LAALCTL field of the answer area.

Receiving Answer Area Information from a READ Request
When you invoke IXLLIST, list services return information related to your request in
the answer area specified using the ANSLEN and ANSAREA parameters.

Under certain circumstances, answer area information is not valid. See
“Determining if the Answer Area is Valid” on page 7-62 for information on how to
determine whether the answer area information is valid.

The following list describes the information returned when the answer area is valid.
The answer area is mapped by the IXLYLAA macro, which is presented in OS/390
MVS Data Areas, Vol 3 (IVT-RCWK).

LAARETCODE The return code from the IXLLIST service. Return code
values are defined in the IXLYCON macro.

LAARSNCODE The reason code associated with the return code from the
IXLLIST service. Reason code values are defined in the
IXLYCON macro.

7-66 OS/390 V2R8.0 MVS Sysplex Services Guide

LAALCTL The list entry controls for the list entry that was read.
Returned for a successful READ request. The area is
mapped by IXLYLCTL.

For a READ request that failed because insufficient buffer
storage was provided to hold the data, the list entry
controls for the entry whose data couldn't fit in the buffer.

For a READ request that failed because the target list entry
did not meet the list number or version number criteria
specified by LISTNUM or VERSCOMP, the list entry
controls of the failing entry.

LAALISTDESC The user-specified description of the list. Returned for
READ requests that failed because of an authority
mismatch. Returned only for structures allocated in a
coupling facility with CFLEVEL=1 or higher.

LAALISTAUTH The list authority for the list. Returned for READ requests
that failed because of an authority mismatch. Returned only
for structures allocated in a coupling facility with
CFLEVEL=1 or higher.

LAATOTALCNT The total number of list entries in use in the structure.
Returned for requests that completed successfully.

LAATOTALELECNT The total number of data elements in use in the structure.
Returned for requests that completed successfully.

LAALISTCNT The number of list entries or data elements on the list that
was the target of the read operation. Returned for requests
that completed successfully. The value specified for
LISTCNTLTYPE on the IXLCONN macro when the list
structure was allocated determines whether this field
represents a count of list entries or data elements.

LAACONID For a READ request specifying the LOCKOPER parameter,
LAACONID contains, under the following circumstances:

� HELDBY parameter specified and the lock was not
held by the connection specified by LOCKCOMP or
taken as the default.

� NOTHELD parameter specified with
LOCKMODE=COND and the request failed because
the lock is held by another connection.

� NOTHELD parameter specified with
LOCKMODE=UNCOND and the request failed because
the lock is held by a failed persistent connection.

� SET parameter specified with LOCKMODE=COND and
the request failed because the lock is held by another
connection.

� SET parameter specified with LOCKCOMP and the
lock was not held by the specified connection.

� SET parameter specified with LOCKMODE=UNCOND
and the request failed because the lock is held by a
failed persistent connection.

� RESET parameter specified without LOCKCOMP and
the request failed because you do not hold the lock.

 Chapter 7. Using List Services (IXLLIST) 7-67

� RESET parameter specified with LOCKCOMP and the
lock was not held by the specified connection.

Either of the following:

� The connection identifier of the lock owner, if the lock
specified by the LOCKINDEX parameter is held

� Zeros, if the lock specified by the LOCKINDEX
parameter is free

READ_LIST: Reading Multiple List Entries from a List
Use the READ_LIST request to read multiple list entries from a single list.
Specifying READ_LIST causes the list service to read all list entries (or all list
entries which succeed at a version number comparison that you specify with
VERSCOMP and VERSCOMPTYPE and/or all list entries which succeed at an
entry key comparison that you specify with KEYCOMP) beginning at the specified
entry, traversing the list in the direction specified by LISTDIR. Note that if another
user adds or updates a list entry while your request is being processed, these
changes will not be included in the output you receive unless they occur in a
location on the list that has not yet been scanned. You cannot assume that your
READ_LIST request has read every list entry that meets your selection criteria
unless you serialize access to the list before issuing the request and prevent other
users from changing the list until your READ_LIST processing is finished.

The READ_LIST request has the following features:

� List entries are read and returned in the buffer in the order they occur on the
list (or in reverse order, if you specified LISTDIR=TOHEAD).

� You needn't know in advance which list the starting entry is on. You can either
omit LISTNUM and process whatever list contains the particular entry you
specify or specify LISTNUM and process the list only if the starting entry is on
the list you have specified.

� For reading multiple list entries from a single list, READ_LIST offers
substantially better performance than the READ_MULT request

� If a list entry is added after the scan has begun, it will be found if it occurs in a
location on the list that has not yet been scanned.

� If a READ_LIST request completes prematurely, the list service returns the list
entry controls of the entry at which processing is to resume. If the returned list
entry controls represent a list entry that is moved or deleted before the request
is reissued, entries could be read twice or skipped, or the reissued request
could fail. See “Handling an Incompletely Processed READ_LIST Request” on
page 7-73 for more information.

Specifying the Starting List Entry and the Processing Direction
You can designate the starting list entry in several ways:

� To specify the head or tail entry on a particular list, code the list position
(LISTPOS) and the list number (LISTNUM).

� To specify a particular entry regardless of where it resides in the list structure,
code one of the following:

– The entry name (ENTRYNAME), for named entries only
– The entry ID (ENTRYID)

7-68 OS/390 V2R8.0 MVS Sysplex Services Guide

You can code the LISTNUM parameter to stipulate that the selected entry must
reside on a certain list.

� To specify a keyed list entry at the head or tail of a sublist of list entries with
the same key, code the list entry's key (ENTRYKEY), position on the sublist
(LISTPOS), and list number (LISTNUM).

� To specify the list entry associated with the list cursor for a certain list, code the
LOCBYCURSOR and LISTNUM parameters. Note that you cannot specify the
UPDATECURSOR parameter on the READ_LIST request, so the list cursor
remains pointed to the target list entry after processing completes.

See “Understanding the List Cursor” on page 7-14 for information about using
the list cursor.

If you omit the LISTPOS parameter, the default value is HEAD. So in effect, there
is always a value for LISTPOS if one is needed.

Use the LISTDIR parameter to designate the direction in which processing is to
proceed from the starting list entry.

Specifying the Types of List Entry Information to be Read
The TYPE parameter specifies the types of information you want read from each
list entry. You can request any combination of the following types:

ECONTROLS List entry control information

ENTDATA Data entry information

ADJDATA Adjunct area information

 Important

Be careful to request entry data or adjunct data only if the structure supports
each type of data. If the list structure does not support entry data and you
request ENTDATA or if the list structure does not support adjunct data and you
request ADJDATA, the list service fails the request with reason code
IXLRSNCODEBADREADTYPE.

Specifying the List Entry Version Number on a READ_LIST
Request
For information about using the list entry version number to select the list entries to
be read, see “Understanding the List Entry Version Number” on page 7-49.

Specifying the List Authority Value on a READ_LIST Request
For information about using the list authority value to select entries for processing,
see “Understanding the List Authority Value” on page 7-36.

Requesting Entry Key Comparison on a READ_LIST Request
For information about using the entry key to select entries for processing, see
“Using the Entry Key in Multiple List Operations” on page 7-14.

 Chapter 7. Using List Services (IXLLIST) 7-69

Requesting a Lock Operation as Part of a READ_LIST Request
To perform a serialized READ_LIST operation, one in which a lock operation is
performed before performing a READ_LIST request, specify the LOCKOPER
parameter on the IXLLIST macro.

You can specify the following LOCKOPER values on a READ_LIST request:

 � NOTHELD
 � HELDBY

If your serialization protocol permits lock stealing, you can use
LOCKOPER=HELDBY to ensure that your read request is performed only if the
specified lock is in the state you expect.

See “LOCK: Performing a Lock Operation” on page 7-100 for detailed information
about the LOCKOPER parameter.

Receiving Data from a READ_LIST Request
See “Selecting the Buffer Format” on page 7-50 for a description of the buffer
format options and their performance considerations.

The requested list entry information returns to you in the following output areas:

� Buffers specified by BUFFER or BUFLIST
� The storage area specified by ADJAREA
� The LAARLRMLCTLS field in the answer area specified by ANSAREA.

The particular layout of the returned list entry information depends on the types of
information you have requested:

� Data entry information
� Adjunct area information
� List entry control information
� Some combination of these.

To access list entries with data entries of different sizes, you must read the list
entry controls for each list entry to determine the size of the associated data entry
before accessing it. Therefore, if there are different sized data entries, you should
also request list entry controls (TYPE=ECONTROLS) if you request data entry
information (TYPE=ENTDATA).

The answer area is mapped by the IXLYLAA macro. The contents of the IXLYLAA
field, LAARLRMLCTLS, and the list entry controls returned in output buffers are
mapped by the IXLYLCTL macro. See OS/390 MVS Data Areas, Vol 3 (IVT-RCWK)
for a complete listing of the IXLYLAA and IXLYLCTL macros.

For each list entry read, requested types of information are arranged in the output
buffer in the following order:

1. List entry controls
2. Data entry data (if requested and there is a data entry)
3. Adjunct area data (if requested and adjunct areas exist).

The order of the returned information in the output buffer is maintained even if you
request only two of the three types of information.

7-70 OS/390 V2R8.0 MVS Sysplex Services Guide

The order in which you specify ENTDATA, ADJDATA, or ECONTROLS on the
TYPE parameter has no bearing on the order in which information is arranged in
the output buffers.

Figure 7-33 on page 7-72 illustrates how list entry information is returned by the
READ_LIST request if you provide a single buffer.

As shown in Figure 7-33 on page 7-72:

� If adjunct area information is returned, the adjunct area information for the first
entry is returned in the ADJAREA field, not in a buffer

� If list entry controls are returned, the list entry controls for the first entry are
returned in the answer area field mapped by LAARLRMLCTLS, not in a buffer.

If you provide multiple buffers, the information is copied into the buffers in order of
ascending buffer number. List entry information that cannot fit in the current
continues into the next buffer. As a result, the information for a single list entry
could be split between buffers. However, all of the data for a particular list entry is
returned in the same READ_LIST invocation. You won't get the list entry controls
and adjunct for an entry in one invocation and the data entry information for the
entry on another invocation.

 Chapter 7. Using List Services (IXLLIST) 7-71

Figure 7-33. Layout of List Entry Information Returned by READ_LIST Request

7-72 OS/390 V2R8.0 MVS Sysplex Services Guide

Handling an Incompletely Processed READ_LIST Request
A READ_LIST request can complete prematurely for either of the following reasons:

� A request could time out before completion.
� A request could require more buffer space than you provided.

When a READ_LIST request ends before returning all the information, IXLLIST:

� Sets the IXLLIST return code to IXLRETCODEWARNING and the reason code
to:

– IXLRSNCODETIMEOUT if the processing timed out
– IXLRSNCODEBUFFERFULL if the buffer was too small to hold all the

output
– IXLRSNCODEBADBUFSIZE if the buffer was empty but still too small to

hold the first list entry being read.

� Returns in the LAALCTL field of the answer area, the complete set of list entry
controls for the next list entry to be scanned.

To continue scanning the list, reissue the READ_LIST request with the ENTRYID
keyword specifying the entry ID from the returned list entry controls for the next list
entry to be scanned.

Be sure to process the data you received on the last request before reissuing the
request. Continue reissuing the request until the return code indicates that all
processing has completed.

If the request ended prematurely because the buffer was too small to hold the first
entry to be read (for instance, your buffer is 4096 bytes but the data entry
information is 65536 bytes), determine the size of the data entry for the list entry
that caused the failure by checking the list entry control information returned in
LAALCTL (mapped by the IXLYLCTL macro.) Note that the LAALCTL field is valid
only when the request ended prematurely because the buffer could not hold all the
requested information.

You must know the data element size to make this calculation because the list
entry controls only indicate the number of data elements, not their size. If the
buffer is too small to hold the information associated with the failing list entry,
reissue the READ_LIST request with a buffer at least the size of the failing list
entry's data entry.

The Effect of List Changes on Request Resumption: To ensure that the list
does not change while your READ_LIST request is being performed, you must
have serialized access to the to the list for the entire duration and other users must
not be able to modify the list while you hold the lock.

If you don't have this kind of serialization, the list structure might change between
the time you first issue a READ_LIST request and the time you reissue it to finish
processing the request. If you don't have serialized access to the list, the list entry
at which scanning is to resume could have been:

� Deleted by another user. The list entry controls (returned in the answer area)
for that entry now specify a list entry that does not exist on the list and the
reissued request will fail.

 Chapter 7. Using List Services (IXLLIST) 7-73

� Moved to another position on the same list. Depending on the direction in
which the entry moved and the direction of specified for the READ_LIST scan,
the reissued request might either read some entries again, or skip some
entries. Figure 7-34 on page 7-74 illustrates the problem for a READ_LIST
request with LISTDIR=TOTAIL.

� Moved to another list. When you reissue the request, scanning will resume on
the new list. To prevent this, specify LISTNUM when you reissue the
READ_LIST request to ensure that the request is processed only if the starting
list entry is on the correct list.

To handle a problem like those just described, you must restart your READ_LIST
request scanning where it began in the initial request.

Figure 7-34. Possible Errors Resulting from Reissue of READ_LIST Request

Receiving Answer Area Information from a READ_LIST Request
When you invoke IXLLIST, list services return information related to your request in
the answer area specified using the ANSLEN and ANSAREA parameters.

Under certain circumstances, answer area information is not valid. See
“Determining if the Answer Area is Valid” on page 7-62 for information on how to
determine whether the answer area information is valid.

7-74 OS/390 V2R8.0 MVS Sysplex Services Guide

The following list describes the information returned when the answer area is valid.
The answer area is mapped by the IXLYLAA macro, which is presented in OS/390
MVS Data Areas, Vol 3 (IVT-RCWK).

LAARETCODE The return code from the IXLLIST service. Return code
values are defined in the IXLYCON macro.

LAARSNCODE The reason code associated with the return code from the
IXLLIST service. Reason code values are defined in the
IXLYCON macro.

LAALCTL The list entry controls. The area is mapped by IXLYLCTL.

� For a request that completes prematurely, the list entry
controls for the list entry to be scanned next. When you
reissue the READ_LIST request to continue the scan,
designate this list entry as the starting entry by
specifying the entry ID returned here with the ENTRYID
parameter.

� For a request that fails because the first list entry to be
read is larger than the entire buffer, the list entry
controls for the list entry that is too large.

� For a request that fails because the starting entry
specified was not on the specified list, returns the list
entry controls of the specified starting list entry. Use
the list controls to determine the correct list to specify
for that starting entry.

LAALISTDESC The user-specified description of the list. Returned for
READ_LIST requests that failed because of an authority
mismatch. Returned only for structures allocated in a
coupling facility with CFLEVEL=1 or higher.

LAALISTAUTH The list authority for the list. Returned for READ_LIST
requests that failed because of an authority mismatch.
Returned only for structures allocated in a coupling facility
with CFLEVEL=1 or higher.

LAAREADCNT The count of entries read by READ_LIST. This information
is returned for both successful and premature request
completion. If no scanned list entries met the criteria
specified for selection to be read, the count is set to zero. If
the request completed prematurely, there might be
additional list entries that meet the selection criteria that
have not yet been scanned.

LAACONID For a READ_LIST request specifying the LOCKOPER
parameter, LAACONID contains, under the following
circumstances:

� NOTHELD parameter specified and the request failed
because the lock is held by another connection.

� HELDBY parameter specified with or without the
LOCKCOMP parameter and the lock was not held by
the specified connection.

Either of the following:

� The connection identifier of the lock owner, if the lock
specified by the LOCKINDEX parameter is held

 Chapter 7. Using List Services (IXLLIST) 7-75

� Zeros, if the lock specified by the LOCKINDEX
parameter is free.

LAARLRMLCTLS For a READ_LIST request specifying ECONTROLS on the
TYPE parameter, the list entry controls of the first list entry
read. This field is mapped by the IXLYLCTL macro and is
valid whether the request completes successfully or
prematurely.

READ_MULT: Reading Multiple List Entries from One or More Lists
With the READ_MULT request you can read multiple list entries in the structure
and filter their selection by list number, version number, list authority value, entry
key value, or any combination of these filters. Note that if another user adds or
updates a list entry while your request is being processed, these changes might not
be included in the output you receive. You cannot assume that your READ_MULT
request has read every list entry that meets your selection criteria unless you
serialize access to the list structure before issuing the request and prevent other
users from changing the list structure while your request is being performed.

The READ_MULT request has the following features:

� You can read list entries from multiple lists

� The order in which a list entry is read and returned in the buffer has no
relationship to its position in the list structure.

� Since the order in which list entries are read is unpredictable, it is also
unpredictable whether an entry, added after the scan has begun, will be found.

� The list service returns a restart token in the answer area when a READ_MULT
request ends prematurely. Unlike a READ_LIST request, a prematurely
completed READ_MULT request can be resumed successfully regardless of
whether list entries have been moved or deleted. Entries will not be read twice
or skipped.

Note: For reading list entries from a single list, the READ_LIST request provides
better performance.

Specifying Selection Filters on a READ_MULT Request
For information about using the list entry version number to select the list entries to
be read, see “Understanding the List Entry Version Number” on page 7-49.

For information about using the list authority value to select list entries for
processing, see “Understanding the List Authority Value” on page 7-36.

For information about using the entry key value to select entries for processing, see
“Using the Entry Key in Multiple List Operations” on page 7-14.

Requesting a Lock Operation as Part of a READ_MULT Request
To perform a serialized READ_MULT operation, one in which a lock operation is
performed before performing a READ_MULT request, specify the LOCKOPER
parameter on the IXLLIST macro. If the list service cannot perform both the lock
operation and the READ_MULT operation, it performs neither and fails the request.

You can specify the following LOCKOPER values on a READ_MULT request:

 � NOTHELD

7-76 OS/390 V2R8.0 MVS Sysplex Services Guide

 � HELDBY

See “LOCK: Performing a Lock Operation” on page 7-100 for detailed information
about the LOCKOPER parameter.

Receiving Data from a READ_MULT Request
See “Selecting the Buffer Format” on page 7-50 for a description of the buffer
format options and their performance considerations.

See Figure 7-33 on page 7-72 for the layout of the list entry information returned
from the READ_MULT request. The layout of the returned information is the same
for READ_MULT and READ_LIST requests.

Handling an Incompletely Processed READ_MULT Request
A READ_MULT request can end prematurely for either of the following reasons:

� A request could time out before completion
� A request could require more buffer space than you provided.

When a READ_MULT request ends before returning all the information, IXLLIST:

� Sets the IXLLIST return code to IXLRETCODEWARNING and the reason code
to:

– IXLRSNCODETIMEOUT if the processing timed out
– IXLRSNCODEBUFFERFULL if the buffer was too small to hold all the

output
– IXLRSNCODEBADBUFSIZE if the buffer was empty but still too small to

hold the first list entry being read.

| � Returns in the LAARESTOKEN or LAAEXTRESTOKEN field of the answer
area, a restart token to be provided when you reissue the request to continue
the scan.

To reissue the READ_MULT request, access the restart token returned in the
| LAARESTOKEN or LAAEXTRESTOKEN field of the answer area and specify the
| token with the RESTOKEN or EXTRESTOKEN parameter on the next

READ_MULT invocation. Be sure to process the information returned from the last
request before reissuing the request. Continue to reissue the request until the
return code indicates that all processing has completed.

If you do not have exclusive access to the list structure, it could be modified by
other users between the time you issue the READ_MULT request and the time you
reissue it. Since the READ_MULT request uses a restart token instead of the next
entry's list controls to indicate where scanning should resume, scanning can
resume successfully even if a particular list entry is moved or deleted.

| You can avoid coding a separate IXLLIST invocation with the RESTOKEN or
| EXTRESTOKEN parameter to handle incomplete processing, by coding a single

IXLLIST invocation with the restart token initialized to zero for the first time through.
A restart token of zero causes IXLLIST to treat the invocation as a new request.
When reissuing the request due to premature completion, be sure to first set the

| restart token to the value from the LAARESTOKEN or LAAEXTRESTOKEN field.

If the request ended prematurely because the buffer was too small to hold the first
entry to be read (for instance, your buffer is 4096 bytes but the data entry

 Chapter 7. Using List Services (IXLLIST) 7-77

information is 65536 bytes), determine the size of the data entry for the list entry
that caused the failure by checking the list entry control information returned in
LAALCTL. You must know the data element size to make this calculation because
the list entry controls only indicate the number of data elements, not their size.
Reissue the READ_MULT request with a buffer at least the size of the failing list
entry's data entry.

Receiving Answer Area Information from a READ_MULT Request
When you invoke IXLLIST, list services return information related to your request in
the answer area specified using the ANSLEN and ANSAREA parameters.

Under certain circumstances, answer area information is not valid. See
“Determining if the Answer Area is Valid” on page 7-62 for information on how to
determine whether the answer area information is valid.

The following list describes the information returned when the answer area is valid.
The answer area is mapped by the IXLYLAA macro, which is presented in OS/390
MVS Data Areas, Vol 3 (IVT-RCWK).

LAARETCODE The return code from the IXLLIST service. Return code
values are defined in the IXLYCON macro.

LAARSNCODE The reason code associated with the return code from the
IXLLIST service. Reason code values are defined in the
IXLYCON macro.

LAALCTL The list entry controls.

For a request that fails because the first list entry to be
read is larger than the entire buffer, the list entry controls
for the list entry that is too large.

LAALISTDESC The user-specified description of the list. Returned for
READ_MULT requests that fail because of an authority
mismatch. Returned only for structures allocated in a
coupling facility with CFLEVEL=1 or higher.

LAALISTAUTH The list authority for the list. Returned for READ_MULT
requests that fail because of an authority mismatch.
Returned only for structures allocated in a coupling facility
with CFLEVEL=1 or higher.

LAAREADCNT The count of entries read by READ_MULT. This
information is returned for both successful and premature
request completion. If no scanned list entries met the
criteria specified for selection to be read, the count is set to
zero. If the request completed prematurely, there might be
additional list entries that meet the selection criteria that
have not yet been scanned.

LAARESTOKEN The restart token for the request. Returned if
| ALLOWAUTO=NO was specified or defaulted to on
| IXLCONN to connect to the structure and the READ_MULT

request completed prematurely.

| LAAEXTRESTOKEN The extended restart token for the request. Returned if
| ALLOWAUTO=YES was specified on IXLCONN to connect
| to the structure and the READ_MULT request completed
| prematurely.

7-78 OS/390 V2R8.0 MVS Sysplex Services Guide

LAACONID For a READ_MULT request specifying the LOCKOPER
parameter, LAACONID contains, under the following
circumstances:

� NOTHELD parameter specified and the request failed
because the lock is held by another connection.

� HELDBY parameter specified with or without the
LOCKCOMP parameter and the lock was not held by
the specified connection.

Either of the following:

� The connection identifier of the lock owner, if the lock
specified by the LOCKINDEX parameter is held

� Zeros, if the lock specified by the LOCKINDEX
parameter is free.

LAARLRMLCTLS For a READ_MULT request specifying ECONTROLS on
the TYPE parameter, the list entry controls of the first list
entry read. This field is mapped by the IXLYLCTL macro
and is valid whether the request completes successfully or
prematurely.

MOVE: Moving a List Entry
You can move a list entry to another list or to another position on the same list.

Understanding the MOVE Operations
There are four types of move operations:

 � DATAOPER=NONE

Move a list entry.

 � DATAOPER=READ

Move a list entry and read data from it.

� DATAOPER=WRITE with ENTRYTYPE=OLD

Move a list entry and write data to it.

� DATAOPER=WRITE with ENTRYTYPE=ANY

Move a list entry and write data to it. If no existing list entry meets the specified
selection criteria, create a new list entry at the target list position.

Note: List entries can be moved only within the same list structure.

 Chapter 7. Using List Services (IXLLIST) 7-79

Guide to the Topic

“MOVE: Moving a List Entry” is divided into five sections:

1. The first section provides information about input parameters
applicable to all MOVE requests.

� “Specifying the List Entry to be Moved” on page 7-80
� “Specifying the Target List and List Position” on page 7-81
� “Receiving or Passing Data on a MOVE Request” on page 7-83
� “Requesting a Lock Operation as Part of a Move Request” on

page 7-83

2. The second section, “Moving a List Entry Without Performing a
Read or Write Operation” on page 7-84, describes how to perform a
MOVE request without a read or write operation.

3. The third section, “Performing a Write Operation as part of a MOVE
Request” on page 7-84, describes how to perform a write operation
as part of a MOVE request.

4. The fourth section, “Performing a Read Operation as Part of a Move
Request” on page 7-84, describes how to perform a read operation
as part of a MOVE request.

5. The fifth section, “Receiving Answer Area Information from a MOVE
Request” on page 7-85, lists the answer area information returned
from all MOVE requests.

A Note about Terminology:

� The source list is the list containing the target list entry before the list service
performs the MOVE operation. The list that is searched for the target list entry
before creating a new one, is also considered the source list.

� The target list is the list that receives the moved list entry or the newly created
one. A single list can be both the source and target list, as is the case when a
list entry is created as part of a MOVE request.

� The target list entry is the list entry to be moved or created.

Specifying the List Entry to be Moved
You can use any of the following to identify the target list entry:

� To specify the head or tail entry on a particular list, code the list position
(LISTPOS) and the list number (LISTNUM).

� To specify a particular entry regardless of where it resides in the list structure,
code one of the following:

– The entry name (ENTRYNAME), for named entries only.
– The entry ID (ENTRYID).

You can code the LISTNUM parameter to stipulate that the selected entry must
reside on a certain list.

� To specify a keyed list entry at the head or tail of a sublist of list entries with
the same key, code the list entry's key (ENTRYKEY), the position on the sublist
(LISTPOS), and the list number (LISTNUM).

7-80 OS/390 V2R8.0 MVS Sysplex Services Guide

� To specify the list entry associated with the list cursor for a certain list, code the
LOCBYCURSOR and LISTNUM parameters.

If you omit the LISTPOS parameter, the default value is HEAD. So in effect, there
is always a value for LISTPOS if one is needed.

If you specify both the ENTRYID parameter and the ENTRYNAME parameter, the
list service uses the value of ENTRYID to locate the list entry to be moved, and the
value of ENTRYNAME to assign the entry name if a new list entry is created.

List Cursor Placement on a MOVE Request
See “Understanding the List Cursor” on page 7-14 for information about using the
list cursor.

Specifying the Target List and List Position
The MOVETOLIST parameter identifies the list number of the target list.

For a list structure with entry names: The list service places the list entry at the
head or tail of the target list as specified by the MOVETOPOS parameter. If you
specify MOVETOPOS=HEAD, the list service places the list entry at the head of
the list. If you specify MOVETOPOS=TAIL, the list service places the list entry at
the tail of the list.

For a list structure with entry keys: You can assign an entry key to the entry
being moved or created in one of two ways:

1. Use the MOVETOKEY parameter to specify the key to be assigned. The
ENTRYKEY parameter specifies the key value the target list entry must
currently have to be selected for processing.

2. For list structures allocated in a CFLEVEL=1 or higher coupling facility, you can
use the list key value associated with the list to set the list entry key. See
“Understanding List Entry Key Assignment” on page 7-10.

The flowchart in Figure 7-35 on page 7-82 shows how the key value is assigned
when a keyed entry is moved or created using REQUEST=MOVE and automatic
list key assignment is not being used (LISTKEYTYPE=NOLISTKEY). Once the list
entry key is assigned, the list service places the list entry on the target list as
follows:

� If the list entry's key is unique within the list, the list entry is positioned to
maintain the ascending order of the entry keys.

� If other list entries on the list have the same key, the value of the
MOVETOPOS parameter determines whether to add the list entry to the head
or tail of the sublist of list entries with matching keys.

 Chapter 7. Using List Services (IXLLIST) 7-81

MOVETOKEYENTRYTYPE

List
Entry
Found

=
ANY Specified

Request

Fails

MOVETOKEY
Specified

List Entry
List Entry

Key
Key

Unchanged
Changed To

MOVETOKEY

ENTRYKEY
Specified

List Entry

List Entry

Created

Created

Using

Using

ENTRYKEY

MOVETOKEY

List Entry List Entry
Created Created
With Key With Key
Of Binary Of Binary

Ones Zeros

YES

YES YES

YES

YES

YES

NO

NO

NO

NO

NO

NO MOVETOPOS

HEAD
=

START

Figure 7-35. List Entry Key Resulting from a MOVE Request

For a list structure with neither entry names nor entry keys: The list service
places the list entry at the head or tail of the target list as described for a list
structure with entry names.

7-82 OS/390 V2R8.0 MVS Sysplex Services Guide

Receiving or Passing Data on a MOVE Request
See “Selecting the Buffer Format” on page 7-50 for a description of the buffer
format options and their performance considerations.

Specifying the List Entry Version Number on a MOVE Request
See “Understanding the List Entry Version Number” on page 7-49 for information
about:

� Using the list entry version number to select the list entry to be moved
� Updating the list entry version number on a MOVE request.

Specifying the List Authority Value on a MOVE Request
See “Understanding the List Authority Value” on page 7-36 for information about:

� Using the list authority value to select an entry for processing
� Updating the list authority value.

Requesting Automatic Key Assignment on a MOVE Request
For information about requesting automatic key assignment when moving a list
entry, see “Understanding List Entry Key Assignment” on page 7-10.

Requesting a Lock Operation as Part of a Move Request
To perform a serialized MOVE operation, one in which the list service performs a
lock operation together with a MOVE request, specify the LOCKOPER parameter
on the IXLLIST macro. If the list service cannot perform both the lock operation and
the move operation, it performs neither and fails the request.

You can specify the following LOCKOPER values on a MOVE request:

 � SET
 � RESET
 � NOTHELD
 � HELDBY

See “LOCK: Performing a Lock Operation” on page 7-100 for detailed information
about the LOCKOPER parameter.

Moving a Keyed List Entry in a CFLEVEL=3 or Higher Coupling
Facility
If your request is to move a keyed list entry in a coupling facility of CFLEVEL=3 or
higher from one sublist to another sublist, the following scenarios apply:

� The request is to move the keyed list entry to an empty sublist and the target
sublist is being monitored.

– The system queues all EMCs associated with the target sublist to the
respective users' event queues.

� The request is to move the keyed list entry from a sublist thus causing the
source sublist to become empty.

– The system withdraws all EMCs assocated with the source sublist from the
event queues.

 Chapter 7. Using List Services (IXLLIST) 7-83

Moving a List Entry Without Performing a Read or Write Operation
For a MOVE request without a read or write operation, specify DATAOPER=NONE,
which is the default.

Performing a Read Operation as Part of a Move Request
To perform a read operation as part of the move request, specify
DATAOPER=READ. You specify the type of list entry information you want read by
coding the parameter for the storage area to receive the information. Specify:

� BUFFER or BUFLIST to read data entry data.
� ADJAREA to read adjunct area data.

Performing a Write Operation as part of a MOVE Request
To perform a write operation as part of the move request, specify
DATAOPER=WRITE with ENTRYTYPE=OLD or ENTRYTYPE=ANY.

� Specify ENTRYTYPE=OLD to update the list entry's data entry with the data in
the buffer specified by BUFFER or BUFLIST, the adjunct data with the data in
the storage area specified by ADJAREA, or both.

� Specify ENTRYTYPE=ANY to request the following:

– If the target list entry exists, move it and update it as described for
ENTRYTYPE=OLD.

– If the target list entry does not exist, create a new list entry at the target
position, containing the data entry data in the buffer specified by BUFFER
or BUFLIST, the adjunct data in the storage specified by ADJAREA, or
both.

Creating a New List Entry as Part of a MOVE Request
If you specify ENTRYTYPE=ANY, your request might cause a new list entry to be
created. You can either provide the information necessary to create and position
the new list entry or have the list service position the new list entry according to its
default values.

For a list structure with entry names: You must provide a list entry name
(ENTRYNAME) for the list service to use if it creates a new list entry for you.

The list service uses the value of LISTPOS to determine whether to place the new
list entry at the head or tail of the target list.

For a list structure with entry keys: If you specify the MOVETOKEY parameter,
the new list entry is assigned the key specified by MOVETOKEY. If you omit the
MOVETOKEY parameter but specify the ENTRYKEY parameter, the new list entry
is assigned the key specified by ENTRYKEY. If you omit both MOVETOKEY and
ENTRYKEY, the new list entry is assigned a key based on the value of
MOVETOPOS. If MOVETOPOS=HEAD, the key is set to binary zeros. If
MOVETOPOS=TAIL, the key is set to binary ones.

For a keyed list structure in a CFLEVEL=3 or higher coupling facility: If your
MOVE request specifies DATAOPER=WRITE and ENTRYTYPE=ANY for a keyed
list structure in a CFLEVEL=3 or higher coupling facility and the target sublist is
empty,

7-84 OS/390 V2R8.0 MVS Sysplex Services Guide

� The target sublist transitions to nonempty

� The system queues all EMCs associated with the target sublist to the
respective users' event queues.

For list structures allocated in a CFLEVEL=1 or higher coupling facility, you can use
the list key value associated with the list to set the list entry key. See
“Understanding List Entry Key Assignment” on page 7-10.

See Figure 7-35 on page 7-82 for a flowchart illustrating some key assignment
rules.

For More Information

The following information discussed under “WRITE: Writing to a List Entry” on
page 7-57 also applies to REQUEST=MOVE with DATAOPER=WRITE:

� “Specifying the Size of the Data Entry to Hold the Data” on page 7-58

Receiving Answer Area Information from a MOVE Request
When you invoke IXLLIST, list services return information related to your request in
the answer area specified using the ANSLEN and ANSAREA parameters.

Under certain circumstances, answer area information is not valid. See
“Determining if the Answer Area is Valid” on page 7-62 for information on how to
determine whether the answer area information is valid.

The following list describes the information returned when the answer area is valid.
The answer area is mapped by the IXLYLAA macro, which is presented in OS/390
MVS Data Areas, Vol 3 (IVT-RCWK).

LAARETCODE The return code from the IXLLIST service. Return code
values are defined in the IXLYCON macro.

LAARSNCODE The reason code associated with the return code from the
IXLLIST service. Reason code values are defined in the
IXLYCON macro.

LAALCTL The list entry controls for the list entry. The area is mapped
by IXLYLCTL.

For a successful MOVE request, the list entry controls for
the list entry that was moved or created. This area is
mapped by IXLYLCTL.

For a MOVE request that failed because the target list
entry did not meet the list number or version number
criteria specified by LISTNUM or VERSCOMP, the list entry
controls for the list entry that failed to meet the selection
criterion.

For a MOVE request that failed because the entry name
(ENTRYNAME) specified for the new list entry already
existed, the list entry controls for the list entry already
having the specified name.

 Chapter 7. Using List Services (IXLLIST) 7-85

For a MOVE request that failed because the user
requested DATAOPER=READ and the buffer wasn't big
enough to contain the requested information.

LAALISTDESC The user-specified description of the list. Returned for
MOVE requests that failed because of an authority
mismatch. Returned only for structures allocated in a
coupling facility with CFLEVEL=1 or higher.

LAALISTAUTH The list authority for the list. Returned for MOVE requests
that failed because of an authority mismatch. Returned only
for structures allocated in a coupling facility with
CFLEVEL=1 or higher.

LAALISTKEY The current value of the list key from the list controls.
Returned for MOVE requests that failed because the
maximum list key value would be exceeded. Returned only
for structures allocated in a coupling facility with
CFLEVEL=1 or higher.

LAAMAXLISTKEY The current value of the maximum list key from the list
controls. Returned for MOVE requests that failed because
the maximum list key value would be exceeded. Returned
only for structures allocated in a coupling facility with
CFLEVEL=1 or higher.

LAATOTALCNT The total number of list entries in use in the structure.
Returned for requests that completed successfully.

LAATOTALELECNT The total number of data elements in use in the structure.
Returned for requests that completed successfully.

LAALISTCNT The number of list entries or data elements on the list to
which the list entry was moved or the list which received
the new list entry if DATAOPER=WRITE was specified with
ENTRYTYPE=ANY and an entry was created. Returned
for requests that completed successfully. The value
specified for LISTCNTLTYPE on the IXLCONN macro
when the list structure was allocated determines whether
this field represents a count of list entries or data elements.

LAACONID For a MOVE request specifying the LOCKOPER
parameter, LAACONID contains, under the following
circumstances:

� HELDBY parameter specified and the lock was not
held by the connection specified by LOCKCOMP or
taken as the default.

� NOTHELD parameter specified with
LOCKMODE=COND and the request failed because
the lock is held by another connection.

� NOTHELD parameter specified with
LOCKMODE=UNCOND and the request failed because
the lock is held by a failed persistent connection.

� SET parameter specified with LOCKMODE=COND and
the request failed because the lock is held by another
connection.

� SET parameter specified with LOCKCOMP and the
lock was not held by the specified connection.

7-86 OS/390 V2R8.0 MVS Sysplex Services Guide

� SET parameter specified with LOCKMODE=UNCOND
and the request failed because the lock is held by a
failed persistent connection.

� RESET parameter specified without LOCKCOMP and
the request failed because you do not hold the lock.

� RESET parameter specified with LOCKCOMP and the
lock was not held by the specified connection.

Either of the following:

� The connection identifier of the lock owner, if the lock
specified by the LOCKINDEX parameter is held

� Zeros, if the lock specified by the LOCKINDEX
parameter is free.

LAAENTRYCREATED Flag to indicate that the request created a new entry.
Returned for successful MOVE requests when
DATAOPER=WRITE is specified. Returned only for
structures allocated in a coupling facility with CFLEVEL=1
or higher.

DELETE, DELETE_MULT, DELETE_ENTRYLIST: Deleting List Entries
You can perform three types of delete operations on entries in a list structure:

REQUEST=DELETE Delete a single list entry.

REQUEST=DELETE_MULT Delete all list entries in the structure or only
those:

� On a certain list
� With a version number that succeeds on a

version number comparison, using
VERSCOMP and VERSCOMPTYPE

� With a list authority value that succeeds on
a list authority comparison, using
AUTHCOMP and AUTHCOMPTYPE

� Any combination of the above.

REQUEST=DELETE_ENTRYLIST Delete the list entries specified in a list of entry
names or entry IDs passed as input.

If the list structure uses list entry names, you can reuse the entry names of deleted
list entries. List entry IDs, which are assigned to list entries by list services, are
unique for the life of the list structure and are not reused.

Guide to the Topic

“DELETE, DELETE_MULT, DELETE_ENTRYLIST: Deleting List Entries” is
divided into three sections:

� “DELETE: Deleting a Single List Entry” on page 7-88

� “DELETE_MULT: Deleting Multiple List Entries” on page 7-91

� “DELETE_ENTRYLIST: Deleting a List of Entries” on page 7-93

 Chapter 7. Using List Services (IXLLIST) 7-87

DELETE: Deleting a Single List Entry
The DELETE request allows you to delete a single list entry or read a list entry and
delete it.

DATAOPER=NONE Indicates that the list entry is not to be read.
DATAOPER=READ Reads the list entry and deletes it. You can read either or

both of the following:
� Data entry data into the buffer specified by BUFFER or

BUFLIST
� Adjunct area data into the storage specified by

ADJAREA.

Requesting a Lock Operation as Part of a DELETE Request
To perform a serialized DELETE operation, one in which the list service performs a
lock operation together with a DELETE request, specify the LOCKOPER parameter
on the IXLLIST macro. If the list service cannot perform both the lock operation and
the delete operation, it performs neither and fails the request.

You can specify the following LOCKOPER values on a DELETE request:

 � SET
 � RESET
 � NOTHELD
 � HELDBY

See “LOCK: Performing a Lock Operation” on page 7-100 for detailed information
about the LOCKOPER parameter.

Specifying the List Entry to be Deleted
You can designate the list entry to be deleted in several ways:

� To specify the head or tail entry on a particular list, code the list position
(LISTPOS) and the list number (LISTNUM).

� To specify a particular entry regardless of where it resides in the list structure,
code one of the following:

– The entry name (ENTRYNAME), for named entries only.
– The entry ID (ENTRYID).

You can code the LISTNUM parameter to stipulate that the selected entry must
reside on a certain list.

� To specify a keyed list entry at the head or tail of a sublist of list entries with
the same key, code the list entry's key (ENTRYKEY), the position on the sublist
(LISTPOS), and the list number (LISTNUM).

� To specify the list entry associated with the list cursor for a certain list, code the
LOCBYCURSOR and LISTNUM parameters.

See “Understanding the List Cursor” on page 7-14 for information about using
the list cursor.

If you omit the LISTPOS parameter, the default value is HEAD. So in effect, there
is always a value for LISTPOS if one is needed.

7-88 OS/390 V2R8.0 MVS Sysplex Services Guide

Specifying the List Entry Version Number on a DELETE Request
For information about using the list entry version number to select the list entry to
be deleted, see “Understanding the List Entry Version Number” on page 7-49.

Specifying the List Authority Value on a DELETE Request
For information about using the list authority value to select an entry for processing,
see “Understanding the List Authority Value” on page 7-36.

Deleting a Keyed List Entry in a CFLEVEL=3 or Higher Coupling
Facility
If your delete request is to delete the last keyed list entry from one or more
monitored sublists in a coupling facility of CFLEVEL=3 or higher, the following
occurs:

� The sublist(s) transition from nonempty to empty.

� The system withdraws all EMCs associated with the sublist(s) from the event
queues.

Receiving Data on a DELETE Request
See “Selecting the Buffer Format” on page 7-50 for a description of the buffer
format options and their performance considerations.

Receiving Answer Area Information from a DELETE Request
When you invoke IXLLIST, list services return information related to your request in
the answer area specified using the ANSLEN and ANSAREA parameters.

Under certain circumstances, answer area information is not valid. See
“Determining if the Answer Area is Valid” on page 7-62 for information on how to
determine whether the answer area information is valid.

The following list describes the information returned when the answer area is valid.
The answer area is mapped by the IXLYLAA macro, which is presented in OS/390
MVS Data Areas, Vol 3 (IVT-RCWK).

LAARETCODE The return code from the IXLLIST service. Return code
values are defined in the IXLYCON macro.

LAARSNCODE The reason code associated with the return code from the
IXLLIST service. Reason code values are defined in the
IXLYCON macro.

LAALCTL The list entry controls for the list entry. The area is mapped
by IXLYLCTL.

For a successful DELETE request, the list entry controls for
the list entry that was deleted. This area is mapped by
IXLYLCTL.

For a DELETE request that failed because the target list
entry did not meet the list number or version number
criteria specified by LISTNUM or VERSCOMP, the list entry
controls for the list entry that failed to meet the selection
criterion.

For a DELETE request with DATAOPER=READ, that failed
because the buffer was too small to hold the data to be
read.

 Chapter 7. Using List Services (IXLLIST) 7-89

LAALISTDESC The user-specified description of the list. Returned for
DELETE requests that failed because of a list authority
mismatch. Returned only for structures allocated in a
coupling facility with CFLEVEL=1 or higher.

LAALISTAUTH The list authority for the list. Returned for DELETE
requests that failed because of a list authority mismatch.
Returned only for structures allocated in a coupling facility
with CFLEVEL=1 or higher.

LAATOTALCNT The total number of list entries in use in the structure.
Returned for requests that completed successfully.

LAATOTALELECNT The total number of data elements in use in the structure.
Returned for requests that completed successfully.

LAALISTCNT The number of list entries or data elements on the list that
was the target of the DELETE operation. Returned for
requests that completed successfully. The value specified
for LISTCNTLTYPE on the IXLCONN macro when the list
structure was allocated determines whether this field
represents a count of list entries or data elements.

LAACONID For a DELETE request specifying the LOCKOPER
parameter, LAACONID contains, under the following
circumstances:

� HELDBY parameter specified and the lock was not
held by the connection specified by LOCKCOMP or
taken as the default.

� NOTHELD parameter specified with
LOCKMODE=COND and the request failed because
the lock is held by another connection.

� NOTHELD parameter specified with
LOCKMODE=UNCOND and the request failed because
the lock is held by a failed persistent connection.

� SET parameter specified with LOCKMODE=COND and
the request failed because the lock is held by another
connection.

� SET parameter specified with LOCKCOMP and the
lock was not held by the specified connection.

� SET parameter specified with LOCKMODE=UNCOND
and the request failed because the lock is held by a
failed persistent connection.

� RESET parameter specified without LOCKCOMP and
the request failed because you do not hold the lock.

� RESET parameter specified with LOCKCOMP and the
lock was not held by the specified connection.

Either of the following:

� The connection identifier of the lock owner, if the lock
specified by the LOCKINDEX parameter is held

� Zeros, if the lock specified by the LOCKINDEX
parameter is free

7-90 OS/390 V2R8.0 MVS Sysplex Services Guide

DELETE_MULT: Deleting Multiple List Entries
With the DELETE_MULT request you can delete multiple list entries in the structure
and filter their selection by list number, version number, list authority value, entry
key value, or any combination of these filters.

The order in which list entries are deleted is unrelated to the order of the list entries
in the structure. Because of this, you can't tell whether an entry, added after the
scan has begun, will be deleted.

For more information about the list entry version number, see “Understanding the
List Entry Version Number” on page 7-49.

For more information about the list authority value, see “Understanding the List
Authority Value” on page 7-36.

For more information about using the entry key to select entries for processing, see
“Using the Entry Key in Multiple List Operations” on page 7-14.

Requesting a Lock Operation as Part of a DELETE_MULT
Request
To perform a serialized DELETE_MULT operation, one in which a lock operation is
performed before performing a DELETE_MULT request, specify the LOCKOPER
parameter on the IXLLIST macro. If the list service cannot perform both the lock
operation and the DELETE_MULT operation, it performs neither and fails the
request.

You can specify the following LOCKOPER values on a DELETE_MULT request:

 � NOTHELD
 � HELDBY

See “LOCK: Performing a Lock Operation” on page 7-100 for detailed information
about the LOCKOPER parameter.

If your serialization protocol permits lock stealing, you can use either of these lock
operations to ensure that your delete request is performed only if the specified lock
is in the state you expect.

Handling an Incompletely Processed DELETE_MULT Request
A DELETE_MULT request can time out before finishing all its processing. If this
happens, IXLLIST:

� Sets the IXLLIST return code to IXLRETCODEWARNING and the reason code
to IXLRSNCODETIMEOUT to indicate that processing did not complete.

� Returns in the LAADELCNT field of the answer area, the count of list entries
that have been deleted on that invocation.

| � Returns in the LAARESTOKEN or LAAEXTRESTOKEN field of the answer
area, a restart token to be provided when you reissue the request to continue
the scan.

To reissue the DELETE_MULT request, access the restart token returned in the
| LAARESTOKEN or LAAEXTRESTOKEN field of the answer area and specify the
| token with the RESTOKEN or EXTRESTOKEN parameter on the next

 Chapter 7. Using List Services (IXLLIST) 7-91

DELETE_MULT invocation. Continue to reissue the request until the return code
indicates that all processing has completed.

If you do not have exclusive access to the list structure, it could be modified by
other users between the time you issue the DELETE_MULT request and the time
you reissue it. Since the DELETE_MULT request uses a restart token instead of
the next entry's list controls to indicate where scanning should resume, scanning
can resume successfully even if a particular list entry is moved or deleted.

| You can avoid coding a separate IXLLIST invocation with the RESTOKEN or
| EXTRESTOKEN parameter to handle incomplete processing, by coding a single

IXLLIST invocation with the restart token initialized to zero for the first time through.
A restart token of zero causes IXLLIST to treat the invocation as a new request.
When reissuing the request due to premature completion, be sure to first set the

| restart token to the value from the LAARESTOKEN or LAAEXTRESTOKEN field.

Receiving Answer Area Information from a DELETE_MULT
Request
When you invoke IXLLIST, list services return information related to your request in
the answer area specified using the ANSLEN and ANSAREA parameters.

Under certain circumstances, answer area information is not valid. See
“Determining if the Answer Area is Valid” on page 7-62 for information on how to
determine whether the answer area information is valid.

The following list describes the information returned when the answer area is valid.
The answer area is mapped by the IXLYLAA macro, which is presented in OS/390
MVS Data Areas, Vol 3 (IVT-RCWK).

LAARETCODE The return code from the IXLLIST service. Return code
values are defined in the IXLYCON macro.

LAARSNCODE The reason code associated with the return code from the
IXLLIST service. Reason code values are defined in the
IXLYCON macro.

LAALISTDESC The user-specified description of the list. Returned for
DELETE_MULT requests that failed because of a list
authority mismatch. Returned only for structures allocated
in a coupling facility with CFLEVEL=1 or higher.

LAALISTAUTH The list authority for the list. Returned for DELETE_MULT
requests that failed because of a list authority mismatch.
Returned only for structures allocated in a coupling facility
with CFLEVEL=1 or higher.

LAADELCNT The number of list entries deleted on the invocation that
just completed. Returned for request that completed
successfully or prematurely. If no scanned list entries met
the criteria specified for selection to be deleted, the count
is set to zero. If the request completed prematurely, there
might be additional list entries that meet the selection
criteria that have not yet been scanned.

LAACONID For a DELETE_MULT request specifying the LOCKOPER
parameter, LAACONID contains, under the following
circumstances:

7-92 OS/390 V2R8.0 MVS Sysplex Services Guide

� NOTHELD parameter specified and the request failed
because the lock is held by another connection.

� HELDBY parameter specified with or without the
LOCKCOMP parameter and the lock was not held by
the specified connection.

Either of the following:

� The connection identifier of the lock owner, if the lock
specified by the LOCKINDEX parameter is held

� Zeros, if the lock specified by the LOCKINDEX
parameter is free.

LAARESTOKEN The restart token for the request. Returned if
| ALLOWAUTO=NO was specified or defaulted to on
| IXLCONN and the DELETE_MULT request completed

prematurely.

| LAAEXTRESTOKEN The extended restart token for the request. Returned if
| ALLOWAUTO=YES was specified on IXLCONN to connect
| to the structure and the DELETE_MULT request completed
| prematurely.

DELETE_ENTRYLIST: Deleting a List of Entries
Use the DELETE_ENTRYLIST request to delete the list entries identified in a list of
entry names or entry IDs you provide as input. A list of entry names is only valid if
the list structure uses entry names.

The LISTTYPE parameter indicates whether you are providing a list of entry names
or entry IDs:

LISTTYPE=IDLIST Indicates a list of entry IDs.
LISTTYPE=NAMELIST Indicates a list of entry names.

The FIRSTELEM and LASTELEM parameters specify the index of the first and last
entry in the list, respectively, which are to be processed for the request.

You can use the LISTNUM parameter to specify that the list entries should be
deleted only if they reside on a certain list. You can use additional filtering of
entries by version number and/or list authority value. For a list of entry IDs, you
also can filter entries by entry key.

� For information about using the list entry version number to select the list
entries to be deleted, see “Understanding the List Entry Version Number” on
page 7-49.

� For information about selecting entries for processing by list authority value,
see “Understanding the List Authority Value” on page 7-36.

� For information about using the entry key to select entries for processing, see
“Using the Entry Key in Multiple List Operations” on page 7-14.

 Chapter 7. Using List Services (IXLLIST) 7-93

Passing the List of Entries to be Deleted
See “Selecting the Buffer Format” on page 7-50 for a description of the buffer
format options and their performance considerations.

For LISTTYPE=IDLIST, the buffer(s) containing the list of entry IDs should be
formatted as an array of 12-byte fields, each containing an entry ID. Note that
IDLIST entries can be split across buffers if necessary.

For LISTTYPE=NAMELIST, the buffer(s) containing the list of entry names should
be formatted as an array of 16-byte fields, each containing an entry name.

Requesting a Lock Operation as Part of a DELETE_ENTRYLIST
Reques
To perform a serialized DELETE_ENTRYLIST operation, one in which a lock
operation is performed before performing a DELETE_ENTRYLIST request, specify
the LOCKOPER parameter on the IXLLIST macro. If the list service cannot perform
both the lock operation and the DELETE_ENTRYLIST operation, it performs neither
and fails the request.

You can specify the following LOCKOPER values on a DELETE_ENTRYLIST
request:

 � NOTHELD
 � HELDBY

See “LOCK: Performing a Lock Operation” on page 7-100 for detailed information
about the LOCKOPER parameter.

If your serialization protocol permits lock stealing, you can use either of these lock
operations to ensure that your delete request is performed only if the specified lock
is in the state you expect.

Handling an Incompletely Processed DELETE_ENTRYLIST
Request
If IXLLIST cannot find a list entry list you have specified in your entry list,
processing ends prematurely and the entry list index of the entry that couldn't be
found is returned in the LAAFAILINDEX field of the answer area. To continue
processing, reissue the request starting with the entry after the one that couldn't be
found (LAAFAILINDEX+1).

A DELETE_ENTRYLIST request can also time out before finishing all its
processing. If this happens, IXLLIST:

� Sets the IXLLIST return code to IXLRETCODEWARNING and the reason code
to IXLRSNCODETIMEOUT to indicate that processing did not complete.

� Returns in the LAADELCNT field of the answer area, the count of list entries
that have been deleted on that invocation.

� Returns in the LAAFAILINDEX field of the answer area, the index of the first
unprocessed entry in the list of entry names or entry IDs you have specified for
deletion.

All entries preceding the failing list entry will have been deleted and all entries
beginning with the failed entry will still remain to be processed. To continue
processing, reissue the DELETE_ENTRYLIST request using the index value

7-94 OS/390 V2R8.0 MVS Sysplex Services Guide

returned in LAAFAILINDEX as the value of the FIRSTELEM parameter. Continue
reissuing the request until the return code indicates that all the processing has
completed.

Receiving Answer Area Information from a DELETE_ENTRYLIST
Request
When you invoke IXLLIST, list services return information related to your request in
the answer area specified using the ANSLEN and ANSAREA parameters.

Under certain circumstances, answer area information is not valid. See
“Determining if the Answer Area is Valid” on page 7-62 for information on how to
determine whether the answer area information is valid.

The following list describes the information returned when the answer area is valid.
The answer area is mapped by the IXLYLAA macro, which is presented in OS/390
MVS Data Areas, Vol 3 (IVT-RCWK).

LAARETCODE The return code from the IXLLIST service. Return code
values are defined in the IXLYCON macro.

LAARSNCODE The reason code associated with the return code from the
IXLLIST service. Reason code values are defined in the
IXLYCON macro.

LAALISTDESC The user-specified description of the list. Returned for
DELETE_ENTRYLIST requests that failed because of a list
authority mismatch. Returned only for structures allocated
in a coupling facility with CFLEVEL=1 or higher.

LAALISTAUTH The list authority for the list. Returned for
DELETE_ENTRYLIST requests that failed because of a list
authority mismatch. Returned only for structures allocated
in a coupling facility with CFLEVEL=1 or higher.

LAADELCNT The number of list entries deleted on the invocation that
just completed. Returned for request that completed
successfully or prematurely.

LAACONID For a DELETE_ENTRYLIST request specifying the
LOCKOPER parameter, LAACONID contains, under the
following circumstances:

� NOTHELD parameter specified and the request failed
because the lock is held by another connection.

� HELDBY parameter specified with or without the
LOCKCOMP parameter and the lock was not held by
the specified connection.

either of the following:

� The connection identifier of the lock owner, if the lock
specified by the LOCKINDEX parameter is held

� Zeros, if the lock specified by the LOCKINDEX
parameter is free.

LAAFAILINDEX Under the circumstances listed below, contains an index
into the entry list specified by IDLIST or NAMELIST:

� If the DELETE_ENTRYLIST request failed because

 Chapter 7. Using List Services (IXLLIST) 7-95

one of the entries could not be found, contains the
index of the list entry that could not be found.

� If the DELETE_ENTRYLIST request ended
prematurely, contains the index of the list entry to be
processed next.

READ_LCONTROLS: Reading List Controls
Use the READ_LCONTROLS request to obtain the list control information for a
specific list. The list service returns the following list control information in the
answer area specified using the ANSLEN and ANSAREA parameters.

� The list limit (maximum allowable number of list entries or data elements on the
list)

� The current number of list entries or data elements on the list

� The approximate number of times the list has changed from empty to nonempty

� The user-specified list description

� The user-defined list authority value

� The number of entries in the array of list monitoring information associated with
the list. The list monitoring information itself is returned in the buffer specified
by BUFFER or BUFLIST

� The value of the list cursor (entry ID to which it points or zero)

� The list key value (when CFLEVEL=1 or higher)

� The maximum list key value (when CFLEVEL=1 or higher)

� The list cursor direction (when CFLEVEL=1 or higher).

Obtaining List Monitoring Information
Each list has associated with it an array of list monitoring entries. Each list
monitoring entry describes the list monitoring activities associated with that list for a
particular connection ID. A list monitoring entry is returned for each connection ID
regardless of whether that connection ID represents an active user of the structure.
List monitoring entries for unused connection IDs are set to zeros. Each list
monitoring information entry is mapped by the IXLYLMI macro.

The array of list monitoring information entries is returned in the buffer specified by
BUFFER or BUFLIST. When control returns from a READ_LCONTROLS request,
the LAALMICNT field in the answer area contains the number of list monitoring
information entries in the array. The entries are numbered from 0 to LAALMICNT-1
but entry 0 does not contain list monitoring information and should not be
accessed. The list monitoring information, indexed by connection ID number, begins
with entry 1.

To access information for a particular connection ID, use the ID number as an
index into the array or scan the array from entry 1 to entry LAALMICNT-1. Each
list monitoring information entry contains the following information about the
associated connection ID:

� Whether the connection ID is monitoring the list

7-96 OS/390 V2R8.0 MVS Sysplex Services Guide

� Whether the connection ID is using a list transition exit to receive notification of
this list's transitions.

� The vector index in the connection ID's list notification vector representing the
list.

Receiving Answer Area Information from a READ_LCONTROLS
Request

Under certain circumstances, answer area information is not valid. See
“Determining if the Answer Area is Valid” on page 7-62 for information on how to
determine whether the answer area information is valid.

The following list describes the information returned when the answer area is valid.
The answer area is mapped by the IXLYLAA macro, which is presented in OS/390
MVS Data Areas, Vol 3 (IVT-RCWK).

LAARETCODE The return code from the IXLLIST service. Return code
values are defined in the IXLYCON macro.

LAARSNCODE The reason code associated with the return code from the
IXLLIST service. Reason code values are defined in the
IXLYCON macro.

LAALISTCNT The number of list entries or data elements on the list.
Returned for requests that completed successfully. The
value specified for LISTCNTLTYPE on the IXLCONN
macro when the list structure was allocated determines
whether this field represents a count of list entries or data
elements.

LAALMICNT The count of list monitoring information entries returned.
Returned for requests that completed successfully. List
monitoring information entries are mapped by the IXLYLMI
macro. The list monitoring entries are numbered from 0 to
LAALMICNT-1.

LAALISTLIMIT The maximum number of list entries permitted on the list or
the maximum number of data elements permitted in the list
structure (also called the list limit.) The choice of which
type of limit to use is made using the LISTCNTLTYPE
parameter on the IXLCONN macro when the structure is
allocated. Returned for requests that completed
successfully.

LAALISTDESC The user-defined list description. Returned for requests that
completed successfully.

LAALISTTRAN The approximate number of transitions from empty to
nonempty.

LAALISTAUTH The user-defined list authority value.

LAALISTKEY The list controls list key value. Returned for successful
requests for structures allocated in a coupling facility with a
CFLEVEL=1 or higher.

LAAMAXLISTKEY The list controls maximum list key value. Returned for
successful requests for structures allocated in a coupling
facility with a CFLEVEL=1 or higher.

 Chapter 7. Using List Services (IXLLIST) 7-97

LAALISTCURSOR The value of the list cursor (an entry ID or zero, if the list
cursor is not set).

LAACURSORDIR The list cursor direction. Returned for successful requests
for structures allocated in a coupling facility with a
CFLEVEL=1 or higher.

WRITE_LCONTROLS: Writing List Controls
Use the WRITE_LCONTROLS request with the following parameters to alter the list
control information associated with a list:

NEWAUTH Specifies a new list authority value.

LISTLIMIT Specifies a new list limit.

LISTDESC Specifies a new list description.

SETCURSOR Sets the list cursor location and specifies the cursor direction
(with CFLEVEL=1 or higher).

LISTKEY Specifies the list key associated with the list (with CFLEVEL=1 or
higher).

MAXLISTKEY Specifies the maximum value for the list key associated with the
list (with CFLEVEL=1 or higher).

Note: Your application can use the list authority value to implement a serialization
mechanism (similar to compare and swap) for updating list controls. For
structures allocated in a coupling facility with CFLEVEL=1 or higher, your
application can also use the list authority value to serialize updates to
entries on a list. See “Understanding the List Authority Value” on
page 7-36.

If you are using the list authority value as a serialization mechanism, specify the
current list authority value on the AUTHCOMP parameter when you issue
WRITE_LCONTROLS to change a list control. If the AUTHCOMP value does not
match the current list authority value, the request fails. You can obtain the current
authority value using the READ_LCONTROLS request.

For more information about list controls, including their initial values when the list
structure is allocated, see “Understanding List Controls” on page 7-34.

The list service returns information about the outcome of the request in the answer
area specified by the ANSAREA and ANSLEN parameters.

Changing the List Limit
You can change the list limit for a list at any time. If your new list limit allows fewer
list entries or data elements (depending on which type of limit you have) than
currently exist on the list, list services does not alter the list to conform to the new
list limit you have set. However, any IXLLIST requests that try to increase the
number of list entries or data elements on the list will fail until the request can be
satisfied without exceeding the new limit.

7-98 OS/390 V2R8.0 MVS Sysplex Services Guide

Effect of Structure Alter on the List Limit
For structures that are allocated in a coupling facility with CFLEVEL=1 or higher,
the IXLALTER function provides for the expansion or contraction of the size of a
structure and/or for the reapportionment of the entry-to-element ratio of the
structure. When the system processes an IXLALTER request for a list structure, the
list limit for each list in the structure is automatically adjusted only if one of the
following conditions exist:

� You never set a list limit for the list

� You set a list limit for the list that is equal to the total number of list entries or
data elements (depending on which type of limit you have).

In both of these cases, when the structure alter is initiated the list limit for the list is
equal to the total number of list entries or data elements in the structure. As the
alter process changes the total number of entries and elements, structure alter
automatically adjusts the list limit to correspond to the changes made to the
structure.

If neither condition exists (that is, you have explicitly set a list limit not equal to the
total number of list entries or data elements in the structure), then structure alter
does not automatically adjust the list limit. It is your responsibility, at the
completion of structure alter processing, to set any new list limits that you require.
Ensure that when doing so, you take into consideration any changes that were
made to the structure's entry and element counts during the structure alter process.

Receiving Answer Area Information from a WRITE_LCONTROLS
Request

Under certain circumstances, answer area information is not valid. See
“Determining if the Answer Area is Valid” on page 7-62 for information on how to
determine whether the answer area information is valid.

The following list describes the information returned when the answer area is valid.
The answer area is mapped by the IXLYLAA macro, which is presented in OS/390
MVS Data Areas, Vol 3 (IVT-RCWK).

LAARETCODE The return code from the IXLLIST service. Return code
values are defined in the IXLYCON macro.

LAARSNCODE The reason code associated with the return code from the
IXLLIST service. Reason code values are defined in the
IXLYCON macro.

LAALISTDESC The user-defined list description of the target list. Returned
for requests that failed because the specified list authority
value did not match that of the target list.

LAALISTAUTH The user-defined list authority value of the target list.
Returned for requests that failed because the specified list
authority value did not match that of the target list.

 Chapter 7. Using List Services (IXLLIST) 7-99

LOCK: Performing a Lock Operation
Use the LOCK request with the LOCKOPER parameter to perform a lock operation
on a lock table entry without performing any associated list entry operation. Lock
operations are valid only for list structures that contain a lock table.

Selecting the Lock Operation
The LOCKOPER parameter specifies the lock operation to be performed. You can
also code the LOCKOPER parameter on an IXLLIST request such as WRITE or
READ, to perform a list entry operation together with a lock operation. The lock
operations specified by the LOCKOPER parameter perform different functions
depending on whether you specify a comparative lock value using the
LOCKCOMP parameter.

Figure 7-36 lists the LOCKOPER functions with and without the LOCKCOMP
parameter:

Lock Stealing : Specifying SET or RESET with the LOCKCOMP parameter allows
you to steal a lock that is owned by connection. A lock steal request preempts any
other outstanding requests for a particular lock. Lock stealing is intended for use
primarily as part of connection failure recovery — to obtain a lock held by a failed
connection.

Figure 7-36. List Structure Lock Operations

Lock Operation With LOCKCOMP Without LOCKCOMP

SET Transfer ownership of the lock
to the requesting connection if
the lock is currently held by the
connection identified by
LOCKCOMP (also known as
lock stealing)

Obtain ownership of the
specified lock

RESET Free the specified lock if it is
held by the connection identified
by LOCKCOMP (another form of
lock stealing)

Release ownership of the
specified lock

NOTHELD Not applicable. Perform the specified list
operation (such as a read or
write operation) only if the
specified lock is free

HELDBY Perform the specified list
operation (such as a read or
write operation) only if the lock
is held by the connection
identified by LOCKCOMP

Perform the specified list
operation (such as a read or
write operation) only if the
specified lock is held by the
requesting connection

TEST Determine whether the specified
lock is held by the connection
identified by LOCKCOMP

Determine whether the
requesting connection holds
the specified lock

READNEXT Return the lock table index of
the next lock held by the
connection identified by
LOCKCOMP

Return the lock table index
and connection ID
associated with the next
lock in the lock table that is
held.

7-100 OS/390 V2R8.0 MVS Sysplex Services Guide

Note: If you obtain a lock to serialize multiple IXLLIST requests and your protocol
includes lock stealing, you should use LOCKOPER=HELDBY on each
IXLLIST request once you hold the lock to ensure that the request is
performed only if the lock is still yours.

Receiving Answer Area Information from a LOCK Request
When you invoke IXLLIST, list services return information related to your request in
the answer area specified using the ANSLEN and ANSAREA parameters.

Under certain circumstances, answer area information is not valid. See
“Determining if the Answer Area is Valid” on page 7-62 for information on how to
determine whether the answer area information is valid.

The following list describes the information returned when the answer area is valid.
The answer area is mapped by the IXLYLAA macro, which is presented in OS/390
MVS Data Areas, Vol 3 (IVT-RCWK).

LAARETCODE The return code from the IXLLIST service. Return code
values are defined in the IXLYCON macro.

LAARSNCODE The reason code associated with the return code from the
IXLLIST service. Reason code values are defined in the
IXLYCON macro.

LAACONID For a LOCK request specifying the LOCKOPER parameter,
LAACONID contains, under the following circumstances:

� SET parameter specified with LOCKMODE=COND and
the request failed because the lock is held by another
connection.

� SET parameter specified with LOCKCOMP and the
request failed because the lock is not held by the
specified connection.

� SET parameter specified with LOCKMODE=UNCOND
and the request failed because the lock is held by a
failed persistent connection.

� RESET parameter specified without LOCKCOMP and
the request failed because you do not hold the lock.

� RESET parameter specified with LOCKCOMP and the
request failed because the lock is not held by the
specified connection.

� TEST parameter specified with LOCKCOMP and the
request failed because the lock is not held by the
specified connection.

� TEST parameter specified without LOCKCOMP and the
request failed because you do not hold the lock.
specified.

� READNEXT parameter specified without LOCKCOMP
and a lock was found belonging to your connection.

� READNEXT parameter specified with LOCKCOMP and
a lock was found belonging to the specified connection.

Either of the following:

� The connection identifier of the lock owner, if the lock
specified by the LOCKINDEX parameter is held

 Chapter 7. Using List Services (IXLLIST) 7-101

� Zeros, if the lock specified by the LOCKINDEX
parameter is free.

LAALOCKINDEX For a LOCK request with the READNEXT parameter, this
field contains one of the following:

� If you specified a connection ID using the LOCKCOMP
parameter, this field contains the lock index of the next
lock held by that connection ID

� If you omitted the LOCKCOMP parameter, this field
contains the lock index of the next lock held by any
connection.

� If the request timed out, this field contains the next lock
table entry to be processed when the next LOCK
request is issued.

MONITOR_LIST: Monitoring List Transitions
The list monitoring function allows you to determine whether a list in the structure is
empty (contains no list entries) or nonempty (contains one or more list entries)
without incurring the overhead of accessing the coupling facility. Instead, with the
list monitoring function, the system maintains list state information in a list
notification vector allocated in high-speed processor storage on your own system. A
list's change from empty to nonempty is called a list transition . Not only does the
list monitoring function offer you a faster way to determine the state of a list, it also
offers the option of being informed of list transitions by means of a list transition
exit.

You could use this function when implementing a set of message queues using the
list structure. When an empty message queue receives a message, the system
notifies the interested user. The user removes the message from the queue,
processes it, and waits for notification of the arrival of the next message.

The List Notification Vector
When you connect to the list structure and indicate your interest in using the list
transition monitoring function, the system allocates a list notification vector for your
use and returns a token to you representing this vector. The list notification vector
shows the state (empty or non-empty) of each list you are monitoring. Each
connector to the list structure that indicates interest in list monitoring (by coding the
VECTORLEN parameter on the IXLCONN macro) is allocated a list notification
vector.

A list notification vector consists of an array of entries in which each entry is
logically associated with a list in the structure. The number of entries must be a
multiple of 32.

When a list transition occurs for a monitored list, the system automatically updates
the associated entry in the list notification vector to reflect the empty or nonempty
state of the list. The IXLVECTR macro provides the interface to the list notification
vector. To determine whether a list you are monitoring is empty or non-empty,
invoke the IXLVECTR macro with either the TESTLISTSTATE or LTVECENTRIES
parameter. You can use the IXLVECTR macro with the MODIFYVECTORSIZE
parameter to change the size of your list notification vector, so you can monitor

7-102 OS/390 V2R8.0 MVS Sysplex Services Guide

more lists, for instance. See “Using the IXLVECTR Macro” on page 9-3 for more
information.

Options for Detecting a List Transition
You can detect list transitions two different ways:

� By having your list notification exit receive control when the list changes from
empty to nonempty. Your list notification exit then invokes the IXLVECTR
macro to check the state (empty or nonempty) of each list you are monitoring.

� By coding a polling routine to invoke the IXLVECTR macro periodically to check
the state of each list you are monitoring.

For each list you monitor, you can choose how you want to detect list transition.
You can monitor some lists using a list notification exit and others by whatever
method you choose, such as polling the list notification vector.

Steps to Set Up List Transition Monitoring
Setting up list monitoring involves the following steps. You must:

1. Indicate when you connect to the list structure using the IXLCONN macro that
you are interested in using list monitoring

2. Establish list monitoring for specific lists in the list structure by invoking the
IXLLIST macro with REQUEST=MONITOR_LIST.

Indicating Your Interest in List Transition Monitoring
To establish your interest in list transition monitoring, specify the VECTORLEN
parameter on the IXLCONN macro invocation when you connect to the list
structure. Specifying VECTORLEN will cause a list notification vector to be created
for your connection's use. If you want to be informed of list transitions using an exit,
you must specify the LISTTRANEXIT parameter along with the VECTORLEN
parameter.

Starting Transition Monitoring of a List
To begin monitoring a particular list, you invoke the IXLLIST macro with
REQUEST=MONITOR_LIST and ACTION=START. You also specify the list
number (LISTNUM) of the list to be monitored and the index of the list notification
vector entry (VECTORINDEX) to be associated with the monitored list.

If you want to have your list transition exit receive control when the list changes
from empty to nonempty, specify DRIVEEXIT=YES. If you omit the DRIVEEXIT
parameter or code DRIVEEXIT=NO, you indicate your intention to monitor the list's
transitions by a different means.

When you start transition monitoring of a list, the system initializes the associated
vector entry to indicate the current state of the list: empty or nonempty.

Stopping Transition Monitoring of a List
To stop monitoring a particular list, you invoke the IXLLIST macro with
REQUEST=MONITOR_LIST and ACTION=STOP, specifying the list number of the
list you no longer wish to monitor.

To reassign a list notification vector entry to monitor a different list, you must first
stop monitoring the list currently associated with that entry.

 Chapter 7. Using List Services (IXLLIST) 7-103

To assign a different list notification vector entry to represent a list you are currently
monitoring, you need only issue another start monitoring request for the same list
using a different list notification vector entry. The second start monitoring request
automatically cancels the use of the first entry for monitoring that list.

Design Considerations for Using the List Transition Exit
You can use the list transition exit to monitor lists and/or your event queue. See
“MONITOR_EVENTQ: Monitoring an Event Queue” on page 7-105 for information
about event queue monitoring. In either case, whether you use the list transition
exit to monitor multiple lists, your single event queue, or both, it is important to
understand the relationship between your list transition exit and the object(s) it is
monitoring.

If you use a list notification exit to monitor multiple objects, note that the exit is
given control whenever any object you monitor this way changes from empty to
nonempty. To determine which monitored object triggered the notification, use the
IXLVECTR macro with either the TESTLISTSTATE or LTVECENTRIES parameter
to check the vector entry for each candidate object.

During structure rebuild, the list transition exit is not given control. When the
rebuild completes, either normally or because of a rebuild stop, the list transition
exit is given control once to inform you of any list transition transitions that might
have occurred during the rebuild. This is done whether or not you are currently
monitoring any lists or your event queue.

 Timing Considerations
The time span involved in detecting and responding to a transition of an object you
are monitoring introduces several timing considerations, particularly if multiple
connections are monitoring the same object. (Note however, that only your
connection will be monitoring your event queue.)

If multiple connections are monitoring the same list, the first connection to respond
to a list transition could empty the list before other connections test the list
notification vector or check the list. Depending on when the other connection
emptied the list, either of the following would occur:

� Your list transition exit could receive control, test the list notification vector, and
find no non-empty lists.

� You could test the list notification vector, find the list had become nonempty,
then attempt to read a list entry from the list and find the list empty.

Another timing consideration is the possible delay between the time a monitored
object changes from empty to nonempty and the time its list notification vector entry
is updated. All list transitions for monitored objects are reflected in the list
notification vector in the order in which they occur, but the timing of the updates is
not guaranteed.

Under certain circumstances, there might be a sizable delay between the time a
transition of a monitored object occurs and the time the list transition exit is given
control. List transition exits are not given control while a structure is being rebuilt.
Once the rebuild processing has finished the list transition exits for the connections
that participated in the structure rebuild are given control to inform the connections
of any transitions that might have occurred during the rebuild process.

7-104 OS/390 V2R8.0 MVS Sysplex Services Guide

Another circumstance of which you should be aware is that if connectivity to the
coupling facility is interrupted, the list transition exit might be given control even
though the monitored object has not changed.

Best Circumstances for Using List Monitoring
If a list you are monitoring is constantly receiving new entries and having them
removed, list monitoring would be of little value because the list would be
constantly changing back and forth between empty and nonempty. List monitoring
is best suited for situations in which a list receives new entries on a less frequent
basis.

If you are monitoring a large number of lists, determining which list changed states
could be a lengthy process. List monitoring using a notification exit is more
appropriate when used on a small number of lists.

Receiving Answer Area Information from a MONITOR_LIST Request
When you invoke IXLLIST, list services return information related to your request in
the answer area specified using the ANSLEN and ANSAREA parameters.

Under certain circumstances, answer area information is not valid. See
“Determining if the Answer Area is Valid” on page 7-62 for information on how to
determine whether the answer area information is valid.

The following list describes the information returned when the answer area is valid.
The answer area is mapped by the IXLYLAA macro, which is presented in OS/390
MVS Data Areas, Vol 3 (IVT-RCWK).

LAARETCODE The return code from the IXLLIST service. Return
code values are defined in the IXLYCON macro.

LAARSNCODE The reason code associated with the return code
from the IXLLIST service. Reason code values are
defined in the IXLYCON macro.

LAALISTCNT Count of the in-use entries or elements residing on
the processed list at the time monitoring was started.
Returned for successful MONITOR_LIST requests
that specify ACTION=START.

LAAMNL_LISTCNT also contains this value.

LAAMNL_ENTRYQUEUED Indication of whether the list was empty or nonempty
at the time a MONITOR_LIST ACTION=START
request was processed for a structure allocated in a
coupling facility with CFLEVEL=3 or higher.

MONITOR_EVENTQ: Monitoring an Event Queue
The event queue monitoring function allows you to determine whether your event
queue in the structure is empty (contains no event monitor controls objects
(EMCs)) or non-empty (contains one or more EMCs) without incurring the
overhead of accessing the coupling facility. As with list monitoring, the event queue
monitoring function uses a list notification vector allocated in high-speed processor
storage. The system maintains event queue state information in the list notification
vector. As with the list monitoring function, you can choose to be informed of the

 Chapter 7. Using List Services (IXLLIST) 7-105

event queue's transitions to a non-empty state by means of a list transition exit or
through your own polling mechanism.

The MONITOR_EVENTQ request type is valid only for a keyed list structure
allocated in a coupling facility with CFLEVEL=3 or higher.

Steps to Set Up Event Queue Transition Monitoring
Setting up event queue monitoring involves the following steps. You must:

1. Indicate when you connect to the list structure using the IXLCONN macro that
you are interested in using event queue monitoring by specifying a vector
(VECTORLEN), event monitor controls (EMCSTGPCT), and optionally, a list
transition exit for notification purposes (LISTTRANEXIT).

2. Establish event queue monitoring by invoking the IXLLIST macro with
REQUEST=MONITOR_EVENTQ ACTION=START.

Indicating Your Interest in Event Queue Transition Monitoring
There are four factors to consider when establishing your interest in event queue
transition monitoring.

� The list must support keyed entries, specified by the REFOPTION=KEY
parameter on the initial connect to the list structure.

� You must specify the VECTORLEN parameter on the IXLCONN macro to
cause the system to create a list notification vector for your connection's use.

� You must specify a non-zero value for the EMCSTGPCT parameter on the
IXLCONN macro to allow the system to set aside a percentage of the list
structure's storage for use as event monitor controls objects that will be queued
to the structure's event queues.

� You have the option of having a list transition exit for notification purposes.

Starting Transition Monitoring of an Event Queue
To begin monitoring your event queue, invoke the IXLLIST macro with
REQUEST=MONITOR_EVENTQ and ACTION=START. You also specify the index
of the list notification vector entry (VECTORINDEX) to be associated with the event
queue.

If you want to have your list transition exit receive control when the event queue
changes from empty to non-empty, specify DRIVEEXIT=YES, If you omit the
DRIVEEXIT parameter or code DRIVEEXIT=NO, you indicate your intention to
monitor the event queue's transitions by a different means.

When you start transition monitoring of an event queue, the system initializes the
associated vector entry to indicate the current state of the event queue: empty or
non-empty.

Stopping Transition Monitoring of an Event Queue
To stop monitoring your event queue, invoke the IXLLIST macro with
REQUEST=MONITOR_EVENTQ and ACTION=STOP.

7-106 OS/390 V2R8.0 MVS Sysplex Services Guide

See “Design Considerations for Using the List Transition Exit” on page 7-104 for
information describing the relationship between your list transition exit and the
event queue it is monitoring.

Receiving Answer Area Information from a MONITOR_EVENTQ
Request

When you invoke IXLLIST, list services return information related to your request in
the answer area specified used the ANSLEN and ANSAREA parameters.

Under certain circumstances, answer area information is not valid. See
“Determining if the Answer Area is Valid” on page 7-62 for information on how to
determine whether the answer area information is valid.

The following list describes the information returned when the answer area is valid.
The answer area is mapped by the IXLYLAA macro, which is presented in OS/390
MVS Data Areas, Vol 3 (IVT-RCWK).

LAARETCODE The return code from the IXLLIST service. Return
code values are defined in the IXLYCON macro.

LAARSNCODE The reason code associated with the return code
from the IXLLIST service. Reason code values are
defined in the IXLYCON macro.

LAAMNEQ_EVENTQUEUED A flag to indicate whether your event queue was not
empty. Returned for successful MONITOR_EVENTQ
ACTION=START requests.

LAAMNEQ_EVENTCNT Count of the number of events (event monitor
control objects) that were queued to your event
queue when monitoring was established. Returned
for successful MONITOR_EVENTQ
REQUEST=START requests.

MONITOR_SUBLIST, MONITOR_SUBLISTS: Monitoring Sublists
The sublist monitoring function, which is available only with a keyed list structure
allocated in a coupling facility of CFLEVEL=3 or higher, allows you to determine
whether a sublist in the structure is empty (contains no list entries) or non-empty
(contains one or more list entries) without incurring the overhead of accessing the
coupling facility. Instead, with the sublist monitoring function, the system queues or
withdraws event monitor controls objects on your event queue when a monitored
sublist transitions from empty to non-empty or vice versa.

Understanding the Event Queue
An event queue is established for each list structure user that specifies an interest
in sublist monitoring when the list structure is allocated. While sublist monitoring is
in effect, the system will queue or withdraw event monitor controls objects (EMCs)
to or from your event queue to indicate the empty or nonempty state of the sublists
you are monitoring. Using event queue monitoring in conjunction with sublist
monitoring allows you to determine whether the set of sublists that you are
monitoring is empty or nonempty, and if one or more sublists is nonempty, to
determine efficiently which sublist(s) those are.

 Chapter 7. Using List Services (IXLLIST) 7-107

Indicating Your Interest in Sublist Transition Monitoring
To establish your interest in sublist transition monitoring, specify the EMCSTGPCT
and the VECTORLEN parameters on the IXLCONN macro invocation when you
connect to the list structure. Specifying EMCSTGPCT indicates the amount of
space in the list structure's available storage that you want to allocate to event
monitor controls. Specifying VECTORLEN will cause a list notification vector to be
created for your connection's use. The system will update the associated entry in
the list notification vector when the your event queue transitions from empty to
nonempty.

Specifying User Notification Controls
When you register interest in monitoring a designated sublist, you can specify 16
bytes of user data (called user notification controls) to be associated with the
sublist. The use of the user notification controls (UNCs) depends on your
application requirements. For example, the UNCs might contain information about
the meaning of the sublist. If a sublist transition occurs (and an EMC is queued to
your event queue), the EMC will contain the 16 bytes of user notification controls.
The system returns this information to you when you read and dequeue the EMCs
by issuing the IXLLIST REQUEST=DEQ_EVENTQ macro.

Guide to the Topic

“MONITOR_SUBLIST, MONITOR_SUBLISTS: Monitoring Sublists” on
page 7-107 is divided into the following sections.

� “MONITOR_SUBLIST: Monitoring a Single Sublist” presents information
about the MONITOR_SUBLIST request.

� “MONITOR_SUBLISTS: Monitoring Multiple Sublists” on page 7-110
presents information about the MONITOR_SUBLISTS request.

MONITOR_SUBLIST: Monitoring a Single Sublist
The IXLLIST REQUEST=MONITOR_SUBLIST allows you to start and stop
monitoring interest in a single sublist. The sublist must be part of a keyed list
structure allocated in a coupling facility of CFLEVEL=3 or higher. You can issue
IXLLIST REQUEST=MONITOR_SUBLIST multiple times, either to request
monitoring of a set of different sublists or to update the monitoring information
(such as the user notification controls) that is associated with a sublist you are
currently monitoring.

Starting Transition Monitoring of a Sublist
To begin monitoring a particular sublist, you invoke the IXLLIST macro with
REQUEST=MONITOR_SUBLIST and ACTION=START. You also specify the list
number (LISTNUM), the entry key of the sublist (ENTRYKEY), the connect token
(CONTOKEN) that was returned when you connected to the structure, and any
user notification control information that your processing might require (UNC). This
information is associated with the EMC for this user/sublist combination.

To update your registered interest in monitoring a particular sublist, you can reissue
the IXLLIST REQUEST=MONITOR_SUBLIST specifying the same sublist but with
different user notification control information. The system replaces the UNC
information in the existing EMC that is associated with the user/sublist combination.

7-108 OS/390 V2R8.0 MVS Sysplex Services Guide

Stopping Transition Monitoring of a Sublist
To stop monitoring a particular sublist, you invoke the IXLLIST macro with
REQUEST=MONITOR_SUBLIST and ACTION=STOP. You also must specify the
list number of the list you no longer want to monitor, the list entry key of the sublist,
and your connect token.

Scenario for Monitoring a Sublist
Issue the macro requests in the following order:

� Connect to the keyed list structure with a non-zero EMCSTGPCT value and a
local vector to specify sublist monitoring.

� Issue IXLLIST REQUEST=MONITOR_EVENTQ to monitor your event queue.
The reason for registering interest in monitoring your event queue before
specifying the sublist(s) you want to monitor is to ensure that your notification
that a sublist has transitioned from an empty to a nonempty state is not
deferred. For example, as soon as you register interest in a sublist, it is
possible for the EMC that represents the registration of that sublist to get
queued to your event queue. If you have not previously registered interest in
monitoring your event queue, the system cannot notify you that an EMC is
queued there.

� Issue IXLLIST REQUEST=MONITOR_SUBLIST to monitor the sublist, or issue
the macro multiple times to monitor multiple sublists. If a sublist transition
occurs, an EMC will be queued or withdrawn from your event queue and you
will be notified, either through your list transition exit or through your own vector
polling protocol.

� When you are notified that a sublist transition has occured, you can issue
IXLLIST REQUEST=DEQ_EVENTQ to read the EMC into a storage area that
you specify. The EMC will contain any user notification controls that you initially
specified when registering to monitor the sublist, or as updated by a
subsequent MONITOR_SUBLIST request against the same sublist.

Receiving Answer Area Information from a MONITOR_SUBLIST
Request

When you invoke IXLLIST, list services return information related to your request in
the answer area specified used the ANSLEN and ANSAREA parameters.

Under certain circumstances, answer area information is not valid. See
“Determining if the Answer Area is Valid” on page 7-62 for information on how to
determine whether the answer area information is valid.

The following list describes the information returned when the answer area is valid.
The answer area is mapped by the IXLYLAA macro, which is presented in OS/390
MVS Data Areas, Vol 3 (IVT-RCWK).

LAARETCODE The return code from the IXLLIST service. Return
code values are defined in the IXLYCON macro.

LAARSNCODE The reason code associated with the return code
from the IXLLIST service. Reason code values are
defined in the IXLYCON macro.

 Chapter 7. Using List Services (IXLLIST) 7-109

LAAMNSL_ENTRYQUEUED A flag to indicate that the sublist is not empty.
Returned for successful MONITOR_SUBLIST
ACTION=START requests.

LAAMNSL_EMCCCNT Count of event monitor control objects in use by the
structure when sublist monitoring was established.
Returned for successful MONITOR_SUBLIST
ACTION=START requests, or for requests that fail
because the structure has no more EMCs (reason
code IXLRSNCODESTRFULL).

LAAMNSL_MAXEMCCNT Maximum number of EMCs for the structure.
Returned for successful MONITOR_SUBLIST
ACTION=START requests, or for requests that fail
because the structure has no more EMCs (reason
code IXLRSNCODESTRFULL).

MONITOR_SUBLISTS: Monitoring Multiple Sublists
The IXLLIST REQUEST=MONITOR_SUBLISTS request allows you to register
interest in monitoring multiple sublists with a single command. Each sublist must
be part of a keyed list structure allocated in a coupling facility of CFLEVEL=3 or
higher. You can only start sublist monitoring with the MONITOR_SUBLISTS
request; to stop sublist monitoring you must issue a MONITOR_SUBLIST request
to stop monitoring each individual sublist.

Identifying the Sublists to be Monitored
The IXLLIST REQUEST=MONITOR_SUBLISTS request allows you to specify from
1 to 1024 sublists. To identify the sublists to be monitored, you build a record for
each sublist in a buffer area, designated by BUFFER or BUFLIST on the macro
invocation. The record is mapped by the IXLYMSRI macro and, for each sublist,
contains the same information that you would have provided for a single request —
the list number, the entry key, and any user notification control information.

Passing Buffered Data on a MONITOR_SUBLISTS Request
See “Selecting the Buffer Format” on page 7-50 for a description of the buffer
format options and their performance considerations.

Using the Monitored Object State Vector
When you issue an IXLLIST REQUEST=MONITOR_SUBLISTS request, you must
provide a 128-byte storage area, (the MOSVECTOR), in which the system will
indicate the monitored object state (empty or non-empty) of each sublist in which
you tried to register interest. The storage area will contain a bit string, with bit 1 as
the origin, where each bit corresponds one-to-one with the IXLYMSRI entries
passed as input in the BUFFER or BUFLIST. Only the bits corresponding to the
IXLYMSRI entries that were actually processed on the current request will contain
valid monitored object state information for the sublists designated by the
corresponding IXLYMSRI entries. Bits in the MOSVECTOR that lie outside the valid
range are not meaningful. A bit value of ON in the monitored object state vector
indicates that the corresponding sublist is non-empty; a bit value of OFF indicates
that the corresponding sublist is empty.

7-110 OS/390 V2R8.0 MVS Sysplex Services Guide

Handling an Incompletely Processed MONITOR_SUBLISTS
Request
An IXLLIST REQUEST=MONITOR_SUBLISTS can complete prematurely for one of
the following reasons:

� A request could time out before completion.

� The structure has no more event monitor control objects left and creation of an
EMC was required by the request.

� A request specifies an IXLYMSRI entry that contains a list number that is not
valid.

When a MONITOR_SUBLISTS request ends before processing all the IXLYMSRI
entries, list services sets the IXLLIST return and reason codes as follows:

� If the processing timed out, IXLRETCODEWARNING and
IXLRSNCODETIMEOUT.

� If the structure had no more EMCs, IXLRETCODEENVERROR and
IXLRSNCODESTRFULL.

� If an IXLYMSRI entry contained a list number that was not valid,
IXLRETCODEPARMERROR and IXLRSNCODEBADLISTNUMBER.

List services also returns in the LAAMNSLS_FAILINDEX field of the answer area,
the index of the first unprocessed IXLYMSRI entry when the request completed
prematurely. The MOSVECTOR bits that correspond to the IXLYMSRI entries
between STARTINDEX and LAAMNSLS_FAILINDEX minus one contain valid
monitored object state information.

To continue processing the IXLYMSRI entries after processing the entries that were
successfully completed, reissue the MONITOR_SUBLISTS request with the
STARTINDEX keyword specifying the index of the first unprocessed IXLYMSRI
entry to be processed. If the premature completion was caused by a lack of EMCs
in the structure, you must first either release some EMCs or rebuild the structure
allowing for more EMCs. You can reissue the request to continue processing the
IXLYMSRI entries when either of the corrective actions is complete. Note that if the
corrective action was to rebuild the structure, you must first start monitoring for all
the sublists you were monitoring prior to the rebuild before reissuing the request to
process the IXLYMSRI entries.

If the premature completion was caused by a list number that was not valid in an
IXLYMSRI entry, either correct the list number value and reissue the request with
STARTINDEX updated to the value in LAAMNSLS_FAILINDEX or update
STARTINDEX to skip over the IXLYMSRI entry containing the list number that was
not valid.

Receiving Answer Area Information from a MONITOR_SUBLISTS
Request

When you invoke IXLLIST, list services return information related to your request in
the answer area specified used the ANSLEN and ANSAREA parameters.

Under certain circumstances, answer area information is not valid. See
“Determining if the Answer Area is Valid” on page 7-62 for information on how to
determine whether the answer area information is valid.

 Chapter 7. Using List Services (IXLLIST) 7-111

The following list describes the information returned when the answer area is valid.
The answer area is mapped by the IXLYLAA macro, which is presented in OS/390
MVS Data Areas, Vol 3 (IVT-RCWK).

LAARETCODE The return code from the IXLLIST service. Return
code values are defined in the IXLYCON macro.

LAARSNCODE The reason code associated with the return code
from the IXLLIST service. Reason code values are
defined in the IXLYCON macro.

LAAMNSLS_FAILINDEX Index of the first unprocessed IXLYMSRI entry when
the IXLLIST REQUEST=MONITOR_SUBLISTS
request completed prematurely. Premature
completion can occur when the request times out
(reason code IXLRSNCODETIMEOUT), when the
structure has no more EMCs left (reason code
IXLRSNCODESTRFULL), or when an IXLYMSRI
entry specifies a list number that is not valid (reason
code IXLRSNCODEBADLISTNUMBER).

LAAMNSLS_EMCCCNT Count of event monitor control (EMC) objects in use
by the structure when the MONITOR_SUBLISTS
request completed. Returned when the request
completes successfully or prematurely.

LAAMNSLS_MAXEMCCNT Maximum number of EMCs for the structure.
Returned when the request completes successfully
or prematurely.

READ_EMCONTROLS: Reading Event Monitor Controls
Use the READ_EMCONTROLS request to obtain the event monitor control (EMC)
information associated with the user and a monitored sublist. The list containing the
sublist must be a keyed list structure allocated in a coupling facility of CFLEVEL=3
or higher. At most one such unique EMC can exist per user per sublist. If the EMC
exists, the list service returns the following event monitor control information in the
answer area specified using the ANSLEN and ANSAREA parameters.

� The connection identifier of the connector
� The list number
� The list entry key of the sublist
� The user-supplied user notification control data
� Flag to indicate whether the EMC is queued to the user's event queue

If the EMC does not exist, the list service returns the IXLRSNCODENOENTRY
reason code to the requestor.

The READ_EMCONTROLS request type is valid only for a keyed list structure
allocated in a coupling facility with CFLEVEL=3 or higher.

7-112 OS/390 V2R8.0 MVS Sysplex Services Guide

Receiving Answer Area Information from a READ_EMCONTROLS
Request

When you invoke IXLLIST, list services return information related to your request in
the answer area specified used the ANSLEN and ANSAREA parameters.

Under certain circumstances, answer area information is not valid. See
“Determining if the Answer Area is Valid” on page 7-62 for information on how to
determine whether the answer area information is valid.

The following list describes the information returned when the answer area is valid.
The answer area is mapped by the IXLYLAA macro, which is presented in OS/390
MVS Data Areas, Vol 3 (IVT-RCWK).

LAARETCODE The return code from the IXLLIST service. Return
code values are defined in the IXLYCON macro.

LAARSNCODE The reason code associated with the return code
from the IXLLIST service. Reason code values are
defined in the IXLYCON macro.

LAAREMC_CONID The connection identifier of the connector associated
with the event monitor control (EMC) object.

LAAREMC_EMCQUEUED A flag to indicate whether an EMC is queued to the
event queue of the connector identified by
LAAREMC_CONID.

LAAREMC_LISTNUM The list number of the list with which this EMC is
associated.

LAAREMC_LISTENTRYKEY The list entry key of the sublist with which this EMC
is associated.

LAAREMC_UNC The user notification control data supplied by the
connector when this EMC was established to
monitor the sublist identified by the list number and
entry key, or when modified by a subsequent
MONITOR_SUBLIST or MONITOR_SUBLISTS
request.

READ_EQCONTROLS: Reading Event Queue Controls
Use the READ_EQCONTROLS request to obtain the event queue control
information associated with the connector's event queue. The list service returns
the following event queue control information in the answer area specified using the
ANSLEN and ANSAREA parameters.

� Flag to indicate whether the list transition exit is to be driven when the user's
event queue changes from empty to non-empty

� Flag to indicate whether the user is currently monitoring the event queue

� The vector index associated with the event queue being monitored

� The number of event monitor control (EMC) objects that are currently queued
to the event queue

 Chapter 7. Using List Services (IXLLIST) 7-113

� The approximate number of times the event queue has changed from empty to
non-empty

The READ_EQCONTROLS request type is valid only for a keyed list structure
allocated in a coupling facility with CFLEVEL=3 or higher.

Obtaining Event Queue Monitoring Information
There is an event queue associated with every list structure user intending to do
sublist monitoring. For every event queue there is an event queue control object
that contains information about the state of the queue and associated monitoring
information. A user can monitor the state (empty or non-empty) of an event queue
with the IXLLIST REQUEST=MONITOR_EVENTQ request.

Receiving Answer Area Information from a READ_EQCONTROLS
Request

When you invoke IXLLIST, list services return information related to your request in
the answer area specified used the ANSLEN and ANSAREA parameters.

Under certain circumstances, answer area information is not valid. See
“Determining if the Answer Area is Valid” on page 7-62 for information on how to
determine whether the answer area information is valid.

The following list describes the information returned when the answer area is valid.
The answer area is mapped by the IXLYLAA macro, which is presented in OS/390
MVS Data Areas, Vol 3 (IVT-RCWK).

LAARETCODE The return code from the IXLLIST service. Return
code values are defined in the IXLYCON macro.

LAARSNCODE The reason code associated with the return code
from the IXLLIST service. Reason code values are
defined in the IXLYCON macro.

LAAREQC_MONITORINGACTIVE
A flag to indicate whether the user is currently
monitoring the event queue for which the system is
returning information.

LAAREQC_DRIVEEXIT A flag to indicate whether XES is to drive the
connection list transition exit when the user's event
queue changes from empty to non-empty.

LAAREQC_VECTORINDEX The vector index associated with the event queue
being monitored.

LAAREQC_EMCQUEUEDCNT
The number of event monitor control (EMC) objects
that are queued to the event queue.

LAAREQC_EVENTTRAN A count of the approximate number of empty to
non-empty event queue transitions that have
occurred.

7-114 OS/390 V2R8.0 MVS Sysplex Services Guide

DEQ_EVENTQ: Retrieving Events from the Event Queue
Use the DEQ_EVENTQ request to read and dequeue queued events from a user's
event queue. You can read and dequeue multiple EMCs from your event queue
with a single invocation of the DEQ_EVENTQ command. Each set of read and
dequeue operations is done atomically. Once dequeued from the event queue, an
EMC is not deleted. The EMC remains associated with the user and the sublist for
which it was created until the user deregisters its interest in monitoring the sublist
or the user disconnects or fails.

List services return the event monitor controls (EMC) objects in a storage area you
specify with either the BUFFER or BUFLIST parameter. Each of the EMCs returned
in the BUFFER or BUFLIST area is mapped by the IXLYEMC macro and contains
the following information:

� The connection identifier

� The list number of the list header containing the sublist

� The list entry key of the sublist

� The user notification controls — 16 bytes of user-defined data

List services returns the EMCs in the BUFFER or BUFLIST storage area in the
order in which they are queued to the event queue, with the oldest transitions first
and the most recent transitions last.

The DEQ_EVENTQ request type is valid only for a keyed list structure allocated in
a coupling facility with CFLEVEL=3 or higher.

Handling an Incompletely Processed DEQ_EVENTQ Request
An IXLLIST REQUEST=DEQ_EVENTQ request might complete prematurely before
all the EMCs have been read from the event queue. After processing the EMCs
that were returned in the buffer area, you can reissue the DEQ_EVENTQ request
as many times as is necessary to retrieve all EMCs. When all EMCs have been
read and dequeued from the user's event queue, the system returns a zero return
code and a zero count of how many EMCs remain queued (IXLYLAA field
LAADEQ_EMCQUEUEDCNT).

Receiving Answer Area Information from a DEQ_EVENTQ Request
When you invoke IXLLIST, list services return information related to your request in
the answer area specified used the ANSLEN and ANSAREA parameters.

Under certain circumstances, answer area information is not valid. See
“Determining if the Answer Area is Valid” on page 7-62.

The following list describes the information returned when the answer area is valid.
The answer area is mapped by the IXLYLAA macro, which is presented in OS/390
MVS Data Areas, Vol 3 (IVT-RCWK).

LAARETCODE The return code from the IXLLIST service. Return
code values are defined in the IXLYCON macro.

 Chapter 7. Using List Services (IXLLIST) 7-115

LAARSNCODE The reason code associated with the return code
from the IXLLIST service. Reason code values are
defined in the IXLYCON macro.

LAADEQ_EMCQUEUEDCNT A count of the number of event monitor control
(EMC) objects that remain queued to the event
queue after the current invocation has returned the
EMCs that were read and dequeued. Returned for
successful DEQ_EVENTQ requests and for
DEQ_EVENTQ requests that end prematurely.

LAADEQ_NUMEMCREAD Count of the EMCs that were read and dequeued by
the current request. The storage area identified by
BUFFER or BUFLIST on the IXLLIST request
contains the EMCs, which are numbered from one to
this count. The EMCs in the storage area are
mapped by the macro IXLYEMC. Returned for
successful DEQ_EVENTQ requests and for
DEQ_EVENTQ requests that end prematurely.

Coding a Complete Exit
Your complete exit provides a mechanism for list services to let you know when
your asynchronously-processed IXLLIST request completes. You provide the
address of your complete exit using the COMPLETEEXIT parameter when you
issue the IXLCONN macro to connect to the list structure.

You will be informed of request completion through your complete exit in either of
the following situations:

� You specify MODE=ASYNCEXIT

� You specify MODE=SYNCEXIT and the system processes your request
asynchronously.

Information Passed to the Complete Exit
When the complete exit gains control, it receives the following information about the
IXLLIST request and its outcome in the complete exit parameter list (CMPL),
mapped by the IXLYCMPL macro:

CMPLCONTOKEN The IXLLIST invoker's connect token.

CMPLCONNAME The IXLLIST invoker's connect name.

CMPLCONDATA Connect-time data you specified when you issued the
IXLCONN macro to connect to the list structure. The use of
this optional field is user defined. One possibility is to store
a pointer to your connection's control structure.

CMPLLIST Indicates the complete exit received control as a result of
an IXLLIST request.

CMPLREBUILD Indicates whether the target list structure was being rebuilt.
When a list structure is being rebuilt, there is an interval in
which the new structure and the old structure can both be
the target of an IXLLIST request.

7-116 OS/390 V2R8.0 MVS Sysplex Services Guide

0 The target list structure was not being rebuilt or, if so,
the target list structure was the original structure.

1 The target list structure was being rebuilt, and the target
list structure was the new list structure.

CMPLRETCODE Return code from IXLLIST request. Return code values are
defined in the IXLYCON macro.

CMPLRSNCODE Reason code from IXLLIST request. Reason code values
are defined in the IXLYCON macro.

CMPLREQDATA Information provided to the complete exit by the issuer of
the IXLLIST request. The use of this optional field is user
defined. It is intended to allow you to identify the particular
request that has completed processing. One possibility is
to store the address and ALET of an area containing the
parameters specified on the IXLLIST request or other
information that identifies the request.

CMPLANSAREAALET Answer area ALET.

CMPLANSAREA@ Answer area address. The answer area is mapped by the
IXLYLAA macro.

See OS/390 MVS Data Areas, Vol 3 (IVT-RCWK) for listings of the IXLYCMPL,
IXLYLAA, and IXLYCON mapping macros.

 Environment
The complete exit receives control in the following environment:

Authorization: Supervisor state, and PSW key 0
Dispatchable unit mode: SRB
Cross memory mode: PASN=HASN=SASN. PASN, HASN, and SASN are equal

to the PASN at the time of the connect to the list structure.
AMODE: 31-bit
ASC mode: Primary ASC mode
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held.
Control parameters: None.

 Input Specifications
List services pass information to the complete exit in registers and in the CMPL.

Registers at Entry
When the complete exit receives control, the GPRs contain the following
information:

Register Contents
0 Does not contain any information for use by the complete exit.
1 Address of a fullword containing the address of the CMPL.
2-12 Do not contain any information for use by the complete exit.
13 Address of a 72-byte work area for use by the complete exit routine.

The exit routine does not have to save and restore registers in this
work area. The exit routine can use this work area in any way it
chooses.

14 Return address of list services

 Chapter 7. Using List Services (IXLLIST) 7-117

15 Entry point address.

When the complete exit receives control, the ARs contain no information for use by
the complete exit.

 Return Specifications
Your exit must return control to the system by branching to the address provided on
entry in register 14. There are no requirements for the GPRs or ARs to contain any
particular value.

 Programming Considerations
If you have more than one outstanding IXLLIST request being processed
asynchronously, multiple instances of your complete exit might run concurrently as
list services process your requests. Note that you can access the CMPL data area
only while your complete exit is running. If you want to save the CMPL information
for later processing, make a copy of it before your complete exit returns control to
the system.

Circumstances a User Exit Should Be Prepared to Handle: In certain
instances, the system must quiesce the activity of user exits in order to perform
cleanup processing. The following illustrates scenarios where this processing
occurs:

 � Connection Termination

When a user disconnects or abnormally terminates, the system will force to
completion any user exits executing on behalf of that user by issuing a
PURGEDQ against the appropriate units of work. Note that if a connector
terminates while a rebuild is in progress, any exits pertaining to both the
original and the new structures will be forced to completion. In addition to
forcing the currently executing user exits to completion, the system will also
prevent any new invocations of these exits by cancelling any events that are
pending presentation.

 � Rebuild Stop

When a connector provides an event exit response for the Rebuild Stop event,
the system will force to completion any exits that are executing on behalf of
that user's connection to the new structure by issuing a PURGEDQ against the
appropriate units of work. Similar to connector termination processing, the user
exits pertaining to the new structure will not be presented with any additional
events. Note that any user exits executing on behalf of the original structure are
unaffected by rebuild stop processing.

� Completion of a Rebuild

When a connector provides an event exit response for the Rebuild Cleanup
event, the system will force to completion any user exits that are executing on
behalf of that user's connection to BOTH the original and the new structures by
issuing a PURGEDQ against the appropriate units of work. No new events will
be presented to the user exits on behalf of the original structure (as it is being
discarded). Normal user exit processing will resume for the rebuilt structure
upon completion of the rebuild process.

A user exit must be sensitive to conditions that can occur as a result of actions
taken by the system and must be able to handle these as appropriate. For
example, if a user exit has suspended itself, when the PURGEDQ is issued the

7-118 OS/390 V2R8.0 MVS Sysplex Services Guide

system abends the user exit's unit of work with a retryable X'47B' abend and
gives control to the user exit's recovery routine. (Note that although the recovery
routine can retry, the user exit can not re-suspend itself because the system will fail
any request to suspend a unit of work that has been the target of a PURGEDQ.) If
the recovery routine percolates back to the system, its associated connection is
terminated.

Coding a Notify Exit
Your notify exit provides a mechanism for list services to inform you that contention
exists for a lock you hold. When you issue the IXLCONN macro to connect to a
serialized list structure, you must specify the address of a user-written notify exit
using the NOTIFYEXIT parameter. It is possible that your notify exit might receive
control before you receive control back from IXLCONN. Therefore, ensure that
before you issue IXLCONN, you have the notify exit established along with any
control structures necessary to complete the exit's processing.

“Understanding Lock Contention and the Notify Exit” on page 7-42 explains in
detail the role of the notify exit, the circumstances under which it receives control,
and the actions it can take. This topic is limited to reference information for coding
the exit.

Information Passed to the Notify Exit
When the notify exit gains control, it receives the following information:

� The lock index for which there is contention

� The LOCKDATA information you specified when you obtained the lock. This
information can help your notify exit decide how to handle the lock contention.
For instance, you might be able to determine why you obtained the lock and
whether you can release it.

� Whether the lock is a persistent lock, which is indicated by a LOCKDATA field
of zero.

� The connection ID (CONID) and connection name (CONNAME) associated with
the request causing the contention

� The type of lock request (LOCKOPER=SET or LOCKOPER=NOTHELD)
causing the contention.

This information is passed to the notify exit in the notify exit parameter list (NEPL),
mapped by the IXLYNEPL macro:

NEPLCONTOKEN Your connection token.

NEPLCONNAME Your connection name.

NEPLCONDATA Connect-time data you specified when you
issued the IXLCONN macro to connect to the
list structure. The use of this optional field is
user defined. One possibility is to store the
address and ALET of an area containing
information used by your connection.

 Chapter 7. Using List Services (IXLLIST) 7-119

NEPLLIST Indicates that the notify exit received control as
a result of an IXLLIST request.

NEPLREBUILD Indicates whether the target list structure was
being rebuilt. When a list structure is being
rebuilt, there is an interval in which the new
structure and the old structure can both be the
target of an IXLLIST request.

0 The target list structure was not being
rebuilt or, if so, the target list structure was
the original structure.

1 The target list structure was being rebuilt,
and the target list structure was the new list
structure.

NEPLLOCKINDEX The lock table index for the lock for which there
is contention.

NEPLOWNERLOCKDATA The lock data specified with the LOCKDATA
parameter when the lock was obtained

NEPLOWNERPERSISTENTLOCK The lock was previously a persistent lock and
the LOCKDATA field is now set to zero. See
“Recovering Persistent Locks” on page 7-46
and “Reconnecting with Persistent Locks” on
page 7-47 for more information about
persistent locks.

NEPLPENDINGCONID The connection ID associated with the pending
request

NEPLPENDINGREQUESTTYPE The pending request type

0 The pending request is
LOCKOPER=NOTHELD

1 The pending request is LOCKOPER=SET

NEPLPENDINGCONNAME The connection name of the pending request

See OS/390 MVS Data Areas, Vol 3 (IVT-RCWK) for a listing of the IXLYNEPL
macro.

 Environment
The notify exit receives control in the following environment:

Authorization: Supervisor state, and PSW key 0
Dispatchable unit mode: SRB
Cross memory mode: PASN=HASN=SASN. PASN, HASN, and SASN are equal

to the PASN at the time of the connect to the list structure.
AMODE: 31-bit
ASC mode: Primary ASC mode
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held.
Control parameters: None.

7-120 OS/390 V2R8.0 MVS Sysplex Services Guide

 Input Specifications
List services pass information to the notify exit in registers and in the NEPL.

Registers at Entry
When the notify exit receives control, the GPRs contain the following information:

Register Contents
0 Does not contain any information for use by the notify exit.
1 Address of a fullword containing the address of the NEPL.
2-12 Do not contain any information for use by the notify exit.
13 Address of a 72-byte work area for use by the notify exit routine. The

exit routine does not have to save and restore registers in this work
area. The exit routine can use this workarea in any way it chooses.

14 Return address of list services
15 Entry point address.

When the notify exit receives control, the ARs contain no information for use by the
notify exit.

 Return Specifications
Your exit must return control to the system by branching to the address provided on
entry in register 14. There are no requirements for the GPRs or ARs to contain any
particular value.

 Programming Considerations
If your lock request is processed asynchronously, your notify exit might receive
control to inform you of contention for the lock you have requested even before you
are informed that you obtained the lock. If your lock request is processed
synchronously, your notify exit might receive control before you receive control back
from the IXLLIST request.

 Note

You own a lock you have requested only when you are informed (in the
manner specified on your IXLLIST invocation) that your lock request has
completed successfully. Unless you have received this confirmation, you cannot
assume you hold the lock.

If you are a failed persistent connector that reconnects to a list structure, your notify
exit receives control when contention occurs for any locks that you held.
“Reconnecting with Persistent Locks” on page 7-47 describes the processing
associated with these persistent locks.

See “Managing Multiple, Asynchronous Lock Requests” on page 7-45 for additional
information about situations your notify exit should be prepared to handle.

Multiple instances of your notify exit might run concurrently if contention arises for
more than one lock you hold. Note that you can access the NEPL data area only
while your notify exit is running. If you want to save the NEPL information for later
processing, make a copy of it before your notify exit returns control to the system.

 Chapter 7. Using List Services (IXLLIST) 7-121

See “Circumstances a User Exit Should Be Prepared to Handle” on page 7-118 for
important information regarding additional situations user exits must anticipate.

Coding a List Transition Exit
Your list transition exit provides a mechanism for list services to inform you that one
or more lists and/or the event queue you are monitoring changed from empty to
nonempty. The list transition exit parameter list (IXLYLEPL) does not specifically
identify the affected monitored object, nor does it indicate how many monitored
objects have transitioned. Your list transition exit must invoke the IXLVECTR macro
to determine which monitored object(s) have changed from empty to nonempty.

You provide the address of your list transition exit using the LISTTRANEXIT
parameter when you issue the IXLCONN macro to connect to the list structure. It
is possible that your list transition exit might receive control before you receive
control back from IXLCONN. Therefore, ensure that before you issue IXLCONN,
you have the list transition exit established along with any control structures
necessary to complete the exit's processing.

“Design Considerations for Using the List Transition Exit” on page 7-104 discusses
the list transition exit in more detail. This topic is limited to reference information for
coding the exit.

Information Passed to the List Transition Exit
When the list transition exit gains control, it receives the following information in the
list transition exit parameter list (LEPL), mapped by the IXLYLEPL macro:

LEPLCONTOKEN The connect token returned from the IXLCONN invocation
that established the list transition exit.

LEPLCONDATA Connect-time data you specified when you issued the
IXLCONN macro to connect to the list structure. The use of
this optional field is user defined. One possibility is to store
a pointer to your connection's control structure.

LEPLEVENT Event code indicating a list transition, event queue
transition, or both occurred.

LEPLVECTORTOKEN Token representing the user's list notification vector.

See OS/390 MVS Data Areas, Vol 3 (IVT-RCWK) for a complete listing of the
IXLYLEPL macro.

 Environment
The list transition exit receives control in the following environment:

Authorization: Supervisor state, and PSW key 0
Dispatchable unit mode: SRB
Cross memory mode: PASN=HASN=SASN. PASN, HASN, and SASN are equal

to the PASN at the time of the connect to the list structure.
AMODE: 31-bit
ASC mode: Primary ASC mode
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held.
Control parameters: None.

7-122 OS/390 V2R8.0 MVS Sysplex Services Guide

 Input Specifications
List services pass information to the list transition exit in registers and in the LEPL.

Registers at Entry
When the list transition exit receives control, the GPRs contain the following
information:

Register Contents
0 Does not contain any information for use by the list transition exit.
1 Address of a fullword containing the address of the LEPL.
2-12 Do not contain any information for use by the list transition exit.
13 Address of a 72-byte work area for use by the list transition exit routine.

The exit routine does not have to save and restore registers in this
work area. The exit routine can use this work area in any way it
chooses.

14 Return address of list services
15 Entry point address.

When the list transition exit receives control, the ARs contain no information for use
by the list transition exit.

 Return Specifications
Your exit must return control to the system by branching to the address provided on
entry in register 14. There are no requirements for the GPRs or ARs to contain any
particular value.

 Programming Considerations
Only a single instance of the list transition exit can run at a time for any particular
connector to the list structure. If additional monitored lists, or the user's event
queue, become nonempty while the list transition exit is running, then the list
transition exit will immediately receive control again after it completes its current
processing.

Note that you can access the LEPL data area only while your list transition exit is
running. If you want to save the LEPL information for later processing, make a copy
of it before your list transition exit returns control to the system.

See “Circumstances a User Exit Should Be Prepared to Handle” on page 7-118 for
important information regarding additional situations user exits must anticipate.

Managing List Structure Utilization
The list structure is allocated with a fixed amount of storage. Depending on the
CFLEVEL of the coupling facility in which the structure is allocated, this storage can
be subdivided into entries, elements, and event monitor controls objects. (See
Figure 7-2 on page 7-5, which describes the parts of a keyed list structure
allocated in a coupling facility of CFLEVEL=3 or higher.) If an IXLLIST request
requires that an object be available but none is, a “structure-full” condition occurs.
When the structure becomes full, you will no longer be able to perform a number of
IXLLIST functions. Affected functions could include:

� The ability to create a new list entry.

 Chapter 7. Using List Services (IXLLIST) 7-123

� The ability to update an existing list entry, regardless of whether its size would
increase, decrease, or remain the same.

� The ability to register sublist monitoring interest (that is, to create an event
monitor controls object).

The system returns counts of the objects allocated in the structure in the connect
answer area (IXLYCONA). The values reflect the state of the structure at the time
of the connect.

� CONALISTENTRYCOUNT — Number of entries in use

| � CONALISTMAXENTRYCOUNT — Approximate maximum number of entries
| supported by the structure

� CONALISTELEMENTCOUNT — Number of data elements in use

| � CONALISTMAXELEMENTCOUNT — Approximate maximum number of data
| elements supported by the structure

� CONALISTEMCCOUNT — Number of EMCs in use (if applicable)

| � CONALISTMAXEMCCOUNT — Approximate maximum number of EMCs in the
| structure (if applicable).

Taking action to alleviate the storage problem before the structure becomes full is
especially critical because the CONALISTMAXENTRYCOUNT and
CONALISTMAXELEMENTCOUNT values are only approximate. As a result, you
could receive a return code indicating that the structure is full even though the
IXLLIST answer area counts of entries or elements in use are below the limits
indicated in the CONA.

| A reason for the CONA counts being approximate is that the coupling facility at
| times uses some of the structure's objects for its own processing. Those objects
| are not included in your “in-use” counts.

Another result of the CONA counts being approximate is that the IXLLIST request
of one connector might be rejected due to a structure full condition while a
subsequent request by a different connector might succeed. Alternatively, a
request by a connector might be rejected while a subsequent request by the same
connector might succeed. Furthermore, deleting a list entry when the structure is
full might not result in the immediate availability of the storage for the list entry or
data elements. As a result, your request could fail if you attempt to create a list
entry of the same size as the one you deleted.

Applications using the list structure are responsible for managing structure
utilization. The system does not prevent the structure from becoming full nor take
any automatic action to remedy the condition. Therefore, IBM recommends that
you take steps to correct a storage shortage before your application is affected. To
do so, you need to consider the following:

� How to detect when the structure is becoming full

� How full you will permit the structure to become before you take remedial action

� How the storage shortage will be corrected.

7-124 OS/390 V2R8.0 MVS Sysplex Services Guide

Detecting When a List Structure Is Becoming Full
One way to monitor list structure utilization is to periodically check the fields listed
below, which are returned in the answer area by certain successful IXLLIST
requests:

� LAATOTALCNT, which returns the number of list entries in use in the structure
(compare to the value of CONALISTMAXENTRYCOUNT.)

� LAATOTALELECNT, which returns the number of data elements in use in the
structure (compare to the value of CONALISTMAXELEMENTCOUNT.)

� LAALISTCNT, which returns the number of entries or data elements on the list.
The value specified for LISTCNTLTYPE on the IXLCONN macro when the list
structure was allocated determines whether this field represents a count of list
entries or data elements. (This value is also returned in LAAMNL_LISTCNT).

� LAAMNSL_EMCCNT, which returns the number of EMCs in use in the
structure. (LAANMSLS_EMCCNT also contains this value.)

| � LAAMNSL_MAXEMCCNT, which returns the approximate maximum number of
| EMCs in the structure. (LAAMNSLS_MAXEMCCNT also contains this value.)

To determine which IXLLIST requests return this information, see the description of
the IXLYLAA data area in OS/390 MVS Data Areas, Vol 3 (IVT-RCWK).

Another way to monitor list structure utilization is to issue the IXLMG macro
periodically and check the following fields:

� IXLYAMDSTRL_MLSELC, which returns the approximate maximum number of
data elements allowed in the structure

� IXLYAMDSTRL_MLSEC, which returns the approximate maximum number of
list entries allowed in the structure

� IXLYAMDSTRL_LSELC, which returns the number of data elements in use in
the structure

� IXLYAMDSTRL_LSEC, which returns the number of list entries in use in the
structure.

For a keyed list structure allocated in a coupling facility of CFLEVEL=3 or higher,
you can also check these additional fields:

� IXLYAMDSTRL_EMCCNT, which returns the number of EMCs in use in the
structure.

| � IXLYAMDSTRL_MAXEMCCNT, which returns the approximate maximum
| number of EMCs in the structure.

These values can be used to calculate the structure's percentage fullness in terms
of entries, elements, and EMCs.

Responding When the Structure is Getting Full
When your monitoring indicates that the structure is getting full, you can take
several actions. First, until you resolve the storage problem, your application could
minimize its issuance of IXLLIST requests that create or modify list entries or that
request registering new sublist monitoring interest and thus create event monitor
controls objects. Your application can also issue a message to the operator to warn

 Chapter 7. Using List Services (IXLLIST) 7-125

that the structure is getting full and to request that the operator perform certain
actions.

The easiest approach is to delete unneeded list entries or EMCs. In some cases,
however, this might not be possible and the structure might need to be rebuilt to
change its attributes.

If the structure is running out of elements but has plenty of entries (or vice versa),
| you can rebuild or alter the structure with a different ratio of elements to entries

without changing the structure's size. Or, if the structure is running out of EMCs,
| you can rebuild or alter the structure with a different EMCSTGPCT percent value.

No operator intervention is required since the structure is not changing size.

If the structure needs more list entries, more data elements, and/or more EMCs,
| you can rebuild or alter the structure with more storage. Rebuilding or altering the

structure with more storage might require operator intervention.

Rebuilding the Structure to Increase the Storage Capacity
You can rebuild the structure to increase capacity only if the CFRM policy that
defines the structure allows for a larger size. If the structure is already the
maximum size allowed by the CFRM policy, you must request that the operator
modify the CFRM policy to allow a larger structure size and reactivate the modified
policy.

If the active CFRM policy allows for a larger list structure, you can issue the
IXLREBLD macro to rebuild the structure with a larger size. If you prefer to involve
the operator, your application can issue a message to notify the operator that the
structure needs to be rebuilt. The operator must issue the SETXCF
START,REBUILD command to initiate structure rebuild. Rebuilding a keyed list
structure allocated in a CFLEVEL=3 or higher coupling facility with a larger size
results in the creation of additional EMCs, entries, and elements, depending on the
values specified for the EMCSTGPCT and entry-to-element ratios.

Altering the Structure to Increase the Storage Capacity
With SP 5.2 and above and a structure allocated in a coupling facility with

| CFLEVEL=1 or higher, you can alter the size of the structure to increase capacity
| or the entry-to-element ratio to reapportion the structure's storage. As with the

rebuild function, you can alter the structure only if the CFRM policy that defines the
structure allows for a larger size. You can issue the IXLALTER macro or notify the
operator to issue the SETXCF START,ALTER command to initiate structure alter.

For keyed list structures allocated in a coupling facility with CFLEVEL=3, you
cannot alter the structure to change the number of EMCs in the structure.

| However, if the keyed list structure is allocated in a coupling facility of CFLEVEL=4
| or higher, you can alter the number of EMCs in the structure.

7-126 OS/390 V2R8.0 MVS Sysplex Services Guide

Chapter 8. Using Lock Services (IXLLOCK)

The XES lock services allow sysplex-wide serialization in a multi-system data
sharing environment. The services provided through the IXLLOCK macro enable
authorized applications to obtain shared or exclusive serialization on user-defined
logical resources. Additionally, you can implement your own locking protocols
through the inclusion of user data. The XES lock services offer the additional
benefits of allowing you to assist in the management of contention in the data
sharing environment and of providing failure recovery options by retaining data
about serialized resources that will persist across system outages.

The IXLLOCK macro provides services that allow you to request:

� Shared or exclusive ownership of a resource (OBTAIN)
� A change to the attributes of a resource that you currently own or are

attempting to own (ALTER)
� Release of the shared or exclusive ownership of a resource or cancel a

previously submitted request that is pending (RELEASE).
� Processing of multiple resource requests with a single macro invocation

(PROCESSMULT). The types of resource requests that are supported is a
function of the version of the IXLLOCK macro.

When you request an XES lock service, you must be connected to a lock structure
in a coupling facility. The lock structure is the repository for the lock table used to
monitor the serialization of resources in the sysplex and for the data being recorded
for recovery purposes.

Intrinsic to the XES lock services are the user exit routines that provide the
negotiation and contention management protocols for the data sharing application.
The contention exit and the notify exit collaborate to resolve contention for shared
resources. Other exits used by the XES lock services are the complete exit, to
report the completion of a previously submitted request for a resource and the
event exit, to report the occurrence of an event in the sysplex, such as another
user failing, which might affect your processing.

 Resource Concepts
This section discusses the entity for which you want to provide serialization (a
resource) and how XES and the IXLLOCK services keep track of users' requests
for resource serialization.

What Is a Resource?
A resource can be any logical entity depending on your application. For data base
products, a resource could be anything from a record to a block of records, to an
entire data set. You define the resources for which serialization is required. You
assign a name to each resource so that you or any other user can identify the
resource for processing.

A request to access a resource for either shared or exclusive ownership is called a
resource request. Each resource request indicates who the requestor is, in what
state (either shared or exclusive) the resource is requested, and user-defined data
that the requestor can specify for use in contention management. The resource

 Copyright IBM Corp. 1994, 1999 8-1

request also might specify another type of user-defined data that the system is to
record for recovery purposes.

XES keeps track of requests for a specific resource in a resource request queue .

State of a Resource Request Queue
The composite state of a resource request queue is determined by evaluating all
resource requests on the queue. A resource request queue can be in one of three
composite states — free, shared, or exclusive.

� Free — There are currently no owners or waiters (requests to own) the
specified resource.

(You are a resource owner if you have been granted access to the resource.
You are a waiter if your request has not yet been granted.)

� Shared — All owners and waiters for the resource are in the shared state.

� Exclusive — There is at least one owner or waiter for the specified resource in
the exclusive state.

Since each individual resource request indicates the state in which the resource is
requested, XES is able to maintain the composite state of the entire resource
request queue.

When a new request for a resource is received, XES determines the compatibility
of the request before adding it to the resource request queue. Figure 8-1 illustrates
the compatibility rules used by XES and the resultant state of the resource request
queue. A “C” indicates a compatible state and an “X” indicates an incompatible
state.

Figure 8-1. XES Compatibility Rules

Figure 8-2 on page 8-3 depicts two resource request queues — for resource XYZ
and resource JKL.

� Resource Request Queue for Resource XYZ

The composite state (C/S) of the resource request queue for XYZ is shared
and all entries on the queue are compatible; both User A and User B have

8-2 OS/390 V2R8.0 MVS Sysplex Services Guide

requested the resource in a shared state. The entry for both User A and User B
show that the resource is held and that they have each specified user data
associated with the request.

� Resource Request Queue for Resource JKL

The composite state of the resource request queue for JKL is exclusive; User C
has been granted exclusive use of the resource, while User A has requested
shared use. The request queue is also said to be incompatible because it
contains entries requesting access to the resource in conflicting states. The
entry for User C shows that the resource is held in an exclusive state and that
user data is associated with the resource request. The entry for User A shows
that User A's request is pending and that user data is associated with the
request.

Figure 8-2. Resource Request Queue Compatibility

What Can You Do With the XES Lock Services?
The serialization requirements of your application determine how and when you will
need to use the XES lock services. Resources that the application needs can be
associated with lock entries in the lock structure. To obtain serialization on the
resource, you first must be connected to the lock structure, which then allows you
access to the XES lock services. The following topics briefly outline the XES lock
services available to the connected lock structure user.

Obtaining a Lock

 Chapter 8. Using Lock Services (IXLLOCK) 8-3

A user wanting to gain serialization on a resource uses the IXLLOCK service,
specifying an OBTAIN request, to request shared or exclusive ownership of a
resource. With this request, you can also specify additional user-defined data.
This optional data can be used by the application to implement user-defined
locking protocols and lock states, as well as for use in providing recovery
capabilities.

Altering the Lock

Once serialization on a resource is held, or the request to obtain serialization is
pending, you can request that the attributes of the request be changed. With
the ALTER request, you can request changes to the state, user data, or
recovery data that was initially specified with the OBTAIN request. The ALTER
request also allows you to request that new recovery data be added to the
structure for this resource, if none had been specified before.

Releasing the Lock

When serialization is no longer required, you can use the RELEASE request to
relinquish the shared or exclusive use of the resource. The data that was
associated with the request is released, unless the data was recovery data.
For recovery data, you can specify whether to keep or delete the data. Keeping
the recovery data allows resource ownership information to remain in the
coupling facility structure, even though the resource is no longer owned.

The RELEASE request also allows you to cancel a prior request (either
OBTAIN or ALTER) that has not yet been granted.

Processing Multiple Requests

A user wanting to process multiple IXLLOCK requests can use the
PROCESSMULT option. Version 1 of the IXLLOCK macro supports the
RELEASE request as a valid PROCESSMULT type. With IXLLOCK Version 1
and a coupling facility of CFLEVEL=2 or higher, you can perform a
PROCESSMULT request that is the equivalent of up to 128 RELEASE
requests. Using the PROCESSMULT option should reduce the number of
coupling facility accesses as compared with issuing multiple separate
RELEASE requests.

For each resource to be released, you can specify that the associated record
data is either to be kept or deleted. The record data cannot be modified.

Recording Recovery Data

XES allows you to plan for recovery if a connected user fails. At CONNECT
time, you can specify that you want to maintain information about resources
that you might own in the form of record data. The record data can persist
across system failures. If you fail before you are able to release your ownership
of any of these resources, peer connected users can access the information
that you have maintained and use it to recover the resource(s). You can
record 64 bytes of this information, called record data, when you issue an
OBTAIN or ALTER request. The record data is for your use and the use of
peer connections only and is not used by XES. Record data could include such
information as:

� The resource to which this entry applies
� Something to identify the unit of work holding the lock to which this entry

applies.

8-4 OS/390 V2R8.0 MVS Sysplex Services Guide

XES maintains the record data as part of the lock structure and provides a
unique identifier for you to retrieve the data when necessary. In the event of a
connected user's failure, other connected users can use the IXLRT macro to
retrieve the record data associated with resources that were held by the failed
user.

Failure and Recovery Considerations

If the user fails while holding serialization on a resource, the application should
have recovery actions in place to recover the data resource. XES provides the
mechanisms by which an application can implement protocols to recover
resources and maintain the integrity of shared data in the event of connector
failures. When a connector (or the system on which the connector is running)
fails, XES informs the surviving connectors of the failure through their event
exits. XES then waits for all surviving connectors to provide a confirmation
before proceeding to cleanup for the failed user. The surviving connectors may
choose to perform application-specific cleanup prior to providing this
confirmation.

 Managing Contention
Contention occurs when a resource request that is not compatible with the existing
entries on the resource request queue is added to the queue.

Contention is handled by both XES and the exploiting user. XES recognizes the
contention; the user resolves the contention through its contention and notify exits.

When XES recognizes contention, it selects one of the connected users to manage
the resource and assigns management responsibilities to that user. The user
selected is not necessarily a requestor of the resource. (Note that the application
should make no assumptions regarding where contention management will occur.)
XES passes the resource request and the associated resource request queue to
the contention exit of the selected user. The contention exit's purpose is to resolve
the contention based on the user's defined protocols. Subsequent requests for the
“in contention” resource are presented to the selected user's contention exit in
time-of-arrival sequence. XES ensures that at most one new request at a time is
presented to the contention exit.

Once a user is selected to manage the resource, that user remains the manager of
the resource until the contention is resolved. If the selected user should disconnect
or abnormally terminate while still the manager of the resource in contention, then
XES assigns management responsibilities to another connected user.

Defining a Protocol to Handle Contention
You can define user protocols for your application by specifying user data on a
resource request. User data is 64 bytes of data that can be specified on any
IXLLOCK request. Within the contention and notify exits, contents of the 64-byte
user data field for each request on the resource request queue can be examined or
modified — whatever the application requires to maintain its own controls about the
serialization of the resource. An example of your use of user data is if your locking
protocol supports lock states other than shared and exclusive. You can put your
lock state information in the user data.

 Chapter 8. Using Lock Services (IXLLOCK) 8-5

How is Contention Resolved?
When XES recognizes that contention exists, the responsibility for managing — and
ultimately resolving — the contention is assigned to the contention exit of a
connected user. The contention exit has as input the contention exit parameter list,
the CEPL, mapped by the macro IXLYCEPL. The CEPL consists of a header area
(mapped by CEPL) followed by a series of entries (mapped by CEPLENT), each of
which represents a connector with an interest in the resource (in other words, an
entry on the current resource request queue). The header information includes
general status data about the resource and about this instance of contention. Each
CEPLENT entry represents the current ownership state and any pending request to
update that state, which has already been presented to the contention exit.
Additionally, each CEPLENT entry contains a set of flags that allow the contention
exit to inform XES as to what action, if any, should be performed for this owner
and/or pending request represented by this entry.

What Can You Do in a Contention Exit?
The contention exit may inform XES about what actions, if any, are to be performed
for the owners and pending IXLLOCK requests represented on the resource
request queue. Through modification of the appropriate CEPLENT entry, the
contention exit may choose to:

� Grant a pending request, perhaps with changed ownership attributes.

The contention exit allows the resource request, while possibly changing the
ownership attributes requested.

� Deny a pending request.

The contention exit does not allow the ownership state requested.

� Regrant an owned resource with changed ownership attributes.

The contention exit changes the ownership data of a resource that is currently
owned.

� Keep a pending request in a pending state.

The contention exit neither grants nor denies the resource request. The request
remains pending on the resource request queue until it is granted, denied, or
superseded. (When a pending request from a user on the resource request
queue is replaced by a more current request (that is, an ALTER or RELEASE
request) from that user, the previous request is said to be superseded.)

� Notify a current resource owner that contention exists

The contention exit may choose to inform one or more users that contention
exists for a resource it owns by executing the notify exit of those users. The
notify exit receives as input a notify exit parameter list (NEPL) representing the
current resource request queue. Based on its evaluation of the resource
request queue, the notify exit may choose to take actions to alleviate the
contention. The IXLSYNCH service provides the mechanism by which the notify
exit of a connected user may synchronously update or release its interest in a
resource. After the specified notify exits have been executed, the resultant
resource request queue (containing any changes made by the notify exits) is
presented to the contention exit. Through the use of the notify exit, an
application can implement protocols that allow owners and requestors of a
resource to negotiate for ownership.

8-6 OS/390 V2R8.0 MVS Sysplex Services Guide

Sample Locking Protocol — Definition
The following illustrates a protocol in which an application uses IXLLOCK with user
data to achieve its multi-system data sharing.

Application “A” is a multi-system application whose data is maintained in data sets
residing on shared DASD. The application is required to access the data on behalf
of requests from end users of the application as well as on behalf of utility functions
that are periodically scheduled to perform maintenance activities. User requests are
for a single record in the data set; utility requests are for a block of records on
which maintenance is to be performed. The application is required to maintain the
integrity of the shared data while providing efficient access to both types of
processes. To accomplish this, the application has designed a locking protocol
based on the XES lock services. A detailed description of the protocol follows.

Purpose

To provide a protocol that allows user requests for a resource to take precedence
over utility requests for the same resource.

Design

All resource requests are to indicate whether they are user-initiated or
utility-initiated and are to specify the exact records of the data set to which they
require access. User requests will be served on a first-in first-out (FIFO) basis and
will take precedence over utility requests. Under certain circumstances, utility
functions that are current owners of a resource might need to negotiate the
resource ownership. The negotiation is to be accomplished in the notify exit and
could result in the utility function maintaining a subset of its resource ownership in
order to allow the user request to be granted.

Requirements

The application must conform to the following:

� Any request to access the data must result in the application issuing an
IXLLOCK request specifying a resource name equal to the name of the data
set containing the specified data.

� A request to read the data must result in an IXLLOCK request for shared
access; a request to update the data must result in an IXLLOCK request for
exclusive access.

� The user data specified with the IXLLOCK request must contain:

– Values indicating the first and last sequential records to be accessed.

– A process identifier field to indicate on whose behalf the serialization is
being obtained. For example, if the request is to service a user, then the
field will contain a value that indicates “user-initiated”.

The following table shows the required information that the application must specify
to accomplish various requests for data access.

 Chapter 8. Using Lock Services (IXLLOCK) 8-7

Rules of the Sample Protocol

The protocol defines the following rules for the management of contention.

1. If a request is made that requires access to a record within a block that is
already serialized, then it is treated as a conflict.

2. Conflicting user requests are processed in FIFO (first-in first-out) order.

3. User access is to be given priority over access by utility functions.

4. Negotiation is required when utility functions that hold serialization conflict with
a new user request for the resource.

� Rule 1 — Conflict

XES recognizes contention on a resource level, which is the data set level in
this protocol. This implies that requests to access the same data set in
incompatible states will result in XES assigning management responsibilities to
the contention exit of one of the instances of the application. Contention exit
processing is to examine the first and last record indicators in the user data to
determine if the requests are to access different portions of the data set and
thus are compatible. For example,

– Instance 1 of Application A receives a user request to read record 2 of data
set XYZ. Instance 1 issues an IXLLOCK request for shared access of data
set XYZ, with user data indicating that the request is to access record 2.

– XES grants the IXLLOCK request.

– Instance 2 of Application A receives a user request to update record 8 of
data set XYZ. Instance 2 issues an IXLLOCK request for exclusive access
of data set XYZ, with user data indicating that the request is to access
record 8.

– XES recognizes that there is an incompatible request for the resource, data
set XYZ, and chooses a contention exit to manage the contention.

– The contention exit chosen to manage the resource contention examines
the user data and determines that the requests are to access different
records in the data set. The contention exit instructs XES to grant Instance
2's request.

� Rule 2 — FIFO Order

Figure 8-3. Required Information for Application A. Information to be specified on an
IXLLOCK request as a result of various tasks.

Action Required Access

User request to read
record 2 of data set ABC.

Shared access of resource, data set ABC, with user data
indicating a first record of 2, last record of 2, and process
identifier indicating “User”.

User request to update
record 1 of data set DEF.

Exclusive access of resource, data set DEF, with user
data indicating first record of 1, last record of 1, and
process identifier indicating “User”.

Utility routine to perform
maintenance activities on
the first 100 records of
data set GHI.

Exclusive access of resource, data set GHI, with user
data indicating a first record of 1, last record of 100, and
process identifier indicating “Utility”.

8-8 OS/390 V2R8.0 MVS Sysplex Services Guide

If two or more user-initiated requests for the same resource cause contention,
contention exit processing is to handle the requests in the order in which they
are received. For example,

– Instance 1 of Application A receives a user request to read record 2 of data
set XYZ. Instance 1 issues an IXLLOCK request for shared access of data
set XYZ, with user data indicating that the request is to access record 2.

– XES grants the IXLLOCK request.

– Instance 2 of Application A receives a user request to update record 2 of
data set XYZ. Instance 2 issues an IXLLOCK request for exclusive access
of data set XYZ, with user data indicating the request is to access record 2.

– XES recognizes that there is an incompatible request for the resource, data
set XYZ, and chooses a contention exit to manage the contention.

– The contention exit chosen to manage the resource contention examines
the user data and determines that the requests are to access the same
record in the data set and notes that both requests are user-initiated. The
contention exit instructs XES to leave Instance 2's request pending.

– When Instance 1 (who owns the resource in a shared state) completes its
processing, it issues an IXLLOCK request to release its interest in data set
XYZ.

– The release request is added to the resource request queue and presented
to the contention exit who continues to manage this occurrence of
contention.

– The contention exit examines the request queue and sees that Instance 1
is releasing its interest in the resource and that the request by Instance 2 is
still pending on the request queue. The contention exit instructs XES to
grant Instance 2's request.

Note that when XES receives control back from the contention exit and
processes these requests, the resource will no longer be in contention as
the request queue will contain one exclusive owner (Instance 2). The
contention exit will, therefore, have completed its duties as contention
manager. Should another instance of contention for this resource occur,
this contention exit is not necessarily the one that XES will choose to
manage the contention.

� Rule 3 — User Precedence

When requests from a utility function conflict with user-initiated requests that
currently hold serialization on the resource, the utility request must wait until the
user releases its serialization.

� Rule 4 — Negotiation

When requests from a user conflict with a utility function that currently holds
serialization on the resource, the conflict is resolved by negotiation, as follows.

– XES informs the current resource owner (the utility function) that there is
contention for the resource through its notify exit.

– The notify exit of the utility function can examine the resource request
queue, as presented in the notify exit parameter list (NEPL), to determine if
it is able to change its current ownership characteristics and thus allow
access to be granted to the user.

 Chapter 8. Using Lock Services (IXLLOCK) 8-9

Sample Locking Protocol — Implementation
The following illustrates Application A's implementation of the protocol using the
user data.

� A utility program is scheduled to perform maintenance operations on the first
100 records of data set XYZ and submits a request to do so. Instance 1 of
Application A receives the request and issues an IXLLOCK request for
exclusive access of data set XYZ, with user data indicating that the request is
to access records 1 through 100.

� XES grants the IXLLOCK request. The utility program begins its maintenance
procedures starting with record 1 of data set XYZ.

� Instance 2 of Application A receives a user request to update record 6 of data
set XYZ. Instance 2 issues an IXLLOCK request for exclusive access of data
set XYZ, with user data indicating that the request is to access record 6.

� XES recognizes that there is an incompatible request for the resource, data set
XYZ, and chooses a contention exit to manage the contention.

� The contention exit chosen to manage the resource contention examines the
resource request queue, as presented in the contention exit parameter list
(CEPL), and determines that the serialization held by Instance 1 on behalf of a
utility program is preventing access by Instance 2 on behalf of a user. The
contention exit instructs XES to schedule the notify exit of Instance 1 by setting
the appropriate indicators in the CEPL entry that represents Instance 1's
ownership of the resource.

� When control returns from the contention exit, XES examines the CEPL and
determines that the contention exit has requested that the notify exit of Instance
1 be run. XES schedules the notify exit of Instance 1, passing the resource
request queue in the form of a NEPL.

� The notify exit of Instance 1 receives control and examines the resource
request queue in the NEPL. Meanwhile, the utility program continues its
processing and has completed processing the first 20 records of data set XYZ.
The notify exit determines that the utility program no longer needs access to
those 20 records, and updates the user data in the NEPL to indicate that it
needs serialization only to records 21 through 100. The change in ownership
reflected in the updated NEPL is committed by invoking the IXLSYNCH service.
Additionally, the notify exit might need to update the application's control
structures to reflect the change in ownership status that was committed with the
IXLSYNCH service. The notify exit then returns control to XES.

� XES presents the updated resource request queue (in the CEPL) to the
contention exit.

Note that XES will not add any new requests for the resource to the resource
request queue until it has had a chance to examine any changes made as a
result of the invocation of the notify exit.

� The contention exit examines the resource request queue and determines that
the user request for record 6 is NOT in conflict with the utility program, whose
user data now indicates that it is serializing records 21 through 100. The
contention exit instructs XES to grant Instance 2's request.

8-10 OS/390 V2R8.0 MVS Sysplex Services Guide

Informing a User of Request Completion
A user requesting access to a resource must allow for the possibility that factors
might exist that could prevent the request from being satisfied immediately. The
reasons why request processing might experience delays range from
user-controlled conditions, such as resource contention, to conditions that are not
controllable by the connected user, such as internal XES serialization that could not
be immediately obtained.

XES processes IXLLOCK requests for a resource either synchronously or
asynchronously.

� A request is defined as synchronous when processing for the request is
complete when control returns to the next sequential instruction following the
request.

� Asynchronous means that processing for the request is not complete when
control returns to the next sequential instruction following the request. XES
provides a return and reason code (IXLRSNCODEASYNCH) to indicate that
processing is not complete and that additional communication will be required.
When processing for the request is complete, XES schedules the user's
complete exit.

Using the IXLLOCK MODE Parameter
There might be times when the system is not able to process your IXLLOCK
immediately. Some reasons for this delay might be:

� The requested resource is being globally managed at the time of the request.

� The system could not obtain its internal latches needed to process the request.

� The system detected contention for the requested resource when the coupling
facility was accessed.

You can specify how you want the system to process your request if it cannot be
serviced immediately by using the MODE parameter on IXLLOCK. If the request
can be processed immediately, then the MODE parameter is ignored. The
following are valid MODE specifications for an IXLLOCK request.

SYNCSUSPEND Specifies that you do not want control returned until processing
for the request is complete. If request processing is delayed
because of the reasons listed previously, you will be suspended
until the request completes. You will receive control at the next
sequential instruction with the request complete and the final
disposition determined.

SYNCEXIT Specifies that you want control returned to you immediately if
request processing is delayed. If there is to be a delay, you will
receive return and reason codes to indicate that the request is
being processed asynchronously. When processing for the
request is complete, XES schedules your complete exit to return
the results of your request. Note that the complete exit might be
given control before control returns to the next sequential
instruction after your IXLLOCK request.

 Chapter 8. Using Lock Services (IXLLOCK) 8-11

NORESPONSE Specifying this mode is valid only for a RELEASE request and
indicates that you do not want notification of the request's
completion. You will receive a return code indicating that the
IXLLOCK RELEASE request has been accepted; however, the
complete exit will not be invoked to report request completion.

SYNCFAIL Specifies that if the system cannot process your request without
a delay, the request is to be cancelled. You will receive return
and reason codes indicating that disposition of your request.
This mode is valid only for OBTAIN and ALTER requests.

VALUE Specifies that the contents of MODEVAL are to be used in
determining how the request is to be processed if it cannot be
serviced immediately. The constant values that are valid for
MODEVAL are defined in IXLYCON. If you specify a value for
MODEVAL other than one of the IXLYCON constants that is
valid for a particular request type, the system fails the IXLLOCK
request.

You should be aware that XES guarantees that you receive notification of requests
completing in logical order. You receive notification that an OBTAIN request
completed before notification that an ALTER or RELEASE request for the same
resource completed. If, for some reason, the OBTAIN request failed, and you had
already issued an ALTER and/or a RELEASE request for the same resource, XES
invalidates the remaining ALTER and/or RELEASE requests and notifies you that
the request was denied because you do not own the resource.

Lock Structure Concepts
This section discusses basic concepts relating to the lock structure and the
functions it provides.

A lock structure can consist of two parts. The first part is a lock table, a series of
lock entries that the system associates with resources. The lock table is always
present in a lock structure. The second part is a set of record data entries. A record
data entry contains information about a connected user's ownership interest in a
particular “resource” and can be used for recovery if the connected user fails.
Record data entries are present in the lock structure only if you specify at connect
time that you want to record this type of recovery information.

Figure 8-4 shows a lock structure with multiple locks, each represented by an entry
in the lock table. It also shows the optional record data entries that an application
can associate with a connected user. In the event of a connector's failure, another
user could use the IXLRT service to read all the record data entries for resources
owned by the failing connector.

8-12 OS/390 V2R8.0 MVS Sysplex Services Guide

Figure 8-4. Lock Structure with Optional Record Data Entries

Each part of the lock structure can be addressed independently — a lock table
entry through a resource name and a hash value, and a record data entry through
an identifier provided when the entry is allocated as part of an IXLLOCK request.

The Lock Table
The purpose of the lock table is to detect contention efficiently, so that your
contention exit will receive control only when necessary. The number of entries in
the lock table is determined by the first connector to the lock structure.

Identifying a Lock Table Entry
Defining a resource for which you want serialization requires that you specify both a
resource name and a hash value. XES uses the hash value to map to a specific
entry in the lock table and then determines from the resource name whether or not
contention exists.

Assigning a Resource Name: The resource name identifies the entity for which
you want serialization. The length of the resource name can be fixed (64 bytes
long) or variable (from 1 to 300 bytes long). You specify whether you are using
fixed-length or variable-length resource names when you connect to the lock
structure. This resource name length attribute cannot be changed either by
subsequent connectors to the lock structure or when the structure is rebuilt.

Assigning a Hash Value: The hash value is the result of an application-specified
algorithm to designate a specific lock table entry. The goal of this algorithm should
be to distribute the resource name mappings evenly across as many hash values
as possible.

 Chapter 8. Using Lock Services (IXLLOCK) 8-13

Mapping a Resource Name to a Lock Table Entry
It is possible for more than one resource name to hash to the same lock table
entry, depending on the hashing algorithm used. Figure 8-5 on page 8-15 depicts
two resource request queues — one for resource name XYZ and one for resource
name JKL. Each entry in the resource request queues show the requested
resource name (RN) and the specified hash value (HV).

The hashing algorithm employed results in both resource names mapping to lock
table entry 2 in the lock structure.

8-14 OS/390 V2R8.0 MVS Sysplex Services Guide

Figure 8-5. Lock Table — Using a Hash Value

 Chapter 8. Using Lock Services (IXLLOCK) 8-15

Note that in this example, if the hashing algorithm results in a resource name
mapping to lock table entry 6 in the lock structure, that value is outside the range of
allocated entries. XES will “wrap-around” and again map the new resource name to
lock table entry 2.

Composite State of a Lock Table Entry
The term “composite state” was previously introduced to depict the cumulative
state, in terms of shared or exclusive, of a resource request queue. This same term
can be used to describe the state of a coupling facility lock table entry. Whereas
the composite state of a resource request queue reflects the state of all owners and
requestors of a particular resource, the composite state of a lock table entry
denotes the state of the owners and requestors of ALL resources mapping to that
lock table entry. Similar to a resource request queue, a lock table entry can be in
one of three composite states — free, shared, or exclusive.

� Free - There are currently no owners or waiters for any resource that maps to
this lock table entry.

� Shared - All owners and waiters for resources that map to this lock table entry
are in the shared state.

� Exclusive - There is at least one owner or waiter for a resource mapping to the
lock table entry in the exclusive state.

The same rules used to determine compatibility of requests that are added to a
resource request queue can also be used to determine the effect of a resource
request on the state of the corresponding lock table entry. Figure 8-1 on page 8-2
illustrated this concept.

For example, Figure 8-5 on page 8-15 depicts a four-entry lock table with multiple
owners of resources that hash to lock table entry 2. The composite state of this
lock entry is determined to be “exclusive” because there is at least one exclusive
owner of a resource mapping to this entry. Additionally, the lock entry is recognized
as being incompatible because the resources (XYZ and JKL) that map to this entry
are owned in conflicting states.

 Understanding Contention
Once a lock table entry has became incompatible, XES will begin to incur
significant overhead when processing requests for ANY resource that maps to that
entry. This overhead will continue to be incurred until the composite state of the
lock table entry returns to the shared or free state. A lock table entry can become
incompatible for one of the following reasons:

 � Resource Contention

As previously described, resource contention occurs when the corresponding
resource request queue becomes “in contention”, that is, an entry is added that
is incompatible with the existing entries. For example, User 1 requests to own
resource ABC with hash value 3 in the exclusive state but the resource is
already owned by User 2. In this case, XES will assign management of the
resource request queue to a connected user.

Because all the entries on a particular resource request queue map to the
same lock table entry, it follows that if a particular resource request queue is “in
contention”, then the corresponding lock entry also is “in contention”. Thus,
resource contention incurs the overhead associated with processing an

8-16 OS/390 V2R8.0 MVS Sysplex Services Guide

incompatible lock table entry PLUS the cost of any actions performed by the
application's contention exit.

 � False Contention

False contention is the term that describes other conditions that could cause a
lock entry to reach the incompatible state. One such condition that could result
in false contention is when two different resource names have the same hash
value thus causing a collision at the lock table entry level. This is referred to as
“hash class” contention.

In the following example, User 1 owns a resource with a name of ABC and a
hash value of 27 in the exclusive state and User 2 owns a resource with a
name of DEF and a hash value of 27 in a shared state. Note that the requests
represent different resources, each belonging to a separate compatible
resource request queue. While there is no contention at the resource level (and
thus no need to involve the contention exit), the corresponding lock table entry
is incompatible causing the application to incur the previously described
processing overhead.

Hash Class Contention

User 1 - Owner User 2 - Requestor

 IXLLOCK REQUEST=OBTAIN IXLLOCK REQUEST=OBTAIN

 RNAME=ABC RNAME=DEF
 HASHVAL=27 HASHVAL=27
 STATE=EXCL STATE=SHR

Another condition which could result in overhead due to false contention is
when two resources with distinct hash values collide at the lock table entry due
to the wrap-around condition described previously.

In the following example, assume a lock table with 8 entries. User 1 owns a
resource with a name of ABC and a hash value of 1. User 2 requests a
resource represented by resource name DEF and a hash value of 9. Because
the lock table contains only 8 lock table entries, hash value 9 will “wrap-around”
and map to lock table entry 1. Once again, while the following example does
not result in resource contention and the need to involve the contention exit,
the application will incur the overhead required to process requests for
resources mapping to a lock table entry that is in an incompatible state.

 Wrap-Around Condition

User 1 - Owner User 2 - Requestor

 IXLLOCK REQUEST=OBTAIN IXLLOCK REQUEST=OBTAIN

 RNAME=ABC RNAME=DEF
 HASHVAL=1 HASHVAL=9
 STATE=EXCL STATE=SHR

In summary, the overhead incurred by XES to process requests that experience
contention (whether it be false contention or resource contention) is significant. The
performance of your application can be severely impacted as the number of

 Chapter 8. Using Lock Services (IXLLOCK) 8-17

requests that experience contention increases. For this reason, an application
should design a protocol which attempts to reduce the likelihood of this occurrence.

Creating an Efficient Locking Protocol
While the requirements and characteristics of an application will ultimately influence
the design of its locking protocol, it should remain a goal to produce a protocol
which will result in a minimum amount of contention. The following guidelines may
prove helpful in attaining this goal:

1. Scope of Resource Definition

Because a resource represents an entity that is to be serialized, defining these
entities to be small in scope reduces the chance of two users experiencing
contention while trying to obtain the serialization needed to reference them. In
the example locking protocol presented earlier (“Sample Locking Protocol —
Definition” on page 8-7), an application was required to access records in a
data set. In the example, the resource was defined to be the name of the data
set, with the user data containing the ranges of records within that data set that
were to be accessed. When contention occurred at the resource (data set)
level, the contention exit was used to determine if the update was for the same
portion of the data set. While this illustrated the ability to create user locking
protocols and negotiate resource ownership between connected users, it might
not prove to be the most efficient method of satisfying the application's
serialization requirements. An alternative approach may have been to define
the resource at a more granular level, such as the record level. Using this
technique would have eliminated the instances in which contention was realized
at the data set level only to ultimately have the contention exit, through
examination of the user data, determine that the requests were for different
records within the data set.

2. Range of Hash Values

As stated earlier, the hash value portion of the resource definition allows XES
to map the resource to a lock table entry. The hash value is typically an output
of an application defined hashing algorithm which accepts a resource name as
input. If this is the case in your application, to minimize the chance of false
contention, care should be taken to design an algorithm that produces hash
values that are distributed evenly across a wide range of lock table entries.

3. Accurate Planning Information

While an application may take great care to design a hashing algorithm that
meets the criteria described above, the installation may reduce the
effectiveness of this algorithm by not providing enough space within the
coupling facility to allocate a lock structure with enough lock entries to
accommodate the range of hash values. When providing information about
structure size to your application's users, explain the performance ramifications
of their specifying a smaller lock structure than recommended.

Analyzing Your Locking Protocol
The XES Accounting and Measurement service, IXLMG, provides information to
assist an exploiter of XES locking services in analyzing the efficiency of its locking
protocol. The service returns information about a connection's use of a particular
structure in an area mapped by the IXLYAMDA macro. The following fields are of
interest while doing this analysis:

 � IXLYAMDSTRL_NLE

8-18 OS/390 V2R8.0 MVS Sysplex Services Guide

This field contains the number of entries allocated in the lock table portion of
the lock structure. The value of this field may help the application determine
when it is experiencing false contention due to having insufficient lock table
entries to accommodate the range of hash values.

 � IXLYAMDSTRL_REQCT

This field contains the total number of IXLLOCK, IXLRT, and IXLSYNCH
requests issued for this lock structure.

 � IXLYAMDSTRL_NLTEC

This field contains the total number of lock table entries whose composite state
is shared or exclusive; that is, a count of lock table entries that currently have
resources mapping to them. This field can be used along with the
IXLYAMDSTRL_REQCT field to determine how evenly the application's hashing
algorithm is distributing the hash values across the allocated lock table entries.
This count is only substantially accurate.

 � IXLYAMDSTRL_REQCTASYNC

This field is a subset of the total request field and contains the number of
requests which XES experienced a delay in servicing. The delay can occur for
various reasons such as contention or XES not being able to immediately
obtain serialization on its own structures. This field can be used in conjunction
with the IXLYAMDSTRL_REQCT field to determine the percentage of requests
which XES was able to service immediately without delays.

 � IXLYAMDSTRL_CONTCT

This field is a subset of the IXLYAMDSTRL_REQCTASYNC field and contains
the number of requests that were delayed due to contention. Note that this field
contains the number of instances of both resource contention and false
contention.

 � IXLYAMDSTRL_FCONTCT

This field is a subset of the IXLYAMDSTRL_CONTCT field and contains the
number of requests that were delayed due to false contention. An application
can determine the number of requests experiencing resource contention by
subtracting this value from the IXLYAMDSTRL_CONTCT field.

 � IXLYAMDSTRL_MLSEC

This field contains the maximum number of record data elements allocated in
the lock structure. This count is only substantially accurate.

 � IXLYAMDSTRL_LSEC

This field contains the number of record data elements in the lock structure that
are currently in use.

This information may also be obtained by executing the appropriate Resource
Measurement Facility (RMF) Coupling Facility Activity reports. See RMF User's
Guide for additional information about these reports.

 Chapter 8. Using Lock Services (IXLLOCK) 8-19

Record Data Entries
A record data entry contains information about a resource that is or has been held
by a connected user. The information in the record data entry is relevant to the
user holding the resource and is normally used by no other user sharing the
resource unless the other user needs to use the data to recover for a failure of the
resource owner.

Record data entries are 64 bytes long. The first connector to the lock structure
specifies whether or not record data entries are to be used. A record data entry can
be allocated within the lock structure when an obtain or an alter request is issued.
When a record data entry is allocated in conjunction with an IXLLOCK request, the
entry is created with a record data type (RDATATYPE) of zero. See “Using the
Lock Cleanup and Recovery Service (IXLRT)” on page 8-55 for information about
RDATATYPE.

Each record data entry records information about a connected user's interest in a
specific resource. Because record data can persist across system or sysplex
outages, if a recovery situation occurs, the users of the lock structure can make
use of the record data entries to perform recovery for resources that were held by a
user at the time of the failure.

Associating Record Data Entries with Connected Users
A record data entry is identified by an entry-identifier, ENTRYID, which is returned
to you when you allocate the entry with an IXLLOCK request to OBTAIN or ALTER
ownership of a resource.

In a failure situation, the users of the lock structure can use the IXLRT service to
access the record data entries for the failed user and thus coordinate the recovery
processing. See “Using the Lock Cleanup and Recovery Service (IXLRT)” on
page 8-55.

Capacity Planning for Record Data Entries
On each IXLLOCK OBTAIN and ALTER request that specifies record data is to be
written, XES returns information about the number of record data entries currently
in use. Either the ENTRYCOUNT output field in the IXLLOCK parameter list or the
CMPLRTENTRYCOUNT field in the IXLYCMPL parameter list, if processing was
asynchronous, contains this value. Use the value returned in ENTRYCOUNT or
CMPLRTENTRYCOUNT to monitor how much storage remains in the structure for
record data entries.

The approximate maximum number of record data entries that the structure
supports is returned in the answer area by IXLCONN (field
CONALOCKMAXRECORDELEMENTS). You can also determine this value by
using the XES Accounting and Measurement service, IXLMG, to request structure
information. By comparing the value of ENTRYCOUNT with the value of the
maximum supported number of record data entries, you can anticipate a “structure
full” situation and take appropriate actions to avoid the occurrence of such a
condition.

8-20 OS/390 V2R8.0 MVS Sysplex Services Guide

Size Considerations for a Lock Structure
The initial size of the lock structure is specified by the installation in the CFRM
policy, although that value might be overridden by the structure size specified on
the IXLCONN macro. (The system uses the smaller of the sizes, if both are
specified.) When providing guidance for determining a lock structure size, you must
consider both parts of the structure — the lock table and the record data entries.

Lock Table Size
The size of the lock table is determined by the number of lock entries that are used
to detect contention and the number of potential sharers of each lock table entry.

� Choosing the number of lock table entries

In order to achieve optimum performance, the application should allocate a lock
table with enough entries to accommodate the range of hash values. Allocating
a lock table with entries greater than the maximum hash value results in
unnecessary coupling facility storage being assigned to the structure, because
XES will never need to reference a lock table entry beyond the range of hash
values. (Note that the number of lock entries that you specify on the IXLCONN
macro is rounded up to a power of 2 if the value is not already a power of 2.)

Allocating a lock table with entries less than the maximum hash value could
result in significant performance degradation because XES will be forced to
assign multiple hash classes to a single lock entry. (XES will “wrap-around”
when the hash value is outside the range of the last lock table entry.)

You can have the system automatically generate the largest possible number of
lock entries within the allocated lock structure when the following prerequisites
are met:

– The lock structure is allocated without record data.

– The lock structure is allocated by an OS/390 Release 2 or higher system.

– You specify LOCKENTRIES=0 on the IXLCONN invocation.

� Choosing the number of lock table users

The number of lock table users determines the size of each lock table entry
within the lock table. Each lock table entry consists of one byte and then one
bit for each potential user of the lock table entry, as specified by the
NUMUSERS keyword on IXLCONN. Bit 0 is not used to represent a connected
user. The size of the entry is rounded to a power of 2 number of bytes.

For example, each lock table entry for 27 users, after rounding to a power of 2,
would be 8 bytes.

 27 Users

|________|ðxxxxxxx|xxxxxxxx|xxxxxxxx|xxxx____|_...|...|..._|

1 byte <-------- 27 user bits ------->

Each lock table entry in the lock table is 8 bytes.

The following example shows a lock table entry for 16 users.

 Chapter 8. Using Lock Services (IXLLOCK) 8-21

 16 Users

|________|ðxxxxxxx|xxxxxxxx|x_______|

1 byte <- 16 user bits ->

Each lock table entry in the lock table is 4 bytes.

Storage Required for Record Data Entries
If your protocol does not require the use of record data entries, then no additional
storage in the coupling facility is required beyond that for the lock table. However, if
you are using record data entries, keep in mind the following:

� Each record data entry is 64 bytes. (This is the user-available portion. The
coupling facility control code requires additional coupling facility storage for
control purposes.)

� The number of record data entries to estimate is a function of the number of
users and their recording activity. The amount of recording activity is a product
of the locking rate, the number of resources using record data, and the length
of time resources and their associated record data entries are held.

� The coupling facility allocates storage for the lock table first and whatever
storage remains in the structure can be used for record data entries.

See “Determining the Structure Size” on page 12-1 for detailed information about
estimating structure size, including the additional coupling facility storage required
by the coupling facility.

Effect of Structure Alter on a Lock Structure
The IXLALTER function provides for the expansion or contraction of the size of a
structure and/or for the reapportionment of the entry-to-element ratio of the
structure. For a lock structure, only a change to the size of the structure is valid. A
request to change the entry-to-element ratio is meaningless because there are no
data elements in a lock structure, only record data entries. The system rejects such
a request to change the ratio with nonzero return and reason codes.

Depending on whether or not the lock structure was allocated with record data,
changing the size of a lock structure either increases or decreases the record data
entries only.

 Recovery Considerations
As part of your application's design to use a coupling facility lock structure, you
should plan for recovery if a connected user fails. Your recovery plan can allow for
either the connected user to be restarted and continue processing or for peer
connectors to assume the responsibilities of the failed connector or for a
combination of both.

8-22 OS/390 V2R8.0 MVS Sysplex Services Guide

Designing for Recovery
When a connector to a coupling facility lock structure fails, the following occurs:

� XES reports the failure event to all surviving connectors.
� The surviving connectors must respond to the event.
� When all responses have been received by XES, XES performs its cleanup.

As part of your recovery protocol, you might require that connectors do their
application-specific cleanup before responding to the connection failure event.

Your recovery protocol has several dependencies:

� How connections are defined at connect time
� How recovery information is used for peer and restart recovery.

Defining the Connections
At connect time, with the IXLCONN macro, the persistence of a connection is
defined with the CONDISP parameter. The disposition indicates how the connection
is to be handled in the event the user terminates abnormally or disconnects from
the structure with REASON=FAILURE. By specifying CONDISP=KEEP, you
indicate that the connector is to enter a failed-persistent state when all surviving
connections' event exit responses have been received. CONDISP=KEEP also
ensures that the failed user's record data is to be kept. XES will not delete record
data entries belonging to a connection that is entering the failed-persistent state.
This allows data regarding owned resources to be available to the failing user upon
restart, as well as during system outages in which peer recovery was not able to be
performed. Note that XES releases the resources owned by a failing user
regardless of the CONDISP specified at connect time.

Specifying Recovery Information
Also at connect time, you indicate whether or not you want to maintain record data
entries for the connection. The record data entries can be used to hold recovery
data, should the connector fail. Connectors to the structure can access the record
data entries with the IXLRT programming interface. The failed connector, once
restarted, can access its former record data entries with the REACQUIRE option of
the IXLLOCK programming interface when it reobtains serialization on the specified
resource.

XES Cleanup Processing
When all responses are received from surviving connectors, XES performs the
following cleanup:

1. Remove entries associated with the failed user, whether the entry represents
the user as an owner or a waiter for the resource, from any resource request
queues.

2. If the user is not persistent, delete any record data entries associated with the
failed user.

3. If the failed user was currently assigned contention management
responsibilities, reassign those responsibilities to another connected user.

Resource Request Queues

XES removes the failed user's requests from any resource request queue on which
the user is shown to be a resource owner or waiter (that is, has a request pending).

 Chapter 8. Using Lock Services (IXLLOCK) 8-23

Also, XES cancels any requests from the failed user that are waiting to be applied
to a resource request queue. If a resource request queue from which the failed
user's requests are removed is being managed by the contention exit of a surviving
connector, then the updated resource request queue is presented to that user's
contention exit. Reason flags in the CEPL will indicate that recovery has occurred.
If the contention exit was waiting for a response from the failed connector at the
time of the failure (such as a response from the notify exit), then XES will cancel
the wait for the response.

Record Data Entries

Whether XES deletes the record data entries associated with the failed user
depends on how the user's connection was defined at connect time. If the failed
user is transitioning to a failed-persistent state, then the record data entries are
kept and are available either for the restarted connector or for peer connectors as
part of the recovery protocol. If the failed user was not defined to become
failed-persistent, then XES deletes any associated record data entries for the failed
user.

Contention Management Responsibilities

The responsibility of managing resource request queues is shared among the
instances of XES supporting the connectors to the structure. At any point in time a
connector may be managing any number of resource request queues through its
contention exit, and the instance of XES supporting the connector may internally be
managing additional resource request queues that are not in contention. Whenever
a connector disconnects or abnormally terminates, XES reassigns management
responsibilities for any resource request queues that were being managed by that
connector (or its associated instance of XES) among the remaining connectors and
their supporting instances.

After removing the failed user's requests from any resource request queues, the
system determines if the failed user's contention exit (or the instance of XES
supporting the connector) had been managing any resource request queues at the
time of the error. If so, and the queue still contains owners, XES reassigns
management responsibilities to the contention exit of another connected user.
When the newly selected user's contention exit is first invoked, the CEPL will
indicate that recovery has occurred.

Note that because the management of resource request queues is reassigned in
these instances without considering the current (or previous) state of the entries on
the queue, a contention exit may be presented with a resource request queue
containing entries that are compatible. This method of overindicating the state of a
resource request queue in failure scenarios ensures that any communications that
had been established with local connectors by the contention exit of the failing user
will have a chance to be completed by the contention exit of the connector who
become the new manager regardless of whether the queue is still in contention
after the cleanup has occurred.

Note about Deadlock:

You should be aware of the potential for a deadlock environment when XES is
waiting to reassign management responsibilities for a resource request queue.
XES cannot assign another connected user to manage the resource request queue
until all acknowledgments of the failed connection have been received from the

8-24 OS/390 V2R8.0 MVS Sysplex Services Guide

surviving connectors through either their event exits or IXLEERSP. Therefore, any
resource requests on the queue will remain outstanding until a new contention
manager is assigned. A deadlock situation could occur if you delay confirming an
XES event while awaiting the completion of an IXLLOCK resource request. The
responsibility of detecting and resolving deadlock situations is that of the connected
user and not of XES.

Sample Recovery Protocol
The following illustrates a recovery protocol in which the failed connector is to
restart and complete any updates that were in progress at the time of its failure.

Application “B” is a multi-system application whose data is maintained on shared
DASD. The application accesses the data as a result of user requests. Should an
instance of Application B fail, the remaining instances are to prevent access to any
shared data that may have been in the process of being updated by the failing
instance at the time of the failure. Upon being restarted, the instance of Application
B that failed will complete its update of the shared data.

Purpose: To provide a recovery protocol which maintains the integrity of the
shared application data across system and sysplex outages.

Design: Any data that was in the process of being updated when an instance of
the application fails is to be marked “reserved” until the failing instance is able to be
restarted. Once restarted, the instance of the application is to determine what
updates were in progress at the time of the failure and continue with the update.

The surviving instances of the application must maintain structures at the
application level to denote “reserved” resources because XES, after receiving
cleanup confirmations, will release the resources owned by the failing connector.
Once XES releases the failed connector's ownership of a resource, that resource is
available to be obtained by other active connectors. This implies that any new
requests to obtain the resource will be successful. Therefore, if the application
wishes to prevent access to that resource until the failing instance is restarted, it
must do so at the application level. Specifically, each instance of the application
must verify that the resource is not reserved before initiating an IXLLOCK request.

Requirements: The application must conform to the following:

� Connections by the application must be persistent.

The persistent connection ensures that any record data entries created by the
application remain resident in the lock structure across failures.

� An IXLLOCK record data entry is to be recorded whenever the application
requests an update to shared data. The record data entry is to contain the
following information:

– The name of the data set being updated.
– The range of records requiring serialization.

� The application must maintain local structures to denote resources that are
currently “reserved”.

The local structures are required so that access to the reserved resources can
be prevented until the failed instance is able to restart. The local structures
must be updated with the list of reserved resources at the following times:

 Chapter 8. Using Lock Services (IXLLOCK) 8-25

– During startup of an instance of an application

When an instance of an application establishes a connection to XES, the
connector receives information about other connections (both active and
failed-persistent) through its event exit. The instance of the application must
use the IXLRT service to read the record data entries associated with any
failed-persistent connector to determine the resources that might be
reserved for reclamation when the failed user restarts.

– Prior to providing cleanup confirmation for a peer user.

When a failure of a peer user is reported through the event exit, the
connector must use the IXLRT service to read the record data entries
associated with the failing connector. Information in the record data entries
is used to update the list of reserved resources in the user's local structure.

� Before initiating an IXLLOCK request, the application must verify that the
resource being requested is not reserved.

� Resources owned by a failed persistent user are to be reacquired upon restart.

Sample Recovery Protocol - Implementation

The following illustrates Application B's implementation of the restart recovery
protocol.

� Two instances of Application B are executing on different systems in a sysplex.
Both are connected to coupling facility lock structure LOCKAA.

INSTANCE 1 PROCESSING

� Instance 1 of Application B receives a client request to update record 2 of data
set XYZ.

– Instance 1 of Application B issues an IXLLOCK request for exclusive
access of data set XYZ using lock structure LOCKAA.

– The user data specified indicates that the IXLLOCK request is to access
record 2.

– The IXLLOCK request specifies that a record data entry is to be created.

� XES grants the IXLLOCK request for exclusive access of data set XYZ; the
record data entry is created.

� Instance 1 of Application B begins its update of the serialized record, record 2.

� Before Instance 1 can complete its update, the system on which it is running
fails.

 XES PROCESSING

� XES informs the remaining instances (in this case, only Instance 2) about the
failure of Instance 1 through the scheduling of their event exit. XES then waits
for the remaining instances (in this case, Instance 2) to acknowledge the event
before proceeding with the cleanup.

INSTANCE 2 EVENT EXIT PROCESSING

� Instance 2 invokes the IXLRT service to return the record data entries
associated with the failing Instance 1. For each returned entry, Instance 2 adds
an entry to its locally maintained reserved resource list.

8-26 OS/390 V2R8.0 MVS Sysplex Services Guide

Note that if Instance 2 receives any new requests for a resource on the
reserved resource list, the Instance 2 rejects the requests with an indication
that the specified resource is temporarily not available.

� After building the reserved resource list, Instance 2 provides a cleanup
confirmation to XES.

 XES PROCESSING

� Having received the cleanup confirmation from Instance 2, XES performs the
necessary cleanup processing. The state of Instance 1 is now:

– Its interest in the resource Data Set XYZ has been released. (Instance 1's
request has been removed from the resource request queue for Data Set
XYZ.)

– Its connection is in the failed-persistent state.

– Its record data entries remain resident in the coupling facility lock structure.

INSTANCE 1 RESTART PROCESSING

� Instance 1 of Application B is restarted. Instance 1 reestablishes its connection
to coupling facility structure LOCKAA.

� After reestablishing its connection, Instance 1 issues the IXLRT macro to
determine what resources it held at the time the previous instance failed.
Additionally, the data returned by IXLRT can be used to populate the local
structures with resources that are reserved by other instances that may
currently be failed.

� In order to reobtain ownership of the resources that are currently reserved on
its behalf, Instance 1 issues IXLLOCK requests. Also, Instance 1 indicates to
reassociate the current record data entry with the new instance of resource
ownership by specifying the REACQUIRE keyword on the IXLLOCK invocation.

� When the restart processing is complete, Instance 1 notifies the other active
connections to discard the appropriate resources from their reserved resource
list.

Sample Recovery Protocol - An Alternative
An application might have requirements that could not tolerate “reserving” a
resource for the length of an outage, as in the preceding example. In these types of
environments, an application might choose to employ a “peer recovery” protocol. In
a peer recovery protocol, surviving instances of an application would attempt to
take over or complete unfinished work that had been started by the failing instance.
XES locking services also assist in enabling an application to build such a protocol.

Requesting Lock Services
To request lock services, you issue the IXLLOCK macro from the same address
space where the IXLCONN macro for the connection to the lock structure was
issued. You identify the service you want (OBTAIN, ALTER, RELEASE) by
specifying the name of the service on the REQUEST keyword. You also must
specify the CONTOKEN keyword to identify your connection and the RNAME and
HASHVAL keywords to identify the resource.

 Chapter 8. Using Lock Services (IXLLOCK) 8-27

OS/390 MVS Programming: Sysplex Services Reference provides the required
syntax for coding the IXLLOCK macro.

Connecting to a Lock Structure — A Review

To use a lock structure, you must first connect to the structure with the IXLCONN
macro, TYPE=LOCK. On the IXLCONN macro, you specify the attributes you
require the structure to have, such as the number of users to be supported and
whether or not record data is to be used. Be aware, however, that despite your
IXLCONN-specified attributes, XES might need to allocate a lock structure with
different attributes. It is your responsibility to verify that the attributes as allocated
will satisfy your application's requirements. Also, for a lock structure, a return and
reason code of IXLRSNCODENOFAC (X'0C08') indicates that the allocation failed
because there was no suitable coupling facility in which to allocate the structure
based on the preference list in the CFRM policy. For example, a request to allocate
a lock structure with 64 lock entries to be used by eight users may fail if a structure
large enough to meet these requirements cannot be allocated in any coupling
facility defined within the preference list.

One way of ensuring that you request a set of attributes that agrees with an
installation's requirements is to interrogate the CFRM policy using the IXCQUERY
macro. The CFRM policy provides the structure name and size, the number of
connections supported by the policy, and other installation-specific information
about the coupling facility. Use this information to specify lock structure attributes
that match the installation's configuration.

Requesting Ownership of a Resource (REQUEST=OBTAIN)
Use the OBTAIN request to specify the state in which you want ownership of the
resource, as well as to define certain resource attributes. You cannot issue multiple
concurrent OBTAIN requests for the same resource. If you do so, XES rejects the
request with a reason code indicating that the requested resource is either already
owned or already pending ownership.

Note that if you wish to update the attributes for a resource that you already own or
are attempting to own, you should use the ALTER option of IXLLOCK.

 State

The OBTAIN request allows you to request shared or exclusive ownership of a
resource. The system supports only the shared or exclusive lock states.
However, you have the ability to define other lock states by using the user
data. If you define other lock states, you must ensure that the additional lock
states defined map to either a shared or an exclusive lock state.

The resultant state (which may or may not have been modified by the
contention exit) is returned in the STATEVAL keyword for synchronous
requests and in the CMPLSTATE field for asynchronous requests.

In addition to the requested ownership state, on an IXLLOCK OBTAIN request
you can specify the following user-defined data:

� Eight bytes of lock data
� 64 bytes of user data
� 64 bytes of record data.

 Lock data

8-28 OS/390 V2R8.0 MVS Sysplex Services Guide

The eight bytes of lock data that you can specify on an OBTAIN request
remains associated with the owned resource once the request is granted and is
for use only by the requesting user. Lock data is presented to the complete and
notify exits and typically would be used to contain an address or similar control
information about the use of this resource. Thus, when updates are made to
the resource and the complete exit is called or when the notify exit is invoked,
the user can efficiently locate the control structures pertaining to the resource.

 User data

The 64 bytes of user data that you can specify on an OBTAIN request remains
associated with the owned resource once the request is granted. Unlike the
lock data, you can modify the user data on subsequent ALTER or RELEASE
requests for the resource. The user data is presented to the complete exit, the
notify exit, and the contention exit, and typically would be used to contain data
necessary to implement your locking protocol.

The user data (which may or may not have been modified by the contention
exit) is returned in the UDATAVAL keyword on synchronous requests and in
the CMPLUDATA field for asynchronous requests.

If you do not specify user data, the area contains zeros.

 Record data

The 64 bytes of record data that you can specify on an OBTAIN request
represents the connected user's interest in a particular resource. The OBTAIN
request can be to write the record data to an available record data entry in the
lock structure or to reacquire a record data entry that already exists. The record
data is presented in the complete exit and the contention exit.

If a record data entry is created, a unique entry identifier and an indication of
the number of record data entries currently allocated in the structure are
returned to the user. These values are returned in the ENTRYID and
ENTRYCOUNT keywords for synchronous requests and in the
CMPLRTENTRYID and CMPLRTENTRYCOUNT fields for asynchronous
requests. If a record data entry is not available, ownership of the resource is
not granted, and the system provides an error return code.

If a record data entry already exists for this resource request, you can use the
REACQUIRE keyword on the OBTAIN request to reacquire both ownership of
the resource and the associated record data entry. When specifying the
REACQUIRE option, use the ENTRYID keyword to identify the record data
entry and optionally, the CONID keyword to identify the connection from whom
the record data entry is being reacquired. The REACQUIRE option is primarily
intended for use in a recovery environment to facilitate recovery of resources.
Consider the following examples:

� Upon reconnecting, a previously failed-persistent user of locking services
can re-obtain resources that were held by its previous instance and
reacquire the existing record data entries to be associated with the new
instance of ownership. It is possible to use the UPDATERDATA suboption
to update the contents of the reacquired record data entries to reflect
updated state information.

� A connected user of locking services fails and the related surviving users
wish to recover the resources held by the failing user. The survivors might
wish to obtain the specified resources while reacquiring the associated

 Chapter 8. Using Lock Services (IXLLOCK) 8-29

record data entries from the failed connector. It is possible to use the
CONID suboption to coordinate the surviving connectors' processing.

Note that CONID is a one-byte connection identifier. CONID is returned in
the connect answer area (IXLYCONA) upon the successful completion of
an IXLCONN request. You can use CONID during recovery processing to
identify a failed connection for which you are attempting to recover
resources. Specifically, use CONID when reacquiring the record data
entries for the failed user. When you reacquire a record data entry, XES
associates the entry with your connection.

If the record data entry specified by the ENTRYID does not already exist,
or if the record data entry that you specify with ENTRYID is not associated
with the connection specified by CONID, the ownership of the resource is
not granted, and the system provides an error return code.

The record data (which may or may not have been modified by the contention
exit) is returned in the RDATAVAL keyword on synchronous requests and in
the CMPLRDATA field for asynchronous requests.

Determining the Completion of an OBTAIN Request
Upon the successful completion of an OBTAIN request, the connected user is
recognized as an owner of the specified resource. If ownership was granted
through the contention exit then the attributes may have been modified. For
example, the resource may have been granted with state, user data, or record data
different from what was originally requested. The connected user can examine the
appropriate output fields to determine if the attributes have in fact been modified.

If the OBTAIN request was not successful, then the requestor is not the owner of
the resource. Any subsequent requests (or those that may have been issued while
waiting for the results of the OBTAIN request) will fail with return and reason codes
indicating that the requested resource is not owned by this connector. The reasons
for which an OBTAIN request might fail include user-controlled conditions, such as
the request being denied by the contention exit, and environmental conditions, such
as loss of connectivity or structure failure.

Return and Reason Codes
When you invoke IXLLOCK, the macro returns the status of the request through
return and reason codes. The return and reason code constants are defined in the
IXLYCON macro.

Some examples of the type of status information returned from an OBTAIN request
are:

� The request is being processed asynchronously. Results will be presented to
the complete exit.

� The request is granted. You should check the appropriate output fields to
determine if any attributes (such as state, user data, record data) were
changed.

� The request is superseded and ownership is not granted.

� The request is denied by the contention exit that was managing contention for
the resource.

� The request has failed because of an environmental condition, such as
structure failure or loss of connectivity to the coupling facility.

8-30 OS/390 V2R8.0 MVS Sysplex Services Guide

Changing Ownership Attributes (REQUEST=ALTER)
Use the ALTER request to change the attributes of a resource that is already held
or to replace a OBTAIN or ALTER request for the resource that is pending on the
contention exit resource request queue with a more current request.

You can only alter a resource of which you are the owner or for which you have a
pending request. Otherwise, the system rejects the ALTER request with return and
reason codes.

Resource attributes that can be changed are the state, user data, and record data.

 State

You are required to provide a requested state when issuing an IXLLOCK
REQUEST=ALTER. If you do not wish to modify your current ownership state,
you should provide the current value as input.

The resultant state (which may or may not have been modified by the
contention exit) is returned in the STATEVAL keyword on synchronous
requests and in the CMPLSTATE field for asynchronous requests.

 User data

On an ALTER request you also can specify the 64 bytes of user data. If you do
not wish to modify your current user data, you should respecify its current
value.

The user data (which may or may not have been modified by the contention
exit) is returned in the UDATAVAL keyword on synchronous requests and in
the CMPLUDATA field for asynchronous requests.

 Record data

On an ALTER request you can specify whether or not to update the 64 bytes of
record data that is currently associated with the resource, to delete the record
data entry that is currently associated with the resource, or to create a new
record data entry to be associated with the resource (if one did not previously
exist). The record data is indicated by the RDATAVAL keyword.

� If a record data entry was not associated with this resource previously, the
system attempts to write to an available record data entry. If a record data
entry is not available, the request is rejected and a return code is returned.
If a record data entry is available and can be allocated, the record data
entry is written to the allocated entry. The identifier of the record data entry
and the number of record data entries currently in use are returned in the
ENTRYID and ENTRYCOUNT areas in the IXLLOCK parameter list for
synchronous requests and in the CMPLRTENTRYID and
CMPLRTENTRYCOUNT fields for asynchronous requests.

� If a record data entry already is associated with the resource and the
ALTER request is to change this record data entry, the system replaces the
contents of the prior record data entry with the record data entry specified
in the current ALTER request. The entry identifier remains the same.

� If a record data entry already is associated with the resource and the
ALTER request is to delete this record data entry, the system deletes the
record data entry. If no record data entry is associated with the resource,
the RDATA=DELETE keyword is ignored.

 Chapter 8. Using Lock Services (IXLLOCK) 8-31

The record data entry (which may or may not have been modified by the
contention exit) is returned in the RDATAVAL keyword on synchronous
requests and in the CMPLRDATA field on asynchronous requests.

Determining the Completion of an ALTER Request
Upon successful completion of an ALTER request, the user's ownership attributes
will have been updated. If the request was granted through the contention exit then
the attributes may have been modified. For example, the request may have been
granted with the state, user data, or record data different from what was originally
requested. The user can examine the appropriate output fields to determine if the
attributes have been modified.

If the ALTER request was not successful, the attributes specified are not modified.
The reasons for which an ALTER request might fail include user-controlled
conditions, such as the request being denied by the contention exit, and
environmental conditions, such as loss of connectivity or structure failure.

Return and Reason Codes
When processing is complete for an ALTER request, the system provides a return
and possibly a reason code to indicate the status of the request.

Some examples of the type of status information returned from an ALTER request
are:

� The request is being processed asynchronously. Results will be presented to
the complete exit.

� The request is granted. Check the appropriate output fields to determine if any
attributes were changed.

� The request has failed because you requested that a record data entry was to
be written, but there were no record data entries available.

� The request is superseded (or cancelled due to a more current request by this
user being received by the contention exit that is managing the resource).

� The request is denied by the contention exit that was managing contention for
the resource.

� The request has failed because of an environmental condition, such as
structure failure or loss of connectivity to the coupling facility.

Releasing Ownership of a Resource (REQUEST=RELEASE)
Use the RELEASE request to relinquish ownership of a resource or to replace a
request to OBTAIN or ALTER the resource that is pending on the contention exit
resource request queue with a more current request to release it (in effect,
cancelling the pending request).

You can only release a resource of which you are the owner or for which you have
a pending request. Otherwise, the system rejects the RELEASE request with return
and reason codes.

On an IXLLOCK RELEASE request you can modify the user data and the record
data and also specify the disposition of the record data associated with the
resource request.

 User data

8-32 OS/390 V2R8.0 MVS Sysplex Services Guide

The user data (which may or may not have been modified by the contention
exit) is returned in the UDATAVAL area in the IXLLOCK parameter list for
requests that complete synchronously and the CMPLUDATA field for
asynchronous requests.

 Record data

On a RELEASE request you can specify what to do with the record data entry
associated with the resource. The RDATA keyword indicates whether to delete,
to keep, or to keep and update this record data entry. Note that keeping the
record data in the coupling facility lock structure allows ownership information to
remain and continue to be available to connected users after the ownership of
the resource has been released. However, it is the responsibility of the
connected users to either reacquire or free these record data entries.

Determining the Completion of a RELEASE Request
In general, a request to RELEASE a resource cannot fail nor be denied by the
contention exit. When RELEASE processing is complete, the resource will have
been released.

For synchronous processing, the system provides a return code and possibly a
reason code when a RELEASE request is complete.

For asynchronous processing, the system provides a return code and a reason
code to indicate that processing is not complete. Completed asynchronous
processing is reported in the complete exit unless you specified the
MODE=NORESPONSE option. If you specify MODE=NORESPONSE and the
request is processed asynchronously, your complete exit will not receive control
when the request processing completes.

Return and Reason Codes
When processing is complete for a RELEASE request, the system provides a return
and possibly a reason code to indicate the status of the request.

Some examples of the type of status information returned from a RELEASE request
are:

� The request is being processed asynchronously. Results will be presented to
the complete exit unless MODE=NORESPONSE was specified on the request.

� The request to release the resource is successful, possibly with one of the
following exceptions:

– You requested that the record data entry was to be kept (RDATA=KEEP),
but there was no record data entry associated with the resource.

– You requested that the record data entry was to be kept and its contents
updated (UPDATERDATA=YES), but the system was unable to update the
contents. The record data entry is kept.

– You requested that the record data entry was to be deleted
(RDATA=DELETE), but the system was unable to delete the entry.

 Chapter 8. Using Lock Services (IXLLOCK) 8-33

Processing Multiple Resource Requests (REQUEST=PROCESSMULT)
Use the PROCESSMULT request to have the system process multiple requests for
resources with a single invocation of IXLLOCK. IXLLOCK Version 1 supports the
PROCESSMULT option with the ‘RELEASE’ type. As with a single ‘RELEASE’
request, you can specify either to keep or to delete the record data associated with
the resource request. However, note that there is no support for updating the
record data when keeping it with the PROCESSMULT RELEASE option.

| REQUEST=PROCESSMULT also does not support resource names with a length
| greater than 64 characters.

The PROCESSMULT request type is valid only for a structure allocated in a
coupling facility with CFLEVEL=2 or higher.

For each resource request that you wish to process, you build a lock request block
(LRB) to represent that request. An LRB is mapped by the macro IXLYLRB. You
can specify up to 128 resource requests on a PROCESSMULT invocation. You
build the LRBs representing these resource requests in the virtual storage area
specified by REQBUFFER. The REQBUFFER area can hold from 1 to 128
individual lock request blocks. For a description of IXLYLRB, see OS/390 MVS
Data Areas, Vol 3 (IVT-RCWK).

Figure 8-6 shows the information that each lock request block contains.

Figure 8-6. IXLLOCK Lock Request Block Information

Field Name Description

LRB_XTYPE Type of request Value must be
LRB_XTYPE_RELEASEVERS0

LRB_XRNAME Resource name

LRB_XHASHVAL Hash value

LRB_XUDATAVAL User data value

LRB_XMODE Mode in which the request is to be processed if it cannot
be serviced immediately:

0 (LRB_XMODE_SYNCEXIT)
Process the request asynchronously and give
control to the user's complete exit when the
request is complete.

1 (LRB_XMODE_NORESPONSE)
Do not inform the caller when the request is
complete.

LRB_XRDATA Record data options

X'20' (LRB_XRDATA_DELETE)
Delete the record data entry associated with the
resource that is being RELEASEd.

X'04' (LRB_XRDATA_KEEP)
Keep the record data entry associated with the
resource that is being RELEASEd.

LRB_XRETCODE Return code from this request for this LRB.

LRB_XRSNCODE Reason code from this request for this LRB.

8-34 OS/390 V2R8.0 MVS Sysplex Services Guide

Processing a Lock Request Block
Each lock request block is processed in the order in which it appears in the
REQBUFFER area. If the system encounters an error while processing a resource
request associated with a lock request block, processing for that request is halted
with the appropriate return and reason codes and the system continues to the next
LRB. If the system encounters an error attempting to access the next LRB, the
entire PROCESSMULT request is halted.

If you specified the REQPROC keyword, the system returns in that area the
number of lock request blocks that were processed before the PROCESSMULT
request was halted.

Determining the Completion of a PROCESSMULT Request
When control returns to the caller from a PROCESSMULT request, the request is
complete and the result of its completion is indicated by the return and reason
codes in RETCODE and RSNCODE. The PROCESSMULT request might have
completed fully or partially, depending on whether all the LRBs in the buffer area
were processed. The number of LRBs processed is returned in REQPROC.

Examining PROCESSMULT Return and Reason Codes
Some examples of the types of status information returned from a PROCESSMULT
request are:

� The request failed because the number of lock request blocks specified by
REQNUM was not in the range of 1 to 128.

� The request was halted because a lock request block contained a request-type
value that is not supported. The number of lock request blocks processed prior
to the error is returned in the REQPROC field.

� The request was halted because a lock request block contained a mode value
that is not supported. The number of lock request blocks processed prior to the
error is returned in the REQPROC field.

� The request was halted because the system encountered an error while
attempting to access storage in the area specified by REQBUFFER. The
number of lock request blocks processed prior to the error is returned in the
REQPROC field.

Examining Lock Request Block Return and Reason Codes
The return and reason codes associated with the processing of each LRB are
returned in LRB_XRETCODE and LRB_XRSNCODE. It is the caller's responsibility
to examine each of these individually for each LRB processed to determine the
outcome of the RELEASE request. The return code might indicate that the resource
request is complete, or it might indicate that the request is being processed
asynchronously (in which case the system will report the completion as specified
with the LRB_XMODE value).

Some examples of the types of status information returned for a lock request block
are:

� The request is being processed asynchronously. Results will be presented to
your complete exit if you specified the LRB_XMODE value of
LRB_XMODE_SYNCEXIT on the request.

 Chapter 8. Using Lock Services (IXLLOCK) 8-35

� The request to release the resource is successful, possibly with one of the
following exceptions:

– You requested that the record data entry was to be kept, but there was no
record data entry associated with the resource.

– You requested that the record data entry was to be deleted, but the system
was unable to delete the entry.

Using Exits for Coupling Facility Lock Services
The IXLLOCK services require the specification of three user exit routines — a
complete, a contention, and a notify exit routine. These routines support the
application's management of resource contention. The exit routine names are
specified at connect time. (You also must specify an event exit at connect time for
any type of structure connection.)

 General Requirements
The following requirements are common to the complete, contention, and notify
exits:

 Environment
The requirements at the time of exit invocation are:

Authorization: Supervisor state, key 0
Dispatchable unit mode: SRB
Cross memory mode: PASN=HASN=SASN; PASN same as PASN at time of

connect
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held

 Input Specifications
On invocation of the IXLLOCK exits, (complete, contention, and notify), the general
purpose registers (GPRs) contain:

Register Contents
0 Does not contain any information for use by the exit.
1 Address of a fullword containing the address of the exit parameter list.
2-12 Does not contain any information for use by the exit.
13 Address of a 72-byte work area for use by the exit routine. The exit

routine does not have to and restore registers in this work area. The
exit routine can use this work area in any way it chooses.

14 Return address of XES.
15 Entry point address

When the exit receives control, the access registers (ARs) contain no information
for use by the exit.

8-36 OS/390 V2R8.0 MVS Sysplex Services Guide

 Return Specifications
At the completion of processing, the user exit must return to XES at the return
address indicated by GPR 14 on entry. The user must restore all GPRs (and ARs,
if necessary) prior to returning.

 Serialization
Each of the IXLLOCK exits (complete, contention, and notify) is invoked and
serialized on a resource basis by structure connection. Because of this serialization,
it is not possible for more than one type exit to be running in parallel for the same
resource related to the same connection. For example, if multiple complete exits
are running in parallel on behalf of a specific connection to a lock structure, the
exits are running on behalf of different resources within that structure.

Within a complete exit, MVS does not support the issuance of a request for the
same resource that caused the complete exit to be called originally.

For example, assume that you request a resource in the shared state and the
request is asynchronous. When processing for this request is complete, the system
presents the event completion notification to your complete exit. In your complete
exit, you specify another IXLLOCK request for the same resource and also specify
that control is not to be returned until processing is complete. In this instance, the
second request is lost because the complete exit has not completed the original
request processing.

Ordering of IXLLOCK Exit Routines
When multiple exit routines are running on behalf of a resource request, they
generally are scheduled in the order in which they were called. At times, XES may
not schedule an exit until another currently executing exit completes.

XES guarantees the sequence of the exits will follow a predefined order.

Contention/Notify Exit Sequencing: In the contention exit, the connected user
managing contention may indicate that the notify exit of a set of resource owners is
to be scheduled. After all specified notify exits complete, the contention exit
receives control again. Note that the results of notify exit processing are always
presented to the contention exit except when the contention exit requests (through
a return code) that it does not want control returned.

Complete/Notify Exit Sequencing: For an asynchronous request, XES
guarantees that the complete exit processing to report resource ownership or a
regrant will be completed before the notify exit is given control for the resource
ownership. For example, if a request is processed asynchronously, and the
contention exit issues both a grant and a request to run the granted user's notify
exit, the notify exit is not given control until the complete exit processing for the
grant has returned to XES.

Note that when the request is processed synchronously (and therefore the
complete exit does not receive control), there is no guarantee as to which will occur
first — control returns to the next sequential instruction or control passes to the
notify exit. It is your responsibility to provide this type of serialization if required.

 Chapter 8. Using Lock Services (IXLLOCK) 8-37

 Exit Recovery
An error in an XES exit that prevents the exit from completing actions required by
XES or the application can impact not only the connected instance that suffers the
error but all instances that are dependent on the completed actions. Two examples
of this type of error in an XES exit are:

� An event exit fails without providing a required event exit response. The
sysplex-wide process that is dependent on that response hangs.

� A contention/notify pair of exits fails without completely updating the CEPL or
fields appropriate to processing the request. The results are unpredictable and
could possibly lead to integrity exposures as well as sysplex-wide hang waiting
for lock resources.

Because of the potential sysplex-wide impact of these errors, XES ends any
connector's task that returns to XES abnormally with a non-retryable X'026'
abend. The reason code from the abend indicates which of your exits suffered the
error, and diagnostic information is available to help diagnose the error.

For all XES exits, connectors should establish the appropriate recovery to handle
errors.

 Programming Considerations
In certain instances, XES must quiesce the activity of user exits in order to perform
cleanup processing. The following illustrates scenarios where this processing
occurs:

 � Connection Termination

When a user disconnects or abnormally terminates, XES will force to
completion any user exits executing on behalf of that user by issuing a
PURGEDQ against the appropriate units of work. Note that if a connector
terminates while a rebuild is in progress, any exits pertaining to both the
original and the new structures will be forced to completion. In addition to
forcing the currently executing user exits to completion, XES will also prevent
any new invocations of these exits by cancelling any events that are pending
presentation.

 � Rebuild Stop

When a connector provides an event exit response for the Rebuild Stop event,
XES will force to completion any exits that are executing on behalf of that
user's connection to the new structure by issuing a PURGEDQ against the
appropriate units of work. Similar to connector termination processing, the user
exits pertaining to the new structure will not be presented with any additional
events. Note that any user exits executing on behalf of the original structure are
unaffected by rebuild stop processing.

� Completion of a Rebuild

When a connector provides an event exit response for the Rebuild Cleanup
event, XES will force to completion any user exits that are executing on behalf
of that user's connection to BOTH the original and the new structures by
issuing a PURGEDQ against the appropriate units of work. No new events will
be presented to the user exits on behalf of the original structure (as it is being
discarded). Normal user exit processing will resume for the rebuilt structure
upon completion of the rebuild process.

8-38 OS/390 V2R8.0 MVS Sysplex Services Guide

A user exit must be sensitive to conditions that can occur as a result of actions
taken by XES and must be able to handle these as appropriate. For example, if a
user exit has suspended itself, when the PURGEDQ is issued the system abends
the user exit's unit of work with a retryable X'47B' abend and gives control to the
user exit's recovery routine. (Note that although the recovery routine can retry, the
user exit can not re-suspend itself because the system will fail any request to
suspend a unit of work that has been the target of a PURGEDQ.) If the recovery
routine percolates back to the system, its associated connection is terminated.

 Performance Implications
Any action that delays the completion of a complete, contention, or notify exit will
have an adverse effect on the performance of a connected user. For that reason,
do not suspend processing in an exit without understanding the performance
implications.

An IXLLOCK exit is considered complete when it returns to XES based on the
address in GPR 14.

Coding a Complete Exit
The complete exit is used to inform you that your asynchronously-processed
request is complete, or that your ownership status for a resource has been updated
(regranted) by the contention exit of the connected user who has been chosen to
manage the resource contention. You provide the address of your complete exit
using the COMPLETEEXIT parameter when you issue the IXLCONN macro to
connect to the lock structure.

Information Passed to the Complete Exit
When the complete exit receives control, it receives information about the event
whose completion is being reported in the complete exit. The complete exit
parameter list (CMPL), mapped by the IXLYCMPL macro, contains the following
information:

CMPLCONTOKEN The IXLLOCK invoker's connect token.

CMPLCONNAME The IXLLOCK invoker's connect name.

CMPLREBUILD Rebuild status of the target lock structure.

CMPLRNAME@ Resource name address.

CMPLRNAMELEN Resource name length.

CMPLHASHVAL Hash value

CMPLEVENT Type of event whose completion is being reported.
(See the constants for use with IXLLOCK events in
IXLYCON.)

CMPLRETCODE Return code from IXLLOCK request. Return code
values are defined in the IXLYCON macro.

CMPLRSNCODE Reason code from IXLLOCK request. Reason code
values are defined in the IXLYCON macro.

CMPLLOCKDATA Lock data that is associated with the owned resource,
assigned at the time the IXLLOCK request to OBTAIN
the resource was granted.

 Chapter 8. Using Lock Services (IXLLOCK) 8-39

CMPLSTATE Ownership state of the requested resource if the return
code indicates a successful update; otherwise, the
requested state, which may have been updated and
therefore be different from the original request. (See
IXLYCON for ownership state constants.)

CMPLUDATA User data associated with the resource request if the
return code indicates a successful update; otherwise,
the requested user data including any updates made by
the contention exit.

CMPLRDATA Record data associated with the resource request, if
the return code indicates a successful update;
otherwise, the requested record data including any
updates made by the contention exit.

CMPLRTENTRYID Record data entry identifier if the return code indicates
that the record data entry was successfully created or
updated.

CMPLRTENTRYCOUNT Number of record data entries that are currently in use
for this lock structure if the return code indicates a
successful update.

CMPLRDATAINFO Flags for further information about record data options
and validity of record data fields.

See OS/390 MVS Data Areas, Vol 3 (IVT-RCWK) for the IXLYCMPL macro.

Return and Reason Codes
There are no return and reason codes from the complete exit. However, the CMPL
contains the return code and reason code (if applicable) from the IXLLOCK request.

 Programming Considerations
The IXLYCMPL macro provides the format of the complete exit parameter list.
Include that macro as well as IXLYCON in your program.

When the complete exit returns to XES, you can no longer access the data in the
CMPL.

You should be aware that in order to preserve the logical ordering of events, XES
will not inform the user of other events related to this resource until it has received
control back from the complete exit. Any processing that is to be performed by XES
to inform the user of additional status of the subject resource (such as executing
the notify exit, informing the user of asynchronous request completion through a
subsequent invocation of the complete exit, or resuming a suspended work unit
representing a synchronous request) will not be attempted until the complete exit
returns control to XES. These interdependences with regard to the presentation of
resource information to the user introduce the possibility of a user's protocol
creating a deadlock scenario. For example, issuing a synchronous IXLLOCK
request to alter a resource from within a complete exit that is executing on behalf of
the same resource is one such case in which a deadlock could occur. (The
complete exit will be suspended awaiting completion of the alter request, but XES
will not be able to perform this processing until the exit returns control from the
current invocation.)

8-40 OS/390 V2R8.0 MVS Sysplex Services Guide

XES does not support the detection or resolution of deadlock scenarios. The
prevention of such occurrences is the responsibility of the connected users of XES
services.

Coding a Contention Exit
The purpose of the contention exit is to resolve contention based on your
user-defined protocols. The contention exit receives as input a parameter list
containing general information about the resource and the instance of the
contention, as well as the resource request queue representing the current set of
owners and waiters for the resource. The contention exit can use this information to
take actions to resolve the contention. Such actions are:

� Grant pending requests with or without changes to the requested state, user
data, or record data

� Deny pending requests
� Regrant an owned resource with a different state or user data
� Keep a pending request in a pending state
� Direct XES to run the notify exit of selected resource owners.

Assigning Resource Contention Management
XES chooses the contention exit of a connected user to manage resource
contention in one of the following cases:

� When a resource request queue becomes incompatible

When a new request for a resource is received that is incompatible with the
existing entries on the resource request queue, the queue is said to be “in
contention”. In this case, XES selects one of the connected users to manage
the contention and presents the current resource request queue (containing the
new, pending request) to the contention exit of the selected user.

� When a previously selected resource contention manager fails.

If a connected user disconnects or abnormally terminates while it is managing
one or more resource request queues through its contention exit, XES, as part
of its cleanup processing, reassigns management responsibilities to one of the
surviving connectors.

The following diagram depicts XES processing when it receives a new request for a
resource.

 Chapter 8. Using Lock Services (IXLLOCK) 8-41

is

is
Resource
Managed

CONTENTION MANAGEMENT BEGINS

Request
Compatible

Select

Grant

Request

Manager

For
Resource

Update

Present

Queue

Queue To

With

Selected

Request

Manager

YES

NO

NO

YES

Request
For

Resource

Figure 8-7. Receiving a Resource Request

The selected connector will continue to manage the resource through its contention
exit until XES is able to determine that all entries on the resource request queue
are once again compatible. When this determination is made, contention
management ends and XES grants any pending requests remaining on the
resource request queue. The selected connector is no longer responsible for
managing the resource. Should contention for the resource reappear, a different
user might be selected to manage the resource.

8-42 OS/390 V2R8.0 MVS Sysplex Services Guide

Passing Information to the Contention Exit
The contention exit receives control because a new request has been added to the
resource request queue, because of previous actions of the contention exit, or in
reaction to certain recovery processing (for example, when contention management
responsibility is reassigned after the prior manager failed.) XES communicates with
the contention exit through the contention exit parameter list — the CEPL, mapped
by the macro IXLYCEPL. The CEPL that is passed to the contention exit contains
an image of the resource request queue for the resource being managed, as well
as summary information about the contention. Each current resource owner and
waiter is reflected in the CEPL.

When the system first chooses a connected user to manage a resource that is in
contention, a 32-byte work area, CEPLWORK, in the CEPL is set to zero. This
work area is for the use of the managing connected user with any updates
persisting across contention exit invocations until this instance of contention
management has ended.

Each CEPL entry on the resource request queue also has an associated 32-byte
work area, CEPLEWORK, that is shared with the notify exit of the connector
represented by that entry. That is, if the notify exit of a connector is executed, the
contents of the CEPLEWORK field from the requesting contention exit will be
presented to the notify exit in the NEPL work area (NEPLWORK). Similarly, any
updates made to the area by the notify exit will be added to the queue and
presented to the contention exit. This provides the contention exit the ability to
communicate with the notify exits of all the resource owners reflected on the
request queue. When the resource request is first presented to the contention exit,
the system sets this work area to zero. The contention exit can modify data in this
work area and the data will be presented to subsequent invocations of the
contention exit while contention for the resource continues to exist. (As with
CEPLWORK, the CEPLEWORK work area persists across contention exit
invocations.) This work area also appears in the notify exit parameter list (NEPL), if
the notify exit is called. Any updates made to the work area during either notify exit
processing or contention exit processing will be reflected in subsequent invocations
of each exit while contention for the resource exists.

The CEPL contains a header section containing general information about the
resource and the resource request and a section containing an entry for each
request, either held or pending, for the resource. The CEPL information includes:

 � Header information

– Information about the resource in contention (CEPLRNAME@,
CEPLRNAMELEN , CEPLHASHVAL)

– Flags to indicate why the exit received control and whether the structure is
being rebuilt (CEPLREASONFLAGS , CEPLREBUILD ,
CEPLREBUILDORIG)

– A workarea for use by the contention exit (CEPLWORK)

– A return code field by which the contention exit can communicate with XES
(CEPLRETCODE)

– Summary information about all entries on the request queue:

- Total number of resource owners and waiters (CEPLENT#)
- Number of new requests currently on the queue (CEPLNEW#)
- Address of any new entry on the queue (CEPLNEW@)

 Chapter 8. Using Lock Services (IXLLOCK) 8-43

- Address of the first entry on the queue (CEPLENT@).

� Entry information. There is a CEPLENT entry for each resource request, both
owned and pending. The CEPLENT data includes:

– Information about the owner or waiter for the resource
(CEPLCONVERSION, CEPLCONID, CEPLCONNAME)

– Ownership status flag indicating whether resource is owned or pending
(CEPLESTATUSFLAGS)

– Action flag, to be set by the contention exit, to indicate to XES what action
should be taken for the request when the contention exit completes
(CEPLEACTIONFLAGS)

– Owned state and user data for resources that are owned (CEPLEHELD)

– Requested state, user data, and record data for resources that are pending
update (CEPLEREQ)

– Address of the next entry on the queue (CEPLENEXT)

– A workarea for use by both the contention and the notify exits
(CEPLEWORK).

See OS/390 MVS Data Areas, Vol 3 (IVT-RCWK) for the IXLYCEPL macro.

Contention Exit Processing
The contention exit can specify that the following actions be taken to resolve
contention by setting indicators for one or more resource requests in the CEPL:

� Grant requests that are pending with or without changes to the requested state,
user data, and/or record data.

� Deny requests that are pending.
� Regrant an owned resource with changed state, user data, record data.
� Keep a request pending.
� Direct XES to run the notify exit of selected users who own the resource.

If the contention exit returns to XES with a mixture of grants, regrants, or notify exit
processing to be done, the system processes grants, regrants, and denys first,
followed by notify exit processing.

The following describes what actions the contention exit can take.

� Grant a request that is pending

The contention exit can grant any pending resource request by setting the grant
indicator (CEPLEGRANT) in the corresponding CEPL entry. While granting the
request, the contention exit might also change the ownership attributes
originally requested by modifying the grant/regrant area in the CEPL entry.

XES processes the grant request and any record data entry updates that might
have been specified on the original IXLLOCK OBTAIN request. If XES is
unable to grant the request (for example, it attempted to grant a request that
required a record data entry to be created and there were no entries available),
XES proceeds as follows:

– XES returns failing return and reason codes to the issuer of the IXLLOCK
request.

– XES presents no new requests for the resource to the contention exit until:

8-44 OS/390 V2R8.0 MVS Sysplex Services Guide

- All the requested actions (grants, regrants, denys) from the previous
invocation of the exit have been processed.

- The updated resource request queue is presented to the contention exit
with the reason that an attempt to grant a request (as instructed by the
previous invocation of the contention exit) has failed. The connector(s)
whose request(s) have failed will be represented on the resource
request queue with the ownership attributes that applied prior to the
new request. This implies the following:

� If the request that failed was an attempt to gain ownership of a
resource that the requestor did not currently own (for example, an
IXLLOCK OBTAIN request), then the updated resource request
queue will not contain an entry for this connector. Any subsequent
requests by this connector to alter or release the resource
(including those that were outstanding at the time of failure) will be
failed with return and reason codes indicating that the specified
resource is not owned or pending ownership. These subsequent
requests are not presented to the contention exit.

� If the request that failed was an attempt by a requestor to update
the ownership attributes of a resource that it currently owns (for
example, an IXLLOCK ALTER request against an owned resource),
then the connector will be represented on the resource request
queue with the ownership attributes that applied prior to the failed
attempt to update.

� Deny a request that is pending

The contention exit can deny a pending resource request by setting the deny
indicator (CEPLEDENY) in the corresponding CEPL entry.

Note that the contention exit can not deny a request from a connector to
release its ownership of a resource (IXLLOCK RELEASE). XES will ignore any
attempt by a connector to deny this type of request.

– Denying a request for a resource that is not currently owned (IXLLOCK
OBTAIN) results in the request being removed from the resource request
queue. If the requestor had issued any subsequent requests to alter or
release the resource whose ownership has been denied, XES fails the
subsequent requests with return and reason codes indicating that the
specified resource is not owned. These subsequent requests are not
presented to the contention exit.

– Denying a request to update a currently owned resource (IXLLOCK
ALTER) results in the corresponding update being cancelled. The entry
remains on the resource request queue in its previous ownership state.

While a request being denied results in the requestor's ownership status not
being updated as requested, any modifications made to the requested user
data (CEPLEGUDATA) by the contention exit will be presented to the requestor
as part of request completion. For instance, the contention exit may deny a
request and also update the user data field to include a value indicating why
the request was denied. The requestor, upon being informed of the request
being denied, could potentially take some action based on the value in the
changed user data.

� Regrant an owned resource

 Chapter 8. Using Lock Services (IXLLOCK) 8-45

The contention exit can regrant a resource by setting the regrant indicator
(CEPLEREGRANT) in the appropriate CEPL. The state and/or user data can
be changed on a regrant; record data cannot be updated on a regrant. XES
allows only owned resources to be regranted. The connector whose ownership
has been updated is informed through its complete exit.

– Regranting a resource that is currently owned results in the state
(CEPLEGSTATE) and/or user data (CEPLEGUDATA) being updated.

– Regranting a resource that is owned and pending update results in the
“owned” state and/or user data being updated, but the pending request
remains unaffected. For example, the contention exit may encounter an
entry which represents a connector as an owner of a resource with a
pending request to update its ownership status (IXLLOCK ALTER). If the
exit specifies to regrant the owner's interest in the resource, the owned
status will be updated and the pending IXLLOCK ALTER request will
remain pending.

Special Note about the Regrant Function: Be aware that using the regrant
function to downgrade a connector's ownership of a resource to be less
restrictive introduces the possibility of an integrity exposure. This
exposure could occur as the result of an asynchronous process
(namely, the contention exit) modifying the serialization that was
originally acquired by a connector to make an update without first
informing that connection that its ownership status is being changed.
Specifically, in the period between the time that the contention exit
indicates to regrant the connector's ownership status and the time that
the affected connector is able to be informed of the change (and
subsequently take actions based on this), an update of a shared
resource without the proper serialization could occur. If an application's
locking protocol requires the contention exit to modify the attributes of
owned resources in this manner, it should consider using the notify
function.

� Keep a request pending

The contention exit can choose neither to grant nor to deny a pending resource
request. However, be aware of the following when leaving a request pending
on the queue:

– The request can be superseded (replaced on the resource request queue)
by a more recent request from the connector.

– The request will be granted when the resource request queue ceases to be
in contention.

– The request might also be granted by actions taken on a subsequent
invocation of the contention exit.

� Direct XES to run notify exits

The contention exit can direct XES to run the notify exit of selected resource
owners by setting the invoke notify exit indicator (CEPLENOTIFY) in the
appropriate CEPL entry. Keep in mind that XES processes requests to grant,
regrant, and deny requests before it handles requests to run the notify exits of
selected users. Therefore, the resource request queue presented to the notify
exits (in the NEPL) will contain any updates resulting from these prior actions. If
a failure occurs while performing one of these prior actions (for instance, a
grant fails), XES returns to the contention exit to report the failure and cancels
the requests to run any notify exits.

8-46 OS/390 V2R8.0 MVS Sysplex Services Guide

When directed to run the notify exit of selected users, XES proceeds as
follows:

– The resource request queue (in the form of the notify exit parameter list,
NEPL) is presented to the notify exits of owners specified by the managing
user's contention exit.

– No new requests for the resource are processed until:

- All the indicated notify exits have completed processing,

- XES updates the resource request queue to reflect the changes (if any)
made in the notify exits and presents them to the contention exit, and

- The contention exit indicates that no more notify exits are to be given
control.

Note that if the contention exit indicates that notify exits are again to be
given control, then processing resumes with notify exit scheduling for
the indicated notify exits.

XES/Contention Exit Communication
The contention exit communicates with XES through a return code. The exit can
specify that:

� It has completed normally and contention management should continue.

� It should not be called at the completion of notify exit processing if contention
has ceased.

� It should be called again immediately after XES has updated the resource
request queue.

� It should not be called again until structure rebuild processing has completed.

See Figure 8-9 on page 8-51 for a description of these return codes.

Continue Contention Management: Subsequent to its first invocation of the
contention exit, XES may invoke the exit at each of the following times while the
connector remains the contention manager:

� A new request is received for the resource while contention exists

Once the entries on a resource request queue have been determined to be
incompatible and as long as the incompatible condition exists, any new request
for the resource causes the contention exit to be given control. Note that XES
determines the state of the resource request queue after all actions specified
during the previous invocation of the contention exit have been performed.

� The completion of notify exits

When a resource request queue is presented to the contention exit, the
connected user that is managing the contention can indicate that the notify exit
of resource owners be scheduled for processing. After all specified notify exits
have completed, the contention exit is again given control. The resource
request queue reflects the changes, if any, that connected users made to their
ownership of the resource in the notify exit.

Note that the contention exit may supply a return code specifying that if the
results of notify exit processing cause contention to cease, XES is not to
redrive the contention exit.

� Failure of a previous grant request

 Chapter 8. Using Lock Services (IXLLOCK) 8-47

If XES is unable to grant a pending request as specified by the contention exit,
XES redrives the contention exit with an indication in the CEPL of the failure.
Among the reasons for the failure to grant the request are an associated record
data entry operation which could not be completed or a loss of connectivity to
the lock structure.

The resource request queue presented to the contention exit reflects all
updates made in the previous invocation of the exit, but may or may not
contain an entry for the user whose request has failed.

– If the failed request was for a resource that was not previously owned, the
updated resource request queue will not contain an entry for the failed
request.

– If the failed request was to update (ALTER) an already owned resource,
the updated resource request queue will contain an entry for the resource
that reflects the ownership state of the resource before the failed attempt to
update it.

Note: Any requests to execute notify exits that were made during the
invocation of the contention exit which specified to grant a request are
cancelled.

� During recovery processing for a failed connection

XES removes entries representing a failed or disconnected user from all
resource request queues as part of its cleanup processing. If cleanup occurs
for a request queue that is being managed by a surviving connected user then
the updated request queue is presented to the contention exit of that user with
an indication that recovery has occurred.

Note that XES will not interrupt the normal processing flow to inform the
contention exit that a failure has occurred. For example, if a contention exit is
waiting for responses from notify exits to complete at the time that cleanup is
being performed on the resource request queue then the contention exit will be
informed of the failure at the time that it is invoked with the results of the notify
exits. In this case, the contention exit parameter list will indicate that the queue
reflects results of notify exit processing, as well as recovery actions.

In summary, the contention exit may be informed of a change in the resource
request queue due to failures during any invocation. This includes when the
exit is called for normal processing such as presentation of new requests and
results of notify exit processing, as well as through a separate invocation when
the failure represents the only change in the queue. If an application's protocol
calls for its contention exit to be sensitive to failures of related users, the exit
should check the failure indicator (CEPLRECOVERY) during each invocation of
the exit.

Note that the CEPLREASONFLAGS indicate why the contention exit has been
given control. The CEPLNOTIFYRESPONSE, CEPLGRANTFAILED, and
CEPLRESTARTAFTERDEFER flags are mutually exclusive. However, it is
possible for the CEPLRECOVERY flag to be set to ON in conjunction with one
of the other CEPLREASONFLAGS.

Stop Contention Management: The contention exit can specify that management
of the resource is to stop once contention no longer exists. If any notify exits are
scheduled, and they complete with no actions to be taken because contention has
ceased to exist, do not call the contention exit. When contention again occurs,
another connected user might be chosen to manage contention.

8-48 OS/390 V2R8.0 MVS Sysplex Services Guide

Call Contention Exit Again: The contention exit may wish to examine the
resource request queue again immediately after XES has updated it according the
actions specified in the exit. Normally, XES would not present the resource request
queue again until a new request was received. The contention exit can use the
IXLRCCONTEXITCALLAGAIN return code to request that it be called again
immediately.

When the contention exit is called again, all of the CEPLREASONFLAGs are OFF
and CEPLNEW# is zero. The resource request queue will reflect any changes that
were specified in the previous invocation of the exit. For example, if you had set the
CEPLENOTIFY bit in the previous contention exit invocation, its action would have
been processed and you would be notified of the result in this invocation of the exit.
If the CEPLRECOVERY bit had been set to ON in the initial invocation of the
contention exit, it will be OFF when the contention exit is called again, unless a
new recovery event has taken place.

Defer Contention Management during Rebuild: A contention exit managing a
resource request queue can request that contention processing be quiesced until
the structure has either completed rebuilding or the rebuild process has been
stopped. If the structure is in the rebuild process (either the CEPLREBUILD or the
CEPLREBUILDORIG bit will be set ON), the contention exit can set the
IXLRCCONTEXITREBUILDDEFER return code to specify that XES should not
invoke the contention exit again for this resource until rebuild processing has
completed. Requests for the resource continue to be queued and will be handled
when the rebuild process ends.

If rebuild is not in progress (neither CEPLREBUILD nor CEPLREBUILDORIG is
ON) and the contention exit returns to XES with the
IXLRCCONTEXITREBUILDDEFER return code, XES issues an abend dump and
terminates the connection.

Whether the contention exit actually is restarted depends on whether the contention
exit is processing on behalf of the original structure or the new structure, and on
the outcome of the structure rebuild.

� If the contention exit is processing on behalf of the new structure
(CEPLREBUILD=ON), the contention exit will be restarted when rebuild
processing is complete. That is, after the connector has responded to the
rebuild cleanup event with IXLEERSP EVENT=REBLDCLEANUP.

� If the contention exit is processing on behalf of the original structure
(CEPLREBUILDORIG=ON), the contention exit will be restarted only if the
rebuild processing is stopped. That is, after the connector has issued
IXLEERSP EVENT=REBLDSTOP.

At the completion of rebuild processing that was deferred with the
IXLRCCONTEXITREBUILDDEFER return code, the contention exit will be restarted
with the CEPLRESTARTAFTERDEFER bit set ON to indicate that this is the initial
invocation of the contention exit for this resource after its deferral for rebuild
processing.

When the contention exit is restarted, the contents of the CEPL will be identical to
its previous contents when the request to defer processing was specified. During
the previous invocation of the contention exit, if updates to the CEPL work areas
were made, those updates are preserved.

 Chapter 8. Using Lock Services (IXLLOCK) 8-49

A connector who was reflected on the resource request queue of the previous
invocation of the contention exit might no longer be represented on that queue.
This situation could occur because the connector failed or disconnected. The
CEPLRECOVERY flag is set ON to indicate that the failed or disconnected user
has been removed, if cleanup has completed.

Summary of XES Contention Exit Processing
In order to make full use of the capabilities provided through the contention exit, it
is important that you understand the processing performed by XES to carry out
these actions. The following schematic depicts this processing:

NEW REQUEST
THAT CAUSES
CONTENTION

PREVIOUS
CONTENTION
MANAGER
FAILED

BEGIN CONTENTION MANAGEMENT

END CONTENTION MANAGEMENT

CALL EXIT

Process Grants, Denys, Regrants

If Grant failed or Failure occurred

If queue still not compatible,

If RC=REBUILDDEFER,

wait for next request

Grant all pending requests on queue.

*NEW RESOURCE REQUEST OR FAILURE CAUSED QUEUE TO BE UPDATED

If Requests to notify

If RC=CALLAGAIN,

Present queue to notify exists

If RC=STOPMANAGEMENT and contention
Wait for results

Wait for rebuild processing to end

no longer exists and there are no
failures, then continue,

Else recall exit with results

Update request queue
Recall exit

Recall exit

RESUME
CONTENTION
EXIT
PROCESSING
BASED ON
OLD/NEW
STRUCTURE

WAIT FOR
NEW OR
UPDATED
REQUEST
QUEUE*

Figure 8-8. Contention Exit Processing

8-50 OS/390 V2R8.0 MVS Sysplex Services Guide

Return and Reason Codes
When the contention exit returns control to the system, ceplretcode contains a
return code.

The following table identifies return codes from a contention exit, tells what each
means and the actions that XES should take.

Figure 8-9. Return Codes for the Contention Exit

Hexadecimal
Return Code Meaning and Action

0 Equate Symbol : IXLRCCONTEXITCONTINUEMANAGEMENT

Meaning : Contention exit complete.

Action : Continue normal management of the resource. If notify
exits are to be scheduled, call the contention exit after all notify
exits complete.

4 Equate Symbol : IXLRCCONTEXITSTOPMANAGEMENT

Meaning : Contention exit complete.

Action : Terminate management (assuming that no contention
exists). If any notify exits are to be scheduled, do not call the
contention exit after all notify exits complete if actions taken by the
notify exit cause the resource to no longer be in contention.

8 Equate Symbol : IXLRCCONTEXITCALLAGAIN

Meaning : Invoke the contention exit again with the resource
request queue updated to reflect the actions specified.

Action : Invoke the exit again without waiting for the arrival of a
new request.

C Equate Symbol : IXLRCCONTEXITREBUILDDEFER

Meaning : Do not invoke the contention exit again for this resource
until structure rebuild processing has completed.

Action : Restart the contention exit either after this connector has
responded to the REBLDCLEANUP event (for a new structure) or
the REBLDSTOP event (for the old structure).

 Programming Considerations
The IXLYCEPL macro provides the format of the contention exit parameter list.
Include that macro as well as IXLYCON in your program.

When the contention exit returns to XES, you can no longer access the data in the
CEPL.

The contention exit cannot consider that a request that it has granted is processed
to completion until the system informs you of the result of your request. In general,
the contention exit should neither make any assumptions about the success of its
grants of resource requests nor keep a local image of the resource request queue.

You should be aware that if the contention exit indicates that the notify exits of
resource owners are to be executed, the contention exit will not be invoked again
until XES has been able to execute the specified notify exits and apply the results
to the resource request queue. This dependency introduces the possibility of a
user's protocol creating a deadlock condition. For example, issuing a synchronous
IXLLOCK request to release a resource from within a notify exit that is executing on
behalf of the same resource is one such case in which a deadlock could occur.
(The contention exit will not be able to receive control again to process the request

 Chapter 8. Using Lock Services (IXLLOCK) 8-51

until the current set of notify exits (which are suspended awaiting completion of the
request) are able to complete.)

XES does not support the detection or resolution of deadlock scenarios. The
prevention of such occurrences is the responsibility of the connected users of XES
services.

Coding a Notify Exit
The notify exit is the method by which resource owners are made aware that
contention exists for the resource that they own. The notify exit is given control at
the request of the contention exit. The connected user that is managing the
resource in contention modifies the contention exit parameter list (CEPL) in the
contention exit to indicate the connectors whose notify exits are to be called. Only
resource owners are eligible to be notified.

The notify exit allows the resource owner to modify one or more of the following
attributes of the owned resource for which the exit has been called:

� The ownership state of the resource

The modification can be to change the state from shared to exclusive, from
exclusive to shared, or relinquish ownership.

� The user data associated with the resource

� The record data associated with the resource.

XES/Notify Exit Communication
Similar to the contention exit, the notify exit receives the current resource request
queue as input. The queue is presented in the form of a notify exit parameter list
(NEPL), mapped by the macro IXLYNEPL. The NEPL for locking requests has a
header containing information pertaining to the connector and the lock structure
along with a lock section that includes the identification of the resource that is in
contention. These sections are followed by a series of entries (mapped by
NEPLENT) that reflect the interest of other connectors (both owners and waiters) in
the specified resource. The NEPL information includes:

� Header section information

– Connect data, such as the connect token and connect name of the
resource owner (NEPLCONTOKEN , NEPLCONNAME)

– Structure information, such as rebuild status (NEPLREBUILD)

 � Lock section

– Lock data, if any, that was specified when resource ownership was
obtained (NEPLLOCKDATA)

– Resource identifiers, such as resource name, length, and hash value
(NEPLRNAME@, NEPLRNAMELEN , NEPLHASHVAL)

– 32-byte work area, passed from the contention exit (NEPLWORK)

This work area which is shared between the contention exit and the notify
exit. Specifically, when the contention exit requests that the notify exit be
executed, the contents of the work area within the corresponding CEPL
entry (CEPLEWORK) is passed to the notify exit. The notify exit receives
this information by way of the NEPLWORK field. Any changes made to this
area by the notify exit are subsequently presented to the contention exit.

8-52 OS/390 V2R8.0 MVS Sysplex Services Guide

– Ownership data, such as state and user data for this resource owner
(NEPLSTATE , NEPLUDATA)

– An input/output area which can be used in conjunction with the IXLSYNCH
service to update the ownership data (NEPLOUT).

 � Entry information

– Requestor information, such as version, connection identifier, and connect
name (NEPLECONVERSION, NEPLECONID, NEPLECONNAME)

– Ownership data, such as state and user data, for both the held state and
the requested state (NEPLEHELD , NEPLEREQ).

See OS/390 MVS Data Areas, Vol 3 (IVT-RCWK) for the IXLYNEPL macro.

Notify Exit Routine Processing
Within the notify exit, you can modify the NEPL to indicate the action to be taken.
To commit the changes to the NEPL, you must call the IXLSYNCH service from the
notify exit. The IXLSYNCH service provides a synchronous update of the state
and/or user data associated with a resource. If you modify the NEPL and do not
call the IXLSYNCH service, any changes made in the NEPL are ignored. When all
notify exits are complete, the contention exit is given control with a CEPL reflecting
all changes made in the notify exits.

Changes that the notify exit might make in the NEPL are:

� Update state and/or user data

The notify exit can update the state data through the NEPLOSTATE field and
then issuing the IXLSYNCH macro. Similarly, the user data can be updated
through the NEPLOUDATA field. Updates to these areas will be reflected in the
CEPL fields CEPLEHSTATE and CEPLEHUDATA passed to the contention
exit.

� Release ownership of the resource

The notify exit can release ownership of the resource by setting the
NEPLOSTATE field to the value (in IXLYCON) meaning “free”
(IXLSTATEFREE) and then issuing the IXLSYNCH macro. When the contention
exit receives the updated information in the CEPL, both CEPLEHSTATE and
CEPLERSTATE will be set to “free”. This avoids the confusion that might arise
with a request to obtain a resource, where CEPLEHSTATE is set to “free” and
CEPLERSTATE is shared or exclusive.

When a user relinquishes interest in a resource within the notify exit, any
outstanding requests from the user to alter or release the resource will fail with
an indication that the specified resource is not found.

Upon completion of each invoked notify exit, XES gathers the ownership
information that corresponds to the resource that caused the notify exit to be given
control and applies the changes to the resource request queue. When the results of
all invoked notify exits are available, XES invokes the managing contention exit and
passes to it the modified resource request queue.

Note that a connector can be notified multiple times by the contention exit that is
managing the resource contention. This will occur whenever the contention exit
requests that notify exits again be given control after the results of the previous set

 Chapter 8. Using Lock Services (IXLLOCK) 8-53

of notify exits are presented to the contention exit. This ability to communicate
allows multiple users to negotiate for lock ownership.

Return and Reason Codes
None.

 Programming Considerations
The IXLYNEPL mapping macro provides the format of the notify exit parameter list.
Include that macro as well as IXLYCON in your program.

When the notify exit returns to XES, you can no longer access the data in the
NEPL.

The IXLSYNCH service is the only IXL-type service that should be issued in the
notify exit on behalf of the resource that caused the Notify exit to be called. Other
IXL-requests that are issued on behalf of the same resource might not complete.

Using the Synchronous Update Service (IXLSYNCH)
The IXLSYNCH service allows you to modify information about your ownership of a
resource while running in your notify exit. The following attributes can be modified:

� The ownership state of the resource

The modification can be to change the state from shared to exclusive, from
exclusive to shared, or relinquish ownership.

� The user data associated with the resource

� The record data associated with the resource.

Notify Exit/IXLSYNCH Communication
The notify exit passes the address of the NEPL to IXLSYNCH. The address passed
must be of the actual NEPL originally passed to the notify exit and not a copy of it.

If you do not provide a valid NEPL address, there is a possibility that XES will
terminate abnormally while processing the request. You should establish recovery
procedures for this circumstance.

Addressing the Notify Exit Parameter List
The system schedules a notify exit so that an owner of a resource for which there
is contention can modify information about that ownership. The data to be modified
is contained in the notify exit parameter list (NEPL), the address of which is passed
to the connected user's notify exit. Changes to the information in the NEPL are
recognized by the system only if the IXLSYNCH service is used to record those
changes.

Processing the Modifications
During notify exit processing, you may either release its ownership of a resource or
change its corresponding state, user data, or record data. Once the changes have
been made in the NEPL, you issue IXLSYNCH to notify the system.

The effects of issuing IXLSYNCH for a modification to record data are as follows:

� Update the record data associated with a resource

8-54 OS/390 V2R8.0 MVS Sysplex Services Guide

When IXLSYNCH is issued and the NEPLORTWRITE flag is set to ON (write
record data), XES performs the following update:

– If a record data element is currently associated with the resource, then its
contents will be updated.

– if there is not a record data element currently associated with the resource,
then XES attempts to write to an available record data entry. If an available
record data entry cannot be found, XES rejects the request and provides
error return and reason codes to the requestor.

� Delete the record data associated with a resource

When IXLSYNCH is issued and the NEPLORTDELETE flag is set to ON
(delete record data), XES attempts to delete the record data element currently
associated with the resource. If a record data element does not exist for the
resource, XES ignores the request.

Using the Lock Cleanup and Recovery Service (IXLRT)
As part of the IXLLOCK interface, connected users to a lock structure can specify
64 bytes of record data to be written in the lock structure. This record data can
contain information about the associated resource and its ownership state so that
the resource can be recovered in the event of the owning user's failure. The record
data entry can also have an associated record data type which can be used to
identify the type of data being recorded.

The IXLRT service is the recovery interface to obtain or clean up this recording
information in a lock structure. The recording information is associated with a
connected locking user. Use the IXLRT macro to request the following:

� Create a record data entry and write data to the entry. Optionally, you can
assign a record data type to the newly created record data entry.

� Read the entire set of record data entries in the lock structure or those
associated with a particular record data type.

� Read the entire set of record data entries associated with a particular
connected user or those associated with both a particular connected user and a
particular record data type.

� Read a particular record data entry by entry identifier.

� Delete all record data entries identified by a list of entry identifiers.

� Delete a particular record data entry by entry identifier.

� Delete all record data entries associated with a particular connected user or
those associated with both a particular connected user and a particular record
data type.

� Update a record data entry by entry identifier and optionally, assign a record
data type to the updated record data entry.

 Chapter 8. Using Lock Services (IXLLOCK) 8-55

Identifying the User
XES recognizes a valid connection to a lock structure through the connect token
(CONTOKEN), which the system returns after the successful completion of the
IXLCONN service. To use the IXLRT service, you must specify your valid connect
token on every IXLRT request.

If you do not provide a valid CONTOKEN, there is a possibility that XES will
terminate abnormally while processing the request. You should establish recovery
procedures for this circumstance.

Providing an Answer Area
You must provide an area into which the system places the requested information.
The contents of the answer area are mapped by the IXLYRTAA macro.

Identifying the Record Data
When a record data entry is created, the system identifies the entry with an entry
identifier (ENTRYID). Each record data entry can be referenced by its unique
12-character entry identifier.

If the entry identifier is known, the IXLRT service can be used to either read or
delete a record data entry.

Assigning a Record Data Type to the Record Data
When a record data entry is created, if the system supports the specification of the
type of record data contained in that field, RDATATYPE identifies the value of the
record data type. If omitted, the default value for RDATATYPE is zero.

| Handling an Incompletely Processed IXLRT Request
| An IXLRT READALL, READBYCONN, or DELETEBYCONN request can time out
| before completing all its processing. If that occurs, IXLRT:

| � Sets the IXLRT return code to IXLRETCODEWARNING and the reason code to
| IXLRSNCODETIMEOUT to indicate that processing did not complete.

| � Returns in the RTAAREADCNT field of the answer area, the count of data
| entries read or in the RTAADELCNT field, the count of data entries deleted on
| this IXLRT invocation.

| � Returns in either the RESTOKEN or EXTRESTOKEN field that you specified, a
| restart token to be provided when you reissue the request to continue the
| IXLRT request.

| To complete the IXLRT processing, continue to reissue the IXLRT request,
| specifying the restart token (either RESTOKEN or EXTRESTOKEN) returned on the
| previous request until the return code indicates that all processing has completed.
| Do not change the contents of the restart token as returned by the system.

8-56 OS/390 V2R8.0 MVS Sysplex Services Guide

What You Can Request with IXLRT
The following options are available with the IXLRT service:

� Creating a Record Data Entry

You can use the IXLRT service to create a record data entry in a lock structure
by specifying the CREATENTRY keyword. You specify the record data to be
written with the RDATAVAL keyword. XES attempts to write the 64 bytes of
record data to an available record data entry in the lock structure. If there are
no available record data entries, an error return code is provided.

When creating a record data entry, you optionally can request that the record
data entry be associated with another connected user. Use the TCONNAME
keyword to identify the target connection name of the user with which to
associate the record data entry. If you do not specify a target connection name,
XES associates the record data entry with the user identified by the connect
token provided to IXLRT.

Optionally, when creating a record data entry, you can assign a record data
type to the entry by specifying the RDATATYPE keyword. If omitted, the default
value for RDATATYPE is zero.

When the request to create a record data entry completes successfully, XES
returns the following:

– The unique entry identifier (in the area specified by ENTRYID)

– The number of entries associated with the target connection (in the area
specified by ANSAREA)

– The total number of allocated entries in the record list (in the area specified
by ANSAREA).

Note that using the CREATENTRY option is not the normal way in which to
allocate a record data entry. The record data entry that is created is not
associated with an IXLLOCK OBTAIN or ALTER request, nor with the resource
ownership resulting from such a request.

� Reading All Record Data Entries in a Lock Structure

You can use the IXLRT service to read all record data entries in a lock
structure by specifying the READALL keyword. You must provide a 4096 byte
area, identified by the DATAREA keyword, to contain the output.

Optionally, you can limit the READALL request to read all record data entries of
a particular record data type by specifying the RDATATYPE keyword to identify
the type of record data to be read.

When the READALL request completes successfully, XES returns the following:

– An array of records consisting of the 64 bytes of record data, the
corresponding entry identifier, and the connection identifier of the
associated connected user (in the area specified by DATAREA). The format
of this area is mapped by the IXLYMRTD macro.

– The number of record data entries read (in the area specified by
ANSAREA).

If the request to read all entries completes prematurely, XES provides return
and reason codes to the requestor. XES also returns the following:

 Chapter 8. Using Lock Services (IXLLOCK) 8-57

– The number of reliable record data entries (in the area specified by
ANSAREA)

| – A restart token (in the location specified by the RESTOKEN or
| EXTRESTOKEN keyword), which you can use as input on subsequent

requests in order to continue processing with the next record data entry.
You should issue the request repeatedly until you receive a return code
indicating that there are no more entries to read.

� Reading All Entries in a Lock Structure Associated with a User

You can use the IXLRT service to read all record data entries in a lock
structure associated with a particular connected user by specifying the
READBYCONN keyword. You must provide a 4096 byte area, identified by the
DATAREA keyword, to contain the output.

You can request that the record data entries associated with another connected
user be returned to you. Use the TCONNAME keyword to identify the target
connection name of the user whose record data entries are to be returned. If
you do not specify a target connection name, XES returns the record data
entries associated with the user identified by the connect token provided to
IXLRT. You can specify on a READBYCONN request whether the system is to
process the request using an optimized access method by specifying the
FASTPATH keyword. If using the optimized access method, you must have
serialization that ensures that the record data entries that belong to the target
connection remain unchanged throughout the IXLRT process. For example, you
can use FASTPATH=YES when reading record data belonging to a failing or
failed connector because those entries will remain unchanged.

Optionally, you can limit the READBYCONN request to read those record data
entries associated both with a particular connected user and with a particular
record data type by specifying the RDATATYPE keyword to identify the record
data entries to be read.

When the READBYCONN request completes successfully, XES returns the
following:

– An array of records consisting of the 64 bytes of record data, the
corresponding entry identifier, and the connection identifier of the
associated connected user (in the area specified by DATAREA). The format
of this area is mapped by the IXLYMRTD macro.

– The number of record data entries read (in the area specified by
ANSAREA).

If the request to read all entries completes prematurely, XES provides return
and reason codes to the requestor. XES also returns the following:

– The number of reliable record data entries (in the area specified by
ANSAREA)

| – A restart token (in the location specified by the RESTOKEN or
| EXTRESTOKEN keyword), which you can use as input on subsequent

requests in order to continue processing with the next record data entry.
You should issue the request repeatedly until you receive a return code
indicating that there are no more entries to read.

� Reading an Existing Record Data Entry

8-58 OS/390 V2R8.0 MVS Sysplex Services Guide

You can use the IXLRT service to read an existing record data entry by
specifying the READENTRY keyword. Use the ENTRYID keyword to specify
the entry identifier of the record data entry to be read.

When reading an existing record data entry, you optionally can specify a
verification connection name. XES will verify that the record data entry is
associated with the verification connection name before the request is
attempted. Use the VERCONNAME keyword to identify the verification
connection name of the user with which to associate the record data entry. If
the record data entry is not associated with the verification connection name,
XES cancels the request and provides an error return code to the requestor. If
you do not specify a verification connection name, XES attempts the read
without verification.

When the request to read a record data entry completes successfully, XES
returns the following:

– A 64 byte output area containing the contents of the record data entry
requested (in the area specified by RDATAVAL)

– The total number of entries associated with the user whose entry was read
(in the area specified by ANSAREA)

– The total number of allocated entries in the record list (in the area specified
by ANSAREA).

If the record data entry specified by ENTRYID is not allocated, XES provides
an error return code to the requestor.

� Deleting All Entries by a List of Entry Identifiers

You can use the IXLRT service to delete a set of record data entries by
specifying the DELETENTRYLST keyword. Use the ENTRYIDLIST keyword to
specify the 4096 byte area containing a list of entry identifiers corresponding to
the record data entries to be deleted. Specify the list as 12-byte elements
starting at offset zero in the area.

You also must use the FIRSTELEM and LASTELEM keywords to specify the
range of entry identifiers within the ENTRYIDLIST. FIRSTELEM specifies the
first element in the list of entry identifiers to be processed; LASTELEM specifies
the index of the last element in the list to be processed. The value of either
index must be in the range of 1 to 341, inclusive. The value of LASTELEM
must be greater than or equal to the value of FIRSTELEM.

If an element specified in the entry identifier list does not exist, XES halts
processing and returns the index of the non-existent element to the connected
user in the RTAA. To continue processing the list, the connected user can
update the FIRSTELEM keyword with the incremented index of the starting
point in the entry identifier list and reissue the DELETENTRYLIST request.

If the request to delete a set of entries completes prematurely, XES provides
return and reason codes to the requestor. XES also returns the followng:

– The number of entries deleted thus far (in the area specified by ANSAREA)

– The value of the first unprocessed ENTRYIDLIST index (in the area
specified by ANSAREA). You can use this value for FIRSTELEM when
reissuing the request to delete the remaining unprocessed elements in the
entryid list.

 Chapter 8. Using Lock Services (IXLLOCK) 8-59

When the request to delete a set of record data entries completes successfully,
XES returns the following:

– The number of entries deleted by this request (in the area specified by
ANSAREA).

� Deleting an Existing Record Data Entry

You can use the IXLRT service to delete an existing record data entry by
specifying the DELETENTRY keyword. Use the ENTRYID keyword to specify
the record data entry to be deleted.

When deleting an existing record data entry, you optionally can specify a
verification connection name. XES will verify that the record data entry is
associated with the verification connection name before the request is
attempted. Use the VERCONNAME keyword to identify the verification
connection name of the user with which to associate the record data entry. If
the record data entry is not associated with the verification connection name,
XES cancels the request and provides an error return code to the requestor. If
you do not specify a verification connection name, XES attempts the deletion
without verification.

When the request to delete a record data entry completes successfully, XES
returns the following:

– The total number of remaining entries associated with the user whose entry
was deleted (in the area specified by ANSAREA)

– The total number of remaining allocated entries in the record list (in the
area specified by ANSAREA)

If the record data entry specified by ENTRYID is not allocated, XES provides
an error return code to the requestor.

� Deleting All Entries in a Lock Structure Associated with a User

You can use the IXLRT service to delete all record data entries in a lock
structure that are associated with a particular user by specifying the
DELETEBYCONN keyword

You can request that the record data entries associated with another connected
user be deleted. Use the TCONNAME keyword to identify the target connection
name of the user whose record data entries are to be deleted. If you do not
specify a target connection name, XES deletes the record data entries
associated with the user identified by the connect token provided to IXLRT.
Optionally, you can limit the DELETEBYCONN request to delete those record
data entries associated both with a particular connected user and with a
particular record data type by specifying the RDATATYPE keyword to identify
the record data entries to be deleted.

When the DELETEBYCONN request completes successfully, XES returns the
following:

– The number of record data entries deleted (in the area specified by
ANSAREA)

If the request to delete all entries completes prematurely, XES provides return
and reason codes to the requestor. XES also returns the following:

– The number of record data entries deleted (in the area specified by
ANSAREA).

8-60 OS/390 V2R8.0 MVS Sysplex Services Guide

| – A restart token (in the location specified by the RESTOKEN or
| EXTRESTOKEN keyword), which you can use as input on subsequent

requests in order to continue processing with the next record data entry.
You should issue the request repeatedly until you receive a return code
indicating that there are no more entries to delete.

� Updating an Existing Record Data Entry

You can use the IXLRT service to update an existing record data entry by
specifying the UPDATENTRY keyword. Use the ENTRYID keyword to specify
the record data entry to be updated. Specify the record data to be written with
the RDATAVAL keyword, which identifies the 64 byte area containing the data
to be written. Use the RDATATYPE keyword to specify the record data type
that is to be updated. If omitted, the default value for RDATATYPE is zero.

When updating a record data entry, you optionally can specify a verification
connection name. XES will verify that the record data entry is associated with
the verification connection name before the request is attempted. Use the
VERCONNAME keyword to identify the verification connection name of the user
with which to associate the record data entry. If the record data entry is not
associated with the verification connection name, XES cancels the request and
provides an error return code to the requestor. If you do not specify a
verification connection name, XES attempts the update without verification.

When the request to create a record data entry completes successfully, XES
returns the following:

– The total number of entries associated with the user whose entry was
updated (in the area specified by ANSAREA)

– The total number of allocated entries in the record list (in the area specified
by ANSAREA)

If the record data entry specified by ENTRYID is not allocated, XES provides
an error return code to the requestor.

 Chapter 8. Using Lock Services (IXLLOCK) 8-61

8-62 OS/390 V2R8.0 MVS Sysplex Services Guide

Chapter 9. Supplementary List, Lock, and Cache Services

Using the IXLFCOMP Macro
 Note

The following information assumes that you are familiar with either the IXLLIST
macro or the IXLCACHE macro and that you are using either a list or cache
structure. For more information about the IXLLIST macro, see Chapter 7,
“Using List Services (IXLLIST)” on page 7-1 For more information about the
IXLCACHE macro, see Chapter 6, “Using Cache Services (IXLCACHE)” on
page 6-1.

If you are an IXLLIST or IXLCACHE macro user who specified
MODE=ASYNCTOKEN or specified MODE=SYNCTOKEN but had the request
processed asynchronously, you can use the IXLFCOMP macro to do either of the
following:

� Test whether your list or cache request has completed (OPTYPE=TEST) .
Choose this option if your task cannot be suspended or your program can
perform other work while the list or cache request is being processed.
IXLFCOMP's return code indicates whether the request has completed.

If the request has already completed, control returns to you so you can check
the results of the request in the output areas you specified on the list or cache
request.

� Have your task suspended until your list or cache request completes
(OPTYPE=COMPLETE). Choose this option if your task can be suspended and
you have no other work to perform while the list or cache request is being
processed.

Once the request completes or if it has already completed when you issued
IXLFCOMP, control returns to you so you can check the results of the request
in the output areas you specified on the list or cache request.

When you issue the IXLFCOMP macro, you identify the target request using the
request token returned from the IXLLIST or IXLCACHE invocation.

Before accessing the answer area information returned from an IXLLIST or
IXLCACHE request, be sure to read:

� “Determining if the Answer Area is Valid” on page 7-62, which describes the
circumstances under which the answer area information returned by IXLLIST is
not valid.

� “Determining Valid Information in the Answer Area” on page 6-47, which
describes the circumstances under which the answer area information returned
by IXLCACHE is not valid.

 Copyright IBM Corp. 1994, 1999 9-1

Issuing IXLFCOMP During Recovery Processing
If you issue the IXLFCOMP macro with OPTYPE=COMPLETE for an IXLLIST or
IXLCACHE request that has already been purged (IXLPURGE macro), your task
will not be suspended because the IXLLIST or IXLCACHE request has already
terminated and the processing results are already available to you.

If your application's resource manager issues the IXLFCOMP macro to determine
the results of an IXLLIST or IXLCACHE request issued by a connected user whose
task has been terminated, you must ensure that IXLFCOMP processing has
completed before you return control to RTM. Once control returns to RTM, the
system performs its own clean-up and deletes any information relating to the
terminated user's IXLLIST or IXLCACHE request.

Purging a Coupling Facility Operation
The IXLPURGE macro allows you to complete IXLCACHE, IXLLIST, and IXLRT
operations in progress to a coupling facility and to purge operations that have not
yet processed. The operations to be purged must have been invoked on the same
system on which IXLPURGE is issued. Use IXLPURGE to complete or purge
outstanding XES operations:

� For a specific task.

� For a specific address space.

� For a specific connector.

� For one or more requests by request ID (REQID) associated with a specific
connector.

When you invoke IXLPURGE, XES completes all pertinent operations or purges all
those operations waiting to be completed. When IXLPURGE completes, all
XES-established storage binds are broken. Request notification completion for
purged requests is scheduled asynchronously, if the requestor is able to receive the
completion information. If the requestor is no longer defined, then it cannot receive
the completion information.

Handling Operations in Progress
Each operation in progress will be forced to completion and the completion
information will be returned to the requestor using the notification mechanism
specified by the requestor.

Handling Operations Yet to be Processed
Each operation that is waiting to be processed will be purged and a return code
indicating that the operation has not been completed will be returned to the
requestor using the notification mechanism specified by the requestor.

 Timing Considerations
IXLPURGE detects only those outstanding IXLCACHE, IXLLIST, and IXLRT
operations at the time of the IXLPURGE invocation. IXLPURGE may not detect and
does not inhibit XES operations started subsequent to the IXLPURGE invocation.

9-2 OS/390 V2R8.0 MVS Sysplex Services Guide

Using the IXLVECTR Macro
The IXLVECTR macro allows you to perform the following functions on a list
notification vector or local cache vector associated with a coupling facility structure:

� Test a list notification or a local cache vector entry

� Load and test a range of list notification or local cache vector entries

� Modify the size of a list notification vector or local cache vector.

Note: The following information assumes that you are familiar with either the
IXLLIST macro or the IXLCACHE macro and that you are using either a list
or cache structure. For more information about the IXLLIST macro, see
Chapter 7, “Using List Services (IXLLIST)” on page 7-1. For more
information about the IXLCACHE macro, see Chapter 6, “Using Cache
Services (IXLCACHE)” on page 6-1.

List Notification Vector
When you issue the IXLVECTR macro, you identify your list notification vector
using the vector token returned in the connect answer area (mapped by the
CONAVECTORTOKEN field of the IXLYCONA macro) when you issued the
IXLCONN macro to connect to the list structure. You receive a vector token from
IXLCONN only if you coded the VECTORLEN parameter.

If the structure was rebuilt, be sure to use the vector token returned from the
IXLCONN REBUILD request instead of the original vector token.

Changing the Number of Entries in a List Notification Vector
The MODIFYVECTORSIZE request allows you to change the number of entries in
your list notification vector so you can monitor a different number of objects in the
list structure.

Reducing the size of your list notification vector when it is larger than necessary
frees storage for the list notification vectors of other users on your system.

Use the VECTORLEN parameter to indicate the new number of entries you would
like your list notification vector to contain.

The number of vector entries must be a multiple of 32. If the value you specify is
not a multiple of 32, the system rounds the value up to a multiple of 32.

The number of entries the system actually assigns to your list notification vector is
returned to you as output through the ACTUALVECLEN parameter.

� Decreasing the Number of Entries : If you request a decrease in the number
of entries in your list notification vector, your request will always be satisfied.

When a list notification vector's size is decreased, the number of entries is
reduced by removing entries starting with the highest number. The remaining
entries are unchanged and retain their original values (empty or non-empty).

Before eliminating any entries, you must ensure that the entries that will be
deleted are not being used to monitor lists or an event queue.

If multiple users could be accessing vector entries concurrently, you should
obtain exclusive serialized access to the vector before decreasing its size.
Otherwise, users that issue the TESTLISTSTATE or LTVECENTRIES request

 Chapter 9. Supplementary List, Lock, and Cache Services 9-3

must be prepared to handle a return code of IXLRETCODEINDXINVALID,
indicating that the specified vector index is no longer valid.

� Increasing the Number of Entries : If you request an increase in the number
of entries in your list notification vector and the system is unable to obtain
sufficient storage to satisfy your request, the new number of entries might be
unchanged or smaller than you requested. In this case, the number of entries
returned in ACTUALVECLEN will be smaller than the requested number and
you will receive return code IXLRETCODELESSTHAN to inform you of the
result.

When a list notification vector's size is increased, the number of entries is
increased by adding additional entries after the current highest-numbered entry.
Existing entries are unchanged and retain their original values (empty or
non-empty). New entries are initialized to the non-empty state.

Testing Whether a List or Event Queue Is Empty
The TESTLISTSTATE request allows you to test the entry representing a particular
list or event queue to determine whether that list or event queue is empty. List
notification vector updates are performed asynchronously by the system, so a
vector entry might not show a particular list or event queue state change at the time
you check it. However, the system always performs the change in the vector (and
the notification, if applicable). The system also ensures that, if the list or event
queue transitions to non-empty and then back to empty and so on multiple times,
the final state reflected in the vector will match the final state of the list or event
queue. Individual transitions, however, might not be applied to the vector if
subsequent changes supersede them. For example, if the initial state of the vector
entry indicates that the list or event queue is empty and then the list or event queue
transitions to non-empty and then becomes empty again in a short period of time, it
is not guaranteed that the interim non-empty state will be reflected in the vector or
that notification will occur through your list transition exit. However the final state
(empty, in this case) is guaranteed to be correct.

To use the TESTLISTSTATE request, you must have registered your interest in
monitoring the particular list and/or event queue. IXLVECTR assumes you have
previously issued the IXLLIST MONITOR_LIST request or the IXLLIST
MONITOR_EVENTQ request and have associated that list or event queue with the
specified vector index. The system does not check whether you have done this.

Testing Whether a Range of Lists is Empty
The LTVECENTRIES request allows you to test up to 32 consecutive vector entries
to determine whether their associated event queue or lists are empty. The output
from this request is a bit string with one bit per vector entry, starting with the vector
entry you specify as the starting vector entry number and continuing until 32 bits
are loaded. Vector entries range from 0 to n-1, where n is the number of entries in
the vector.

The bits in the bit string are interpreted as follows:

0 The vector entry corresponding to this bit position indicates that the monitored
list or event queue is not empty.

1 The vector entry corresponding to this bit position indicates that the monitored
list or event queue is empty.

9-4 OS/390 V2R8.0 MVS Sysplex Services Guide

Local Cache Vector
When you issue the IXLVECTR macro, you identify your local cache vector using
the vector token returned in the connect answer area (mapped by the
CONAVECTORTOKEN field of the IXLYCONA macro) when you issued the
IXLCONN macro to connect to the cache structure. A local cache vector is required
with the use of a cache structure.

If the structure was rebuilt, be sure to use the vector token returned from the
IXLCONN REBUILD request instead of the original vector token.

Changing the Number of Entries in a Local Cache Vector
The MODIFYVECTORSIZE request allows you to change the number of entries in
your local cache vector so you can maintain concurrent registered interest in a
different number of data items.

Reducing the size of your local cache vector when it is larger than necessary frees
storage for the local cache vectors of other users on your system.

The number of vector entries must be a multiple of 32. If the value you specify is
not a multiple of 32, the system rounds the value up to a multiple of 32.

Use the VECTORLEN parameter to indicate the new number of entries you would
like your local cache vector to contain. The number of entries the system actually
assigns to your local cache vector is returned to you as output through the
ACTUALVECLEN parameter.

� Decreasing the Number of Entries : If you request a decrease in the number
of entries in your local cache vector, your request will always be satisfied.

When a local cache vector's size is decreased, the number of entries is
reduced by removing entries starting with the highest number. The remaining
entries are unchanged and retain their original values (valid or not valid).

Before eliminating any entries, you must ensure that the entries that will be
deleted are not associated with any data items.

If multiple users could be accessing vector entries concurrently, you should
obtain exclusive serialized access to the vector before decreasing its size.
Otherwise, users that issue the TESTLOCALCACHE or LTVECENTRIES
request must be prepared to handle a return code of
IXLRETCODEINDXINVALID, indicating that the specified vector index is no
longer valid.

� Increasing the Number of Entries : If you request an increase in the number
of entries in your local cache vector and the system is unable to obtain
sufficient storage to satisfy your request, the new number of entries could be
unchanged or smaller than what you requested. In this case, the value returned
in ACTUALVECLEN will be smaller than the requested number of entries and
you will receive return code IXLRETCODELESSTHAN to inform you of the
result.

When a local cache vector's size is increased, the number of entries is
increased by adding additional entries after the current highest-numbered entry.
Existing entries are unchanged and retain their original values (valid or invalid).
New entries are initialized to the invalid state.

 Chapter 9. Supplementary List, Lock, and Cache Services 9-5

Checking the Validity of Data Items in a Local Cache Buffer
The TESTLOCALCACHE and LTVECENTRIES requests allows you to determine
whether data items in your local cache buffer are valid. A data item is valid when
the user has registered interest in the data item, and no other user of the structure
has caused that item to be invalidated.

The TESTLOCALCACHE request allows you to check a single local cache vector
entry to determine the validity of a single data item. The LTVECENTRIES request
allows you to check 32 consecutive local cache vector entries to determine the
validity of their associated data items.

To use the TESTLOCALCACHE or LTVECENTRIES request, you must establish a
serialization protocol to be followed by all programs with which you are sharing
access to the data items. Without adhering to such a protocol, you cannot prevent
a data item you are accessing from being rendered invalid by another user at any
time. “Using the TESTLOCALCACHE and LTVECENTRIES Requests with a
Serialization Protocol” on page 9-7 provides information about possible serialization
protocols.

To use the TESTLOCALCACHE request with the VECTORINDEX parameter or to
use the LTVECENTRIES request, you must have previously associated each
specified vector entry with a data item of interest (using the IXLCACHE macro.)
IXLVECTR assumes you have associated any specified vector index with a data
item in the cache structure. It does not do any checking to enforce this.

Vector entries range from 0 to n-1, where n is the number of entries in the vector.

There are several options for checking the validity of data items. These are
described below. “Using the TESTLOCALCACHE and LTVECENTRIES Requests
with a Serialization Protocol” on page 9-7 shows how these options are used
together.

The TESTLOCALCACHE request has the following variations:

� TESTLOCALCACHE with VALIDATE=YES and VECTORINDEX omitted, which
requests that the system validate connectivity to the coupling facility

� TESTLOCALCACHE with VALIDATE=YES and VECTORINDEX specified,
which requests that the system validate connectivity to the coupling facility and
check the validity of a particular data item

� TESTLOCALCACHE with VALIDATE=NO and VECTORINDEX specified, which
requests that the system check the validity of a particular data item without
validating connectivity to the coupling facility.

The LTVECENTRIES request allows you to test a range of 32 consecutive local
cache vector entries to determine the validity of their associated data items. The
output from this request is a bit string with one bit per vector entry, starting with the
vector entry you specify as the starting vector entry number and continuing until 32
bits are loaded.

The bits in the bit string are interpreted as follows:

0 The vector entry corresponding to this bit position indicates that the local
cache buffer is not valid

9-6 OS/390 V2R8.0 MVS Sysplex Services Guide

1 The vector entry corresponding to this bit position indicates that the local
cache buffer is valid.

Note: The LTVECENTRIES request does not validate connectivity to the coupling
facility.

� Validating Connectivity to the Coupling Facility :

Use the TESTLOCALCACHE request with VALIDATE=YES and the
VECTORINDEX parameter omitted to determine whether connectivity between
your system and the coupling facility was temporarily interrupted (which might
have caused the loss of one or more cross-invalidate signals.) Specifying
VALIDATE=YES allows you to determine if an interruption has prevented any
previous cross-invalidate requests from being performed against your local
cache vector.

If connectivity has been maintained, your local cache vector will reflect all
previous cross-invalidate requests because they are performed synchronously.
If connectivity has been interrupted, all entries in the local cache vector will be
invalidated to ensure no data items are incorrectly marked as valid.

� Validating Connectivity to the Coupling Facility and Checking the Validity
of a Data Item :

Use the TESTLOCALCACHE request with VALIDATE=YES and the
VECTORINDEX parameter specified to do both of the following:

– Validate connectivity between your system and the coupling facility
– Determine the validity of a data item in your local cache buffer.

You do not get a specific indication of whether connectivity to your local cache
vector has been maintained. However, the system invalidates all entries in a
local cache vector when it detects that connectivity between the system and the
coupling facility has been temporarily interrupted. If the data item is shown as
valid you can also be assured that the local cache vector has maintained
connectivity with the coupling facility.

� Checking the Validity of Data Items without Validating Connectivity to the
Coupling Facility :

You should only check the validity of data items without validating connectivity
to the coupling facility after you have already issued TESTLOCALCACHE with
VALIDATE=YES under the same serialization as this request.

Use the TESTLOCALCACHE request with VALIDATE=NO and the
VECTORINDEX parameter specified to determine the validity of a single data
item in your local cache buffer. Use the LTVECENTRIES request to test 32
consecutive local cache vector entries to determine the validity of their
associated data items. These options do not involve checking whether there
has been an interruption in connectivity between the system and the coupling
facility.

Using the TESTLOCALCACHE and LTVECENTRIES Requests with a
Serialization Protocol: To guarantee that the data item in your local cache is
valid and will remain so while you reference or update it, you must ensure the
following:

 Chapter 9. Supplementary List, Lock, and Cache Services 9-7

1. All previous cross-invalidate requests have been received and recorded in your
local cache vector (verified by issuing the IXLVECTR macro with
TESTLOCALCACHE and VALIDATE=YES)

2. No new cross-invalidate requests can be issued for the data item while you are
using it (because you have serialized access to the data items.)

If these two conditions are met, you can check the vector index associated with the
data item of interest and be sure that it is correct and accurate.

Figure 9-1 on page 9-9 shows a sample serialization protocol for a single data
item. The flowchart assumes that the data item exists in the user's local cache.

Serialization for Multiple Data Items: Figure 9-2 on page 9-10 shows a sample
serialization protocol for multiple data items comprising a single resource, for
example, a set of data blocks functioning as a unit and represented by several
entries in the local cache vector. The flowchart assumes that the data items are in
the user's local cache. In this case, one lock provides serialization for multiple data
items, each represented by a separate vector index.

The flowchart uses the TESTLOCALCACHE request to test each vector index
individually. If the vector indexes are consecutive, you can issue the
LTVECENTRIES request once instead of issuing the TESTLOCALCACHE request
multiple times. Figure 9-3 on page 9-11 illustrates this process.

Because IXLVECTR's performance is significantly slower with VALIDATE=YES, you
should validate connectivity between the coupling facility and your local cache
vector either when you check the validity of the first data item (TESTLOCALCACHE
with VALIDATE=YES and VECTORINDEX specified) or before checking the validity
of any of the data items (TESTLOCALCACHE with VALIDATE=YES and
VECTORINDEX omitted). After this, you can perform the validity checks on the
other data items either using TESTLOCALCACHE with VALIDATE=NO or using
LTVECENTRIES This method lets you avoid having to issue IXLVECTR with
TESTLOCALCACHE and VALIDATE=YES multiple times.

To use this approach, you must obtain the lock for the group of data items before
you issue TESTLOCALCACHE with VALIDATE=YES and continue to hold the lock
while you issue either TESTLOCALCACHE with VALIDATE=NO or
LTVECENTRIES. Since other users cannot cross-invalidate a data item in the
group while you hold the lock, you need only check for connectivity interruptions
(VALIDATE=YES) on the first invocation of IXLVECTR for that group of data items.

9-8 OS/390 V2R8.0 MVS Sysplex Services Guide

SERIALIZE ON
DATA ITEM

NO YES

USE DATA ITEM

COPY IN LOCAL

CACHE BUFFER

OBTAIN NEW

COPY OF DATA

ITEM

START

ISSUE:

IXLVECTR TESTLOCALCACHE,

VALIDATE = YES,

VECTORINDEX = V

PERFORM CROSS-

INVALIDATE OPERATION,

IF APPLICABLE

IS

DATA ITEM
VALID

PROCESS DATA

ITEM

RELEASE

SERIALIZATION

END

Figure 9-1. Sample Serialization Protocol for Single Data Item

 Chapter 9. Supplementary List, Lock, and Cache Services 9-9

START

SERIALIZE ON

DATA ITEMS

NO

NO

NO YES

YES

YES
IS

LOCAL CACHE
VECTOR

VALID

IS
DATA ITEM

VALID

MORE
DATA ITEMS

TO PROCESS

OBTAIN NEW

COPY OF DATA ITEM

PROCESS DATA

ITEM

RELEASE

SERIALIZATION

END

PERFORM CROSS-INVALIDATE

OPERATION, IF APPLICABLE

USE DATA ITEM COPY

IN LOCAL CACHE BUFFER

ISSUE:

IXLVECTR TESTLOCALCACHE,

VALIDATE=YES

ISSUE:

IXLVECTR TESTLOCALCACHE,

VALIDATE = NO,

VECTORINDEX = V

Figure 9-2. Sample Serialization Protocol for Multiple Data Items

9-10 OS/390 V2R8.0 MVS Sysplex Services Guide

START

SERIALIZE ON

DATA ITEMS

ISSUE:

IXLVECTR TESTLOCALCACHE,

VALIDATE = YES

NO

NO

NO

YES

YES

YES

ISSUE:

IXLVECTR LTVECENTRIES

VECTORINDEX = v,BITSTRING=b...

IS
LOCAL CACHE

VECTOR
VALID

MORE DATA

ITEMS TO

CHECK IN

RANGE

OBTAIN NEW

COPIES OF

DATA ITEMS

TEST
BITSTRING

TO SEE IF DATA
IS VALID

PROCESS DATA

ITEMS

RELEASE

SERIALIZATION

END

PERFORM CROSS-INVALIDATE

OPERATIONS, OR UPDATE

DATA, IF APPLICABLE

USE DATA ITEM COPY

IN LOCAL CACHE BUFFER

OBTAIN NEW COPY

OF DATA ITEM

Figure 9-3. Sample Serialization Protocol for a Range of Data Items

 Chapter 9. Supplementary List, Lock, and Cache Services 9-11

9-12 OS/390 V2R8.0 MVS Sysplex Services Guide

Chapter 10. Coupling Facility Accounting and Measuring
Services

There are several XCF and XES services that you can use to monitor performance
and system utilization. The major differences among IXCMG, IXCQUERY, and
IXLMG with regard to coupling facility resources are reviewed here.

� Use IXCMG to gather information about the XCF resources in use by the
system on which IXCMG is invoked. You can collect detailed information about
XCF signalling paths and/or messages pending delivery, as well as summary
information about message traffic between systems in the sysplex, and/or
message traffic between XCF group members.

If you are using coupling facility structures for XCF signalling, then IXCMG will
return information about XCF's use of those structures for signalling.

� Use IXCQUERY to receive general or detailed information about coupling
facilities and/or coupling facility structures defined in the active CFRM policy.
The coupling facility information includes that which you would find in the
CFRM policy, such as coupling facility identifier, size of the dump space, the
number of systems connected along with each system's identifier, and structure
names and structure allocation status. Similarly, structure information includes
that which you would find in the structure definition section of a CFRM policy,
having to do with structure name, size, and preference and exclusion lists.

� Use IXLMG to gather system-related information, such as configuration data,
usage statistics, and subchannel utilization and coupling facility-related
information, such as coupling facility structure limits, structure controls, cast-out
class data, and storage class data.

Each of these services has its own place in helping to manage your sysplex with a
coupling facility. Information about IXLMG follows. See “Obtaining Tuning and
Capacity Planning Information” on page 2-120 for additional information about
IXCMG and “Using the IXCQUERY Macro” on page 2-110 for IXCQUERY.

 Using IXLMG
Installations that use a coupling facility need data for capacity planning and for
tuning. RMF provides this type of information for each coupling facility attached to
the sysplex. The data gathered can be used to monitor how effectively the coupling
facility is being utilized and to indicate possible performance constraints in a
sysplex environment. See RMF User's Guide for a description of the RMF Coupling
Facility Activity Report.

The IXLMG macro is the mechanism by which authorized routines can collect
information from individual systems and from coupling facilities. The programs that
use IXLMG may be, but are not required to be, connectors to a structure in the
coupling facility. The information provided by the IXLMG macro is mapped by the
IXLYAMDA macro.

 Copyright IBM Corp. 1994, 1999 10-1

Specifying the Information Level
The Accounting and Measurement Data Area (IXLYAMDA) supports several levels
of information that IXLMG returns. Certain coupling facility and structure requests
might provide data that was not returned when the IXLMG service was first made
available. For these request types, you can specify the level of information you
want with the AMDALEVEL parameter on IXLMG. The AMDALEVEL parameter is
available with version 1 of the IXLMG macro. The system returns base AMDA
information when you specify AMDALEVEL=0 on your request; the system returns
level-1 AMDA information when you specify AMDALEVEL=1 on your request. You
should be aware of the type of output that you are requesting and be able to
process it correctly. IBM recommends that you use the level-1 service of
IXLYAMDA in case additional new data is returned by the IXLYAMDA service. Note
that the level-1 IXLYAMDA records are larger than the level-0 IXLYAMDA records.

The list shown in “Types of Information Available” lists the IXLYAMDA mappings
that support both the base level (level=0) and the level-1 level of IXLYAMDA
information. Note that a structure name to which a 1 is appended will contain all the
information contained in the original structure plus, optionally, additional information
pertaining to the information request type. See the IXLYAMDA macro in OS/390
MVS Data Areas, Vol 3 (IVT-RCWK) for a description of the information returned.

Types of Information Available
With the IXLMG macro, you specify whether you want usage information reported
by facility (either all coupling facilities or a particular coupling facility) or for a single
named coupling facility structure. You can also request control information for a
structure and measurement information for each coupling facility. Control and
measurement information, when requested, is retrieved from the coupling facility
itself.

The IXLYAMDA macro provides the following mappings related to the type of
information requested:

IXLYAMDAREA Data area that contains header information used to
determine the scope of data returned by IXLMG. The
information includes:

� The total length of the output data area needed to
contain all the requested information. This length
includes the area for the records that were already
returned on this call.

� The total number of entries of all kinds included in
the record.

� Version number of the IXLYAMDA information.

IXLYAMDHD Header record returned for all entry mapping types. The
information includes:

� Type of entry
� Length of entry
� Address of next entry.

IXLYAMDCF and IXLYAMDCF1
Coupling facility usage and control information, which
includes:

10-2 OS/390 V2R8.0 MVS Sysplex Services Guide

 � Configuration data
� Accounting and measurement data

 � Control information

IXLYAMDSLL and IXLYAMDSLL1
List structure limit information

IXLYAMDSLC and IXLYAMDSLC1
Cache structure limit information

IXLYAMDCFMI Coupling facility capacity measurement information entry
(the header to set up an array of elements mapped by
IXLYAMDCFMINFO)

IXLYAMDCFMINFO Coupling facility capacity measurement information
element

IXLYAMDSTRL and IXLYAMDSTRL1
List structure usage and control information. Following
the header information are:

 � Configuration data
� List measurement data
� List control structure information

IXLYAMDSTRC and IXLYAMDSTRC1
Cache structure usage and control information. Following
the header information are:

 � Configuration data
� Cache measurement data

 � Control information

IXLYAMDSCSC and IXLYAMDSCSC1
Storage class information (cache structure only)

IXLYAMDSCOC Cast-out class information (cache structure only) (the
header to set up an array of elements mapped by
IXLYAMDCFMINFO).

IXLYAMDSCOCSTATS Cast-out class information element

IXLYAMDSC and IXLYAMDSC1
Subchannel information

If the specified structure is in the process of structure rebuild, IXLMG returns
information for both the old structure and the new structure.

The layout of the IXLYAMDA information is depicted in Figure 10-1 on page 10-4.
If you specified AMDALEVEL=1 on the IXLMG macro, you will receive level-1
IXLYAMDA records.

For each coupling facility specified on the IXLMG request, the following information
could potentially be returned. Note that the symbol “...” indicates that there could be
more than one of that type of entry. For example, IXLMG could return a AMDSTRL
entry for each eligible list structure in a coupling facility.

 Chapter 10. Coupling Facility Accounting and Measuring Services 10-3

AMDAREA
AMDCF

AMDSTRL AMDSTRC
AMDSLCAMDSLL

AMDSCSC AMDSCOC

AMDCFMI AMDSCOCSTATS
arrayAMDSC

AMDCFMINFO
array

Figure 10-1. Layout of IXLYAMDA

For a complete description of IXLYAMDA, see OS/390 MVS Data Areas, Vol 3
(IVT-RCWK).

Defining an Output Area
When you code the IXLMG macro, you specify where you want the information
placed (with the DATAAREA parameter) and the length of the area (with the
DATALEN parameter). If the size of the area is too small to contain the requested
measurement data, MVS returns as much data as can fit in the area you provided.
MVS also sets a reason code (IXLRSNCODEMOREDATA) to indicate that more
data is available. The proper size for the data area is returned in the IXLYAMDA
header. Note that if you provide a larger area for the requested data, subsequent
invocations of IXLMG return the latest information from the coupling facility, which
may differ slightly from the original data returned when the area was too small.

Handling the IXLRSNCODEMOREDATA Reason Code

The IXLRSNCODEMOREDATA reason code indicates that the DATAAREA you
provided is too small to contain all the requested data. You can reissue the
IXLMG macro using the value returned in IXLYAMDAAREA_TLEN (total length

10-4 OS/390 V2R8.0 MVS Sysplex Services Guide

of output data area needed to contain all the requested information) as the
length of your data area. However, as noted above, the IXLMG information
returned is a snapshot of the current environment — which might change
between one invocation of IXLMG and the next. (For example, additional
coupling facilities might have been added or removed from the sysplex, thus
changing the number of coupling facility records in the output data area.) You
must provide code to handle the IXLRSNCODEMOREDATA reason code in
case the length of the record(s) you are requesting ever changes.

Retrieving Information from the Output Data Area

The output data area mapped by IXLYAMDA can contain one or more
instances of many different types of records, depending on your IXLMG
request. To help you reference each of the record types, the data area contains
fields indicating the length of the record type and pointers to the next entry for
the same record type. You must use these fields to index through the data area
in case the length of the record(s) you are requesting ever changes. Using the
DSECT length of a particular record type is not recommended because the
length might have been changed since your program was assembled.

 Programming Considerations
Depending on the type of information requested, IXLMG might reference the CFRM
active policy. Multiple IXLMG requests could result in a large amount of I/O to the
CFRM couple data set, which in turn, could generate a noticeable loss of system
performance. When designing an application such as a sysplex monitoring tool that
uses the IXLMG macro, be aware of the performance effect of multiple macro
invocations.

Specifying the Information To Be Returned by IXLMG
The amount of information that IXLMG returns depends on:

� Whether the system on which IXLMG is invoked has a configured connection to
the coupling facility for which information is requested, and

� Whether the coupling facility contains one or more structures with active XES
connectors on the system from which IXLMG is invoked.

You can specify that you want either coupling facility information (with or without
the associated statistics gathered from the coupling facility) or coupling facility
structure information.

Coupling Facility Information
You can request information about all coupling facilities that are attached to the
system on which the IXLMG macro is issued or about a specific coupling facility
that is connected to the system on which IXLMG is issued. If you specify a coupling
facility by name (CFNAME), the data returned includes information about all
allocated structures within the coupling facility as well as the coupling facility
information.

The statistics gathered from the coupling facility (requested by specifying the
HWSTATISTICS=YES parameter) include structure control information and coupling
facility measurement data. If you do not want this information, you must explicitly
code HWSTATISTICS=NO. If you want the statistics gathered from the coupling
facility to include only the coupling facility measurement data but not the structure
control information, code HWSTATISTICS=CF.

 Chapter 10. Coupling Facility Accounting and Measuring Services 10-5

Note that the number of accesses to the coupling facillity for data gathering might
degrade a system's performance. If you need primarily coupling facility statistics as
opposed to individual structure statistics, you should use HWSTATISTICS=CF,
which will generate fewer accesses to the coupling facility than
HWSTATISTICS=YES.

The coupling facility information returned includes:

 � If HWSTATISTICS=YES

– AMDCF and AMDCF1 include configuration data, accounting and
measurement data, and control information.

– AMDSLL and AMDSLL1 (list structure limits) and AMDSLC and AMDSLC1
(cache structure limits) are returned.

– AMDSTRL and AMDSTRL1 (list structure entry) and AMDSTRC and
AMDSTRC1 (cache structure entry) are returned for all structures in the
coupling facility regardless of whether there's an active XES connection to
that structure on this system. AMDSTRL, AMDSTRL1, AMDSTRC, and
AMDSTRC1 include configuration data, measurement data, and control
information for all structures.

Structure usage information in AMDSTRL, AMDSTRL1, AMDSTRC, and
AMDSTRC1 is available only for structures that have an active XES
connection to that structure on this system.

– AMDSC and AMDSC1 (subchannel information) include configuration and
contention data.

– AMDCFMI and AMDCFMINFO (measurement information array) includes
measurement information elements.

 � If HWSTATISTICS=NO

– AMDCF and AMDCF1 include configuration data, accounting and
measurement data, and control information.

– AMDSLL and AMDSLL1 (list structure limits) and AMDSLC and AMDSLC1
(cache structure limits) are returned.

– AMDSTRL and AMDSTRL1 (list structure entry) and AMDSTRC and
AMDSTRC1 (cache structure entry) are returned only for structures that
have an active XES connection to that structure on this system. AMDSTRL,
AMDSTRL1, AMDSTRC, and AMDSTRC1 include configuration data and
measurement data.

AMDSTRL, AMDSTRL1, AMDSTRC, and AMDSTRC1 do not contain
structure control information.

– AMDSC and AMDSC1 (subchannel information) include configuration and
contention data.

– AMDCFMI and AMDCFMINFO (measurement information array) are not
returned.

 � If HWSTATISTICS=CF

– AMDCF and AMDCF1 include configuration data, accounting and
measurement data, and control information.

– AMDSLL and AMDSLL1 (list structure limits) and AMDSLC and AMDSLC1
(cache structure limits) are returned.

10-6 OS/390 V2R8.0 MVS Sysplex Services Guide

– AMDSTRL and AMDSTRL1 (list structure entry) and AMDSTRC and
AMDSTRC1 (cache structure entry) are returned only for structures that
have an active XES connection to that structure on this system. AMDSTRL,
AMDSTRL1, AMDSTRC, and AMDSTRC1 include configuration data and
measurement data.

AMDSTRL, AMDSTRL1, AMDSTRC, and AMDSTRC1 do not contain
structure control information.

– AMDSC and AMDSC1 (subchannel information) include configuration and
contention data.

– AMDCFMI and AMDCFMINFO (measurement information array) include
measurement information elements.

Coupling Facility Structure Information
You can request information about a single named structure (STRNAME) that is
allocated in a coupling facility attached to the system on which the IXLMG macro is
issued. The data returned includes:

 � AMDCF (AMDCF1)

� AMDSLL (AMDSLL1) and AMDSLC (AMDSLC1)

� AMDSTRL (AMDSTRL1) or AMDSTRC (AMDSTRC1), depending on whether
the structure is a list or cache structure. AMDSTRL (AMSDTRL1) or AMDSTRC
(AMDSTRC1) includes structure control information.

AMDSTRL (AMDSTRL1) or AMDSTRC (AMDSTRC1) contain structure usage
information only for strucutres that have an active XES connection to that
structure on this system.

 � AMDSC (AMDSC1)

� AMDCFMI and AMDCFMINFO are not returned.

� For a cache structure only,

– If cast-out class information was requested, AMDSCOC and
AMDSCOCSTATS are returned.

– If storage class information was requested, AMDSCSC (AMDSCSC1) is
returned.

 Chapter 10. Coupling Facility Accounting and Measuring Services 10-7

10-8 OS/390 V2R8.0 MVS Sysplex Services Guide

Chapter 11. Dumping Services for Coupling Facility
Structures

Two MVS services exist specifically to support the dumping of coupling facility
structures. The first, IHABLDP, lets you build a parameter list to be passed as input
to SDUMPX, the SVC Dump macro. Using the IHABLDP macro is the only way to
inform SDUMPX of the specific structure information you want included in the
dump.

The syntax of SDUMPX is described in OS/390 MVS Programming: Authorized
Assembler Services Reference LLA-SDU. The syntax of IHABLDP is described in
OS/390 MVS Programming: Sysplex Services Reference.

The second MVS service, IXLZSTR, lets you to extract specific structure
information from an SVC dump in an IPCS environment. See OS/390 MVS IPCS
User's Guide for guidance in working in an IPCS environment.

The syntax of IXLZSTR is described in OS/390 MVS Programming: Sysplex
Services Reference.

MVS also provides a set of macros that you can use to map the coupling facility
structure data in the dump data set, where the structure information resides in IPCS
COMPDATA spaces.

Using the IHABLDP Macro
The IHABLDP macro builds a parameter list to be passed as input to the SDUMPX
macro. SDUMPX allows you to request structure information from a coupling facility

You build the parameter list by multiple invocations of the IHABLDP macro. For
each structure that you specify in the parameter list:

� You can specify that you want a range of information (for example, a range of
cast-out classes for a cache structure), or

� You can specify that you want specific options included (such as the lock table
entries associated with a list structure).

You begin building the parameter list with the TYPE=INITIAL parameter; you end
its construction with the TYPE=ENDLIST parameter. The parameter list is mapped
by the IHASDSTR macro.

The size of the area in which you build the parameter list depends on the amount
of structure information requested. For the best utilization of space within the
parameter list, you should group all the range and option requests for a single
structure together. The information for each structure will be dumped in the order it
is specified in the parameter list.

Once the parameter list is built, you can specify it as input to SVC Dump by
specifying its address on the SDUMPX STRLIST keyword.

 Copyright IBM Corp. 1994, 1999 11-1

Using the IXLZSTR Macro
Use the IXLZSTR macro in an IPCS environment to retrieve coupling facility
structure information from a dump containing the data. The macro builds a
parameter list to specify the requested information, calls the access service, and
then returns the requested information in an answer area that you provide.

Requesting Structure Information
To determine what structure information is in a dump, issue the IXLZSTR macro
requesting summary data. IXLZSTR returns the names and types of all structures
for which there is information in the dump. From there, you can request the
appropriate type of data depending on the structure type (for example, storage
classes for a cache macro).

Receiving Information Returned by the IXLZSTR Macro
When IXLZSTR returns the requested information in the answer area that you
provide, the first entry is a header record that describes the contents of the area.
The header contains:

� The number of entries
� The length of the entry
� Whether the structure is a list or a cache structure
� Information pertinent to the request.

The remainder of the answer area contains one or more entries for the requested
information. The header information is mapped by the STRBHEADER mapping in
IXLZSTRB. Other information that the answer area might contain, depending on the
request, is mapped by additional mappings in IXLZSTRB as well as by the following
macros:

IHAARB Associated request block

IXLYDCAC Dumping cache structure controls

IXLYDCCC Dumping cast-out class controls

IXLYDDIB Dumping information block mappings. Includes the following:

� Lock table entry
� List entry control block
� Directory information block
� List user control block
� Local cache control block
� Event monitor controls block.

IXLYDEQC Dumping event queue controls

IXLYDLC Dumping list header controls and the list monitor table entries found
in the list controls

IXLYDLCC Dumping local cache controls

IXLYDLIC Dumping list structure controls

IXLYDLUC Dumping list user controls

IXLUDSCC Dumping storage class controls

IXLYSTRC Partial dump reason code constants.

11-2 OS/390 V2R8.0 MVS Sysplex Services Guide

Using Component Data in the Dump Data Set
When coupling facility structure data is written to the dump data set, the data is
organized into several different COMPDATA spaces. Each COMPDATA space
contains a specific type of data. Figure 11-1 provides a diagram of the types of
coupling facility structure data available in the dump data set.

Structure

Master
Index

Object
Header

Hash
Table

Lock
Table

Event
Queue
Controls

Event
Monitor
Controls

User
Controls

Entry
Controls

Adjunct
Data

Entry
Data

Figure 11-1. Format of Coupling Facility Structure Data in Dump Data Set

Within the dump data set there is one master index COMPDATA space that
identifies the structures in the dump and provides an index into the other
COMPDATA spaces for the structure. The diagram shows that for a structure
identified in the master index, there may be one or more structure, object header,
and hash table COMPDATA space records.

The name of the master index COMPDATA space is CFD0000I. The naming
convention for the other COMPDATA spaces containing coupling facility structure
data allows you to index through each of the other types. Names are of the format
CFDxxyy_, where:

� CFD is the component prefix
� xx is the sequence number of the space. All sequence numbers start at 00.
� yy is the structure number that appears in the master index entry for the

structure
� _ is an alphabetic character indicating the type of data in the COMPDATA

space.

 Chapter 11. Dumping Services for Coupling Facility Structures 11-3

To advance to the next type of COMPDATA space for a structure, increment the xx
part of the COMPDATA space name by one.

All of the records in the COMPDATA spaces start at address X'1000'. The hash
table compdata space is the only type not pointed to by another COMPDATA
space. To access the hash table COMPDATA space, use its name (CFDxxyyH)
and address (X'1000').

Figure 11-2 lists each COMPDATA space by name and describes the contents of
each.

Figure 11-2. Coupling Facility Structure COMPDATA Space Descriptions

Data Type Name Description

Master Index CFD0000I Contains the index of all coupling facility
structures that were requested to be
dumped.

Structure CFDxxyyS Associated with each structure that is
listed in the master index. Summarizes
the contents of this space.

Object Header CFDxxyyO Contains the object headers for all of the
objects that were dumped for the
structure. Objects are castout classes,
storage classes, list numbers, lock tables,
and user controls.

Hash Table CFDxxyyH Provides a way to get to the entries in
classes or list numbers by entry name or
by entry identifier.

Lock Table CFDxxyyL Contains all the nonzero lock table entries
from the lock table, if one was defined for
the structure.

Event Monitor
Controls

CFDxxyyE Contains all the event monitor controls for
the structure.

Event Queue
Controls

CFDxxyyQ Contains all the event queue controls for
the structure.

User Control CFDxxyyU Contains user control information for the
structure.

Entry Control CFDxxyyC Contains control information about the
entries that were dumped for castout
classes, storage classes, or list numbers.

Adjunct Data CFDxxyyA Contains the adjunct data for all the
entries that have adjunct data associated
with them.

Entry Data CFDxxyyD Contains the entry data for all the entries
that have entry data associated with
them.

11-4 OS/390 V2R8.0 MVS Sysplex Services Guide

Associating Macros with the Data Types
The data in the COMPDATA spaces can be mapped by several macros. The
following describes each compdata space type and the associated macros.

Master Index Master index entries, sorted alphabetically by structure name, are
mapped by IXLYCOMP (COMPINDEX mapping). There is one
entry for every structure in the dump. The information in each entry
includes:

� Name of the structure
� An indicator specifying a reason why the structure was not

dumped, if applicable (reason codes are defined in IXLYSTRC)
� A structure number by which you can identify different

COMPDATA spaces with the structure
� A pointer to the structure trailer.

The structure trailer is mapped by IXLYCOMP (COMPSTRTRL
mapping). It is available for each structure in the dump unless the
dump data set is full or an I/O error occurred. The information in
the structure trailer includes:

� An indicator specifying whether the requested structure
information was dumped completely or partially

� An indicator specifying a reason why the structure was dumped
partially (reason codes are defined in IXLYSTRC)

� Flags to indicate whether lock table entries and user controls
were dumped for the structure.

Structure For each structure in the master index, there may be one or more
structure COMPDATA spaces associated with the structure. A
structure COMPDATA space can consist of up to four parts.

� The structure dump space header, which appears in each
structure COMPDATA space, is mapped by IXLYCOMP
(COMPSTRHDR mapping). The information in the dump space
header includes:

– A pointer to the dump header for a given structure
– A pointer to the object map index within the structure

COMPDATA space.

� The dump header, which appears only in the first structure
COMPDATA space for a structure, is mapped by IHADWHDR.
The dump header includes the following:

– Information about the dump of the structure and the
structure controls associated with the structure

- IXLYDCAC maps cache structure controls
- IXLYDLIC maps list structure controls

– The associated request block, mapped by IHAARB , which
contains the list of objects and ranges that were requested
for the structure.

� The object map index is mapped by IXLYCOMP
(COMPSTROBJMAPINDEX mapping). The information
includes:

 Chapter 11. Dumping Services for Coupling Facility Structures 11-5

– A list of pointers to the beginning of each object that was
dumped for the structure

– The minimum value and maximum value of the identifier
for each object.

� The object map, which can span more than one structure
COMPDATA space, is mapped by IXLYCOMP
(COMPSTROBJMAP mapping). For each object, the
information includes:

– The object type and identifier
– A pointer to the object header in the object header

COMPDATA space
– A sequence number (xx) to identify an object header

COMPDATA space with the object.

Object Header Contains the object headers for each object that was dumped for
the structure. Each object header entry is mapped by IHADWOBH
and contains the following information:

� Status of the object
� Controls that are associated with the object
� A pointer to the appropriate object COMPDATA space for the

first entry dumped for the object
� A sequence number (xx) to identify the object COMPDATA

space with the object.

The following macros map the control information associated with
the object:

� List header controls — IXLYDLC
� List user controls — IXLYDLUC
� Local cache controls — IXLYDLCC
� Castout class controls — IXLYDCCC
� Storage class controls — IXLYDSCC
� Event monitor controls — DEMC mapping in IXLYDDIB
� Event queue controls — IXLYDEQC

If the object is a lock table, the sequence number and the address
of the first entry dumped for the lock table appear in the object
header. If the object is the user controls for a structure, the
sequence number and the address of the first entry dumped for the
user controls appear in the object header.

Hash Table Provides a way to access entries in classes or list numbers by
entry name or entry identifier.

� The hash table header, mapped by IXLYCOMP
(COMPHASHTABLEHDR mapping), indicates the number of
slots that are in the hash table and points to the hash table slot
array.

� The hash table slot array, mapped by IXLYCOMP
(COMPHASHSLOTARRAY mapping), is an array of pointers to
the lists of hash elements

� A hash table element, mapped by IXLYCOMP
(COMPHASHELEM mapping), contains the following
information for each entry on the list:

11-6 OS/390 V2R8.0 MVS Sysplex Services Guide

– An indicator to specify whether the element corresponds to
an entry name or entry identifier

– A pointer to the appropriate entry control COMPDATA
space associated with the hash table element

– A sequence number (xx) to associate the entry control
COMPDATA space with the element.

Lock Table Contains all of the nonzero lock table entries from the lock table, if
applicable, that was written to the dump data set. Each lock table
entry is mapped by IXLYDDIB (DLTE mapping), and includes the
following:

� Index of the lock table entry
� Contents of the lock table entry

User Control Contains the user control information about all connected users to
the structure. The information in mapped by IXLYDDIB (DLUCB
mapping for a list structure and DLCCB mapping for a cache
structure).

Event Monitor Controls
Contains the event monitor controls information for all connected
users to the structure. The information is mapped by the DEMC
mapping of IXLYDDIB and includes the following:

 � Connection identifier
� Whether the EMC is queued to this connector's event queue
� List number with which the EMC is associated
� List entry key of the sublist with which the EMC is associated
� User notification control data.

Event Queue Control
Contains the event queue control information for all connected
users to the structure. The information is mapped by IXLYDEQC
and includes the following:

 � Connection identifier
� Whether the list transition exit is to be driven when a list

transition occurs
� Whether event queue monitoring is in effect
� Vector index associated with the event queue
� Counts of EMCs queued to the event queue and event queue

transitions.

Entry Control Contains control information about entries that were dumped for
cast-out classes, storage classes, or list numbers. For each
structure in the master index, there may be one or more entry
control compdata spaces.

� The entry control header, mapped by IXLYCOMP
(COMPENTRYCNTL mapping), includes the following
information for each entry that was dumped for castout
classes, storage classes, or list numbers.

– Status data about the items that were dumped
– Pointers to the entry's adjunct data in the adjunct

COMPDATA space and entry data in the entry data
COMPDATA space, if applicable

– Length of the entry data, if applicable

 Chapter 11. Dumping Services for Coupling Facility Structures 11-7

– Sequence numbers (xx) to identify the adjunct COMPDATA
space and the entry data COMPDATA space with the entry

� The entry controls associated with the entry are mapped by
IXLYDDIB (DDIL mapping for a list structure and DDIC
mapping for a cache structure).

Adjunct Data Contains the 64 bytes of adjunct data for each of the entries that
have associated adjunct data. There is no mapping for this data.

Entry Data Contains the entry data for each of the entries that have
associated entry data. The length of the entry data is defined by
the COMPENTRYCNTLENTRYDATALEN field in the
COMPENTRYCNTL mapping. There is no mapping for this data.

See OS/390 MVS Data Areas, Vol 2 (DCCB-ITTCTE) and OS/390 MVS Data
Areas, Vol 3 (IVT-RCWK) for a description of the macros used to map the
information in the COMPDATA spaces.

11-8 OS/390 V2R8.0 MVS Sysplex Services Guide

Chapter 12. Documenting your Coupling Facility
Requirements

Having designed and coded an application that uses the coupling facility, you must
now provide the users of the application with a set of guidelines for setting up the
coupling facilities in their installation. For each coupling facility structure, you must
supply requirements about the characteristics of the structure and the coupling
facility in which it is to reside. System programmers will use the structure and
coupling facility information you provide to set up the installation's coupling facility
resource management (CFRM) policies and to establish run time procedures for
their operations staff. OS/390 MVS Setting Up a Sysplex describes these and other
tasks that the system programmer must complete.

Specifying the Coupling Facility Structure Requirements
When setting up the CFRM policy, the installation must be aware of the following
structure attributes:

� Name of the structure

� Size of the structure (which might include both an initial size and a maximum
size)

� Names of other structures with which your structure should not share the same
coupling facility

Other attributes of which the user should be aware are whether the structure is
| persistent, whether it can be rebuilt or altered, whether it supports system-managed
| processes, whether it has a requirement for a specific level of coupling facility, and

the connectivity requirements of the application.

The user also must be aware of the characteristics of the coupling facility in which
the structure might be allocated. See “Specifying the Coupling Facility
Requirements” on page 12-6.

Naming the Structure
If your application has hardcoded a structure name, the installation must provide
the name in the CFRM policy. If you derive the name from another source or query
the policy to determine the name, indicate that fact to the user.

| Determining the Structure Size
| The size of the structure will be installation-specific in most cases. Therefore, you
| should provide a formula, a chart, or other “rule of thumb” to assist in calculating an
| initial structure size. You might also provide some methods of tuning the structure
| size after it is in use by your application.

| There are two methods you can use as a first step in determining an approximate
| structure size:

| � Structure Computation Service (IXLCSP)
| � PR/SM Planning Guide formulas

 Copyright IBM Corp. 1994, 1999 12-1

| The Structure Computation Service (IXLCSP) can be used to calculate the
| approximate structure size for cache, list, and lock structures. The service accepts
| as input the structure attributes and object counts and returns the structure size
| appropriate to the CFLEVEL of the target facility. The input parameters passed as
| input to IXLCSP map directly to the parameters specified on IXLCONN.

| PR/SM Planning Guide provides a set of formulas that you can use as a first step
| in determining an approximate structure size. There are two formulas — one for
| cache and one for list (a lock structure is considered to be a list structure). The
| values that are inserted into these formulas come primarily from the values you
| specify on your IXLCONN invocation to connect to the structure. If you plan to
| provide a formula to determine a structure's size, you could use your IXLCONN
| parameters to simplify the calculation. The installation then would only need to
| provide the installation-specific input to your simplified formula.

| Figure 12-1, Figure 12-2, and Figure 12-3 on page 12-3 describe the information
| that IXLCSP and the PR/SM Planning Guide formulas use. The tables map the
| IXLCONN parameter to the field in the formula.

| Figure 12-1. IXLCONN Information Used for Cache Structure Size Calculation

| Description of Information
| Needed
| IXLCONN Parameter| IXLCSP Parameter
| (COMPUTESIZE)
| Field in CF
| Formula

| Cache Structure

| Target directory to data ratio:

| Directory portion
| Element portion

|
|
| DIRRATIO
| EKEMENTRATIO

|
|
| DIRENTRYCOUNT
| ELEMENTCOUNT

|
|
| R_de
| R_data

| Whether or not an adjunct area
| is used
| ADJUNCT=YES
| ADJUNCT=NO
| ADJUNCT=YES
| ADJUNCT=NO
| AAI

| Number of cast out classes| NUMCOCLASS| NUMCOCLASS| MCC

| Number of storage classes| NUMSTGCLASS| NUMSTGCLASS| MSC

| Whether user data field order
| queue should be maintained for
| each castout class.

| UDFORDER=YES or
| UDFORDER=NO
| UDFORDER=YES or
| UDFORDER=NO
| N/A

| Whether the structure supports
| name classes.
| NAMECLASS=YES or
| NAMECLASS=NO
| NAMECLASS=YES or
| NAMECLASS=NO
| N/A

| Data element size| ELEMCHAR (1)| ELEMCHAR or
| ELEMINCRNUM
| DAEX

| Maximum data area size| MAXELEMNUM| MAXELEMNUM| MDAS

| Maximum structure size in units
| of 4K pages. Advise installation
| to use the SIZE value specified
| in their CFRM policy, based on
| the use of the structure. (Note
| that the policy uses 1K units, not
| 4K units.)

| N/A| MAXSIZE| MXSS

| Note:

| 1. If ELEMINCRNUM is used as the IXLCONN parameter instead of ELEMCHAR, you must translate the
| ELEMINCRNUM value to get DAEX. Use Figure 12-4 on page 12-4 to determine your DAEX value.

12-2 OS/390 V2R8.0 MVS Sysplex Services Guide

| Figure 12-2. IXLCONN Information Used for List Structure Size Calculation

| Description of Information
| Needed
| IXLCONN Parameter| IXLCSP Parameter
| (COMPUTESIZE)
| Field in CF
| Formula

| List Structure

| List structure type. Specify
| whether the structure is to have
| KEYS or NAMES.

| REFOPTION| REFOPTION| LST

| List element characteristic| ELEMCHAR (1)| ELEMCHAR or
| ELEMINCRNUM
| LELX

| List count (Use the term list
| count rather than list headers.)
| LISTHEADERS| LISTHEADERS| LC

| Maximum number of elements
| for each list entry
| MAXELEMNUM| MAXELEMNUM| MDLES

| Whether adjunct data is
| associated with each list entry
| ADJUNCT=YES
| ADJUNCT=NO
| ADJUNCT=YES
| ADJUNCT=NO
| LST

| Whether the list structure is to be
| allocated with programmable list
| entry IDs (PLEIDs)

| N/A (2)| PLEIDS=YES
| PLEIDS=NO
| LST

| Whether list limits should be
| specified and tracked as entries
| or as data elements.

| LISTCNTLTYPE| LISTCNTLTYPE| N/A

| Target directory to data ratio

| Entry portion
| Element portion

|
|
| ENTRYRATIO
| ELEMENTRATIO

|
|
| ENTRYCOUNT
| ELEMENTCOUNT

|
|
| R_le
| R_data

| Maximum list set entry count.
| (This is the maximum number of
| list entries unique to your
| application, such as number of
| checkpoint pages or VTAM LUs
| using generic resources.)

| N/A| ENTRYCOUNT| MLSEC

| Maximum number of event
| monitor controls.
| EMCSTGPCT| EMCCOUNT| TMTESR

| Serialized List - Additional Attributes

| Lock table entry characteristic.
| Always 0 for a serialized list.
| N/A| N/A| LTEX

| Number of lock entries.| LOCKENTRIES (3)| LOCKENTRIES (4)| LTEC

| Maximum structure size.| N/A| MAXSIZE| MXSS

| Notes:

| 1. If ELEMINCRNUM is used as the IXLCONN parameter instead of ELEMCHAR, you must translate the ELEMINCRNUM
| value to get LELX. Use Figure 12-4 on page 12-4 to determine your LELX value.

| 2. PLEIDS are associated with all list structures other than XCF signalling structures when the structure is allocated in a facility
| with CFLEVEL=8 or above.

| 3. Round up to a power of two, if not already.

| 4. Will be rounded up to a power of two.

| Figure 12-3 (Page 1 of 2). IXLCONN Information Used for Lock Structure Size Calculation

| Description of Information
| Needed
| IXLCONN Parameter| IXLCSP Parameter
| (COMPUTESIZE)
| Field in CF
| Formula

| Lock Structure

| Number of lock table entries| LOCKENTRIES| LOCKENTRIES| LTEC

| Lock table characteristic.| NUMUSERS| NUMUSERS| LTEX (1)

 Chapter 12. Documenting your Coupling Facility Requirements 12-3

| Figure 12-3 (Page 2 of 2). IXLCONN Information Used for Lock Structure Size Calculation

| Description of Information
| Needed
| IXLCONN Parameter| IXLCSP Parameter
| (COMPUTESIZE)
| Field in CF
| Formula

| Whether record data is being
| used.
| RECORD=YES
| RECORD=NO
| RECORD=YES
| RECORD=NO
| LST (2)

| Maximum number of record data
| entires.
| N/A| RDATAENTRYCOUNT| N/A

| Whether the lock structure is to
| be allocated with programmable
| list entry IDs (PLEIDs)

| N/A (3)| PLEIDS=YES
| PLEIDS=NO
| LST

| Maximum structure size.| N/A| MAXSIZE| MXSS

| Notes:

| 1. Calculate the characteristic based on the NUMUSERS parameter. Use Figure 12-5 on page 12-4 to determine your LTEX
| value.

| 2. If yes, specify that the list structure type (LST) is: NO KEYS, NO NAMES, and contains ADJUNCT data. If no, specify that
| the list structure type is: NO KEYS, NO NAMES, and NO ADJUNCT data.

| 3. PLEIDS are associated with all lock structures that have record data (RDATAENTRYCOUNT > 0) when the structure is
| allocated in a facility of CFLEVEL=8 or higher.

| Use this table to calculate the lock table characteristic in the coupling facility
| formula.

| Figure 12-4. Determining DAEX or LELX from ELEMINCRNUM

| ELEMINCRNUM value| Element size| DAEX/LELX value

| 1| 256| 0

| 2| 512| 1

| 4| 1024| 2

| 8| 2048| 3

| 16| 4096| 4

Figure 12-5. Determining LTEX value from NUMUSERS

NUMUSERS Width in Bytes LTEX

| 1-7| 2| 1
| 8-23| 4| 2
| 24-55| 8| 3
| 56-119| 16| 4
| 120-247| 32| 5

Providing an Exclusion List
The exclusion list in a CFRM policy is a list of structure names with which a
particular structure is not to share the same coupling facility. If your structure has
high activity, you should state that fact, so that the installation does not place the
structure in a coupling facility with another high activity structure. Another example
of using the exclusion list is to separate a backup copy of a structure from its
original instance to avoid a single point of failure.

12-4 OS/390 V2R8.0 MVS Sysplex Services Guide

Understanding the Persistence Attribute
The installation needs to know how you handle your structure when there are no
active connectors to it. Console messages might require that an operator take
some action against the structure, so it is important that the installation understands
the structure's use.

A structure that you define as persistent will remain allocated in the coupling facility
even when there are no active connectors to it. To delete a persistent structure
from a coupling facility, the operator must issue a SETXCF FORCE,STRUCTURE
command.

Specifying the Rebuild and/or Alter Attribute
The installation needs to know whether your structure can be rebuilt at another
location and whether have it can have its size and/or entry-to-element ratio altered.
Operator commands allow the installation to initiate these structure rebuild and
structure alter actions. The installation also can specify in its CFRM policy whether
MVS is to initiate a structure rebuild if a certain percentage of connectors lose
connectivity to the structure.

If your structure can be rebuilt, the installation must ensure that there is coupling
| facility space available for the rebuild. If the structure is eligible for a
| system-managed rebuild, there is the additional requirement that at least two
| coupling facilities at CFLEVEL=8 or higher are listed in the CFRM policy
| preference list for the structure.

Providing Connectivity Requirements
The installation needs to know what level of connectivity each system in the
sysplex must have to your application's structure in a coupling facility. If all systems
in the sysplex must be connected to the structure (IXLCONN
CONNECTIVITY=SYSPLEX), the installation must be aware that your application
will fail unless they have configured their systems and coupling facilities
accordingly. If your application requires that the structure be allocated in the
coupling facility that provides the best global connectivity to systems in the sysplex
(IXLCONN CONNECTIVITY=BESTGLOBAL), the installation must attempt to
configure their sysplex with the systems most important to the application attached
to the same coupling facility and with the highest SFM weights.

An additional requirement for the installation to understand is the rebuild protocol
that your application follows with regard to the connectivity requirement. If your
connectivity requirement is CONNECTIVITY=SYSPLEX, the rebuild will not be
successful until a sysplex-connected coupling facility is available. Therefore, to
allow for rebuild that is necessitated by a loss of connectivity or in which
LOCATION=OTHER has been specified, the preference list for the structure in the
CFRM policy must contain the names of at least two fully-connected coupling
facilities.

 Chapter 12. Documenting your Coupling Facility Requirements 12-5

Specifying the Coupling Facility Requirements
When setting up the CFRM policy, the installation also must be aware of certain
coupling facility attributes. If your structure has the following coupling facility
characteristics, you must document them:

� Nonvolatility — the requirement that a coupling facility must be able to preserve
the structure storage over a utility power failure.

� Failure-independence — the requirement that a coupling facility be in a
separate configuration from the system accessing it, thus eliminating a single
point of failure.

� Coupling facility level — the requirement that a coupling facility have a certain
level of coupling facility control code (CFCC).

| Additionally, the application must document whether it supports system-managed
| protocols. If so, the installation must provide at least two coupling facilities at
| CFLEVEL=8 or higher.

Knowing these requirements enables the installation to correctly specify a
preference list of coupling facilities in which your structure can reside. The system
uses the preference list and the SFM system weights when attempting to allocate
the structure. The system chooses the first coupling facility in the preference list
that meets the following requirements:

� Has connectivity to the system trying to allocate the structure (depending on
the application's connectivity specifications)

| � Has a CFLEVEL equal to or greater than the requested CFLEVEL or with a
| CFLEVEL that supports system-managed processes if the application specified
| ALLOWAUTO=YES.

� Has available space greater than or equal to the requested structure size
� Meets the volatility requirement requested
� Meets the failure-independent requirement requested
� Does not contain a structure in the exclusion list.

If no coupling facility in the preference list meets all these requirements, then the
system uses the following priorities to attempt to allocate the structure:

� Without the exclusion list requirement
� Without the failure-independent requirement
� Without the volatility requirement
� In a coupling facility that meets or exceeds the CFLEVEL requirement and has

the most available space.

Summarizing Your Requirements
You should document your structure and coupling facility requirements with the
installation planning information that you provide for your application.

12-6 OS/390 V2R8.0 MVS Sysplex Services Guide

 Appendixes

 Copyright IBM Corp. 1994, 1999

OS/390 V2R8.0 MVS Sysplex Services Guide

 Appendix A. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this publication
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

 Copyright IBM Corp. 1994, 1999 A-1

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
522 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This book documents intended Programming Interfaces that allow the customer to
write programs to obtain services of OS/390.

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States
and/or other countries:

 � CICS
 � DB2
 � ES/3090
 � ES/9000
 � Hiperbatch
 � IBM
 � IBMLink
 � IMS
 � MVS/ESA
 � OS/390
 � Parallel Sysplex
� Processor Resources/Systems Manager

 � PR/SM
 � RACF
� Resource Measurement Facility

 � RMF
 � S/390
 � VTAM

A-2 OS/390 V2R8.0 MVS Sysplex Services Guide

 Index

A
asynchronous IXLCACHE request 6-36

See also cache services (IXLCACHE), asynchronous
request

asynchronous IXLLIST operation 7-37
See also list services (IXLLIST), asynchronous

IXLLIST operation
automatic restart management

introduction 3-1

C
cache services

asynchronous IXLCACHE operation
suspending task while waiting for completion 9-1
testing for completion 9-1

cache services (IXLCACHE) 5-153
adjunct area 5-153

purpose 6-5
algorithm for storage reclaim 5-153

default algorithm 6-29
storage reclaim overview 6-28
user-defined algorithm 6-29

allocation of a cache structure 5-153
introduction 6-12

answer area 5-153
answer area validity 6-47
defining 6-46
information returned on CASTOUT_DATA

request 6-83
information returned on CROSS_INVAL

request 6-104
information returned on DELETE_NAME

request 6-99
information returned on PROCESS_REFLIST

request 6-113
information returned on READ_COCLASS

request 6-123
information returned on READ_COSTATS

request 6-128
information returned on READ_DATA

request 6-69
information returned on READ_STGSTATS

request 6-131
information returned on RESET_REFBIT

request 6-115
information returned on SET_RECLVCTR

request 6-111
information returned on UNLOCK_CASTOUT

request 6-88
information returned on WRITE_DATA

request 6-62

cache services (IXLCACHE) (continued)
asynchronous IXLCACHE operation

IXLFCOMP macro 6-38
asynchronous operation

MODE parameter 6-37
asynchronous request 5-153

completion notification methods 6-37
overview 6-36
specifying 6-36

buffer 5-153
design consideration 6-41
location 6-3
managing the buffers 6-14
purpose 6-3
selection 6-38
selection on CASTOUT_DATA request 6-82
selection on PROCESS_REFLIST request 6-113
selection on READ_COCLASS request 6-122
selection on READ_COSTATS request 6-125
selection on READ_DATA request 6-68
selection on READ_DIRINFO request 6-118
selection on UNLOCK_CASTOUT request 6-87
selection on WRITE_DATA request 6-61
storage key 6-46

cache structure 5-153
adjunct area 6-5
allocation overview 6-12
changing a data item 6-16
characteristics 6-5
connection overview 6-12
data entry 6-4
directory 6-4
elements 6-3
managing resources 6-28
measuring resource usage 6-35
purpose 6-3
relationship of elements 6-3
structure life-span 6-13

cache system 5-153
cache structure 6-3
changing a cached data item 6-16
data access, overview 6-14
data management, overview 6-14
directory-only cache method 6-9
elements of a cache system 6-2
local cache buffer 6-3
local cache vector 6-3
maintaining data consistency 6-19
managing cache structure resources 6-28
managing local cache buffers 6-14
managing the local cache vector 6-13
methods of using 6-7
permanent storage 6-3

 Copyright IBM Corp. 1994, 1999 X-1

cache services (IXLCACHE) (continued)
cache system (continued)

store-in cache method 6-8
store-through cache method 6-9
updating permanent storage 6-17

cast-out class 5-153
defined 6-6
described 6-33
maximum number defined 6-59
specification on READ_COCLASS request 6-122
WRITE_DATA request 6-59

cast-out lock 5-153
defined 6-6
unlocking 6-35
WRITE_DATA request 6-58

cast-out process 5-153
and storage reclaim 6-33
assigning cast-out classes 6-34
CASTOUT_DATA request. 6-79
defined 6-6
described 6-17, 6-33
establishing 6-34

CASTOUT_DATA request 6-79
changed and unchanged data item

described 6-16
changed data

defined 6-6
changed versus unchanged data item

on WRITE_DATA request 6-57
complete exit 5-153, 6-132
connect token 5-153

specifying 6-14
connect token (CONTOKEN) 6-14
connection identification (CONTOKEN) 6-14
connection to a cache structure 5-153

connection life-span 6-13
introduction 6-12

CROSS_INVAL request 6-103
data consistency 5-153

maintaining 6-19
data element 5-153

number in a data entry 6-61
size 6-61

data entry 5-153
characteristics 6-5
purpose 6-4
size 6-61

data item 5-153
accessing 6-14
casting-out 6-33
changing in a cache structure 6-16
defined 6-6
determining validity 6-24
IBM serialization recommendation 6-25
identifying to cache structure 6-15
maintaining data consistency 6-19
managing data access 6-25

cache services (IXLCACHE) (continued)
data item (continued)

managing data item storage 6-33
managing storage reclaim 6-31
parity assignment 6-59
serializing data access 6-25

data validity 5-153
See also cache services (IXLCACHE), data

consistency
DELETE_NAME request 6-95
deregister interest in a data item 6-22
deregistration of interest in a data item

defined 6-6
directory 5-153

information returned on READ_DIRINFO
request 6-118

purpose 6-4
directory entry 5-153

purpose 6-4
UNLOCK_CASTOUT request's affect on 6-89

directory-only cache method 5-153
considerations for using 6-9
description 6-9
IXLCACHE services typically used 6-10
updating permanent storage 6-19

directory-only usage summary 6-10
elements of a cache structure 5-153

adjunct area 6-5
characteristics 6-5
data entry 6-4
directory 6-4

elements of a cache system 5-153
cache structure 6-3
local cache buffer 6-3
local cache vector 6-3
permanent storage 6-3

exit 6-132
introduction 6-1
invalidate a data item 6-22
invalidation of a data item

defined 6-7
IXLFCOMP macro 5-153

used with IXLCACHE macro 6-38
IXLVECTR macro 5-153

changing the size of the local cache vector 6-24
determining data item validity 6-24
maintaining data consistency 6-19

local cache vector 5-153
changing the vector size 6-24
IXLVECTR macro 6-13
location 6-3
managing 6-13
purpose 6-3
role in maintaining data consistency 6-19

methods of using a cache system 5-153
directory-only cache 6-9
store-in cache 6-8

X-2 OS/390 V2R8.0 MVS Sysplex Services Guide

cache services (IXLCACHE) (continued)
methods of using a cache system (continued)

store-through cache 6-9
mode of operation 5-153

described 6-36
overview of usage by cache method 6-10
pageable storage

user or system provided 6-45
parity of a data item 5-153

described 6-59
permanent storage 5-153

purpose 6-3
updating 6-17

premature request completion 5-153
CROSS_INVAL request 6-104
DELETE_NAME request 6-49
READ_COCLASS request 6-123
READ_COSTATS request 6-127
READ_DIRINFO request 6-119
RESET_REFBIT request 6-115
UNLOCK_CASTOUT request 6-87

priority of IXLCACHE request 5-153
process identifier 5-153

CASTOUT_DATA request 6-82
UNLOCK_CASTOUT request 6-87
WRITE_DATA request 6-58

PROCESS_REFLIST request 6-112
READ_COCLASS request 6-120
READ_COSTATS request 6-124
READ_DATA request 6-65
READ_DIRINFO request 6-116
READ_STGSTATS request 6-129
reason code 5-153
reclaim

defined 6-7
reclaim processing 5-153

activating on SET_RECLVCTR request 6-110
deactivating on SET_RECLVCTR request 6-110
default algorithm 6-29
described 6-28
example scenarios 6-108
managing data item storage 6-31
PROCESS_REFLIST request 6-31
user-defined reclaim algorithm 6-29
with SET_RECLVCTR request 6-107

register interest in a data item 5-153, 6-19, 6-20
CASTOUT_DATA request 6-81
defined 6-7
local cache vector relationship 6-20
on CASTOUT_DATA request 6-81
on READ_DATA request 6-67
on WRITE_DATA request 6-48, 6-56
READ_DATA request 6-66
VECTORINDEX parameter 6-20
WRITE_DATA request 6-54

request identification (REQID) 6-14

cache services (IXLCACHE) (continued)
request identifier 5-153

specifying 6-14
request identifier (REQID) 6-14
request processing overview 6-36
RESET_REFBIT request 6-114
resources 5-153

assigning storage classes 6-29
managing 6-28
measuring usage 6-35
using storage classes 6-29

restart a request 5-153
CROSS_INVAL request 6-104
DELETE_NAME request 6-49
READ_COCLASS request 6-123
READ_COSTATS request 6-127
READ_DIRINFO request 6-119
RESET_REFBIT request 6-115
UNLOCK_CASTOUT request 6-87

return code 5-153
serialization 5-153
serializing data access

IXLLOCK macro 6-25
SET_RECLVCTR request 6-105
shared data 5-153

IBM serialization recommendation 6-25
managing data access 6-25
serializing data access 6-25

statistics 5-153
cast-out class on READ_COSTATS

request 6-124
storage class on READ_STGSTATS

request 6-129
storage class 5-153

assignment on READ_DATA request 6-68
assignment on WRITE_DATA request 6-60
defined 6-7
described 6-29
directory-only usage 6-29
maximum number defined 6-60, 6-68
reading statistics on READ_STGSTATS

request 6-129
specification on PROCESS_REFLIST

request 6-113
specification on SET_RECLVCTR request 6-107
statistics returned on READ_STGSTATS

request 6-130
using 6-29

storage key for buffers 6-46
storage reclaim 5-153

default reclaim algorithm 6-29
described 6-28
managing data item storage 6-31
user-defined reclaim algorithm 6-29

store-in cache method 5-153
changing a cached data item 6-16
considerations for using 6-8

 Index X-3

cache services (IXLCACHE) (continued)
store-in cache method (continued)

description 6-8
IXLCACHE services typically used 6-10
updating permanent storage 6-17

store-in usage summary 6-10
store-through cache method 5-153

changing a cached data item 6-17
considerations for using 6-9
description 6-9
IXLCACHE services typically used 6-10
updating permanent storage 6-18

store-through usage summary 6-10
synchronous operation

MODE parameter 6-37
synchronous request 5-153

overview 6-36
specifying 6-36

unchanged and changed data item
described 6-16

unchanged versus changed data item
on WRITE_DATA request 6-57

UNLOCK_CASTOUT request 6-84
UNLOCK_CO_NAME request 6-91
user-defined data in cache structure 5-153

described 6-60
valid data

defined 6-7
valid data item

described 6-19
validate a data item 6-20
validation of a data item

defined 6-7
validity of a data item

testing with IXLVECTR macro 6-24
vector entry 5-153

specifying on CASTOUT_DATA request 6-81
specifying on READ_DATA request 6-67
specifying on WRITE_DATA request 6-48, 6-56

vector index 5-153
registering interest in a data item 6-54, 6-66,

6-81
WRITE_DATA request 6-53

CASTOUT_DATA request 6-79
answer area information returned 6-83
buffer method selection 6-82
process identifier 6-82
specifying data for cast-out 6-81, 6-82
summary 6-83

complete exit 6-132, 7-116
See also cache services (IXLCACHE), complete exit
See also list services (IXLLIST)

Connection services 5-1, 5-153
overview 5-2

connection to a structure 5-22

coupling facility
failure-independence 5-16
level 5-11
storage allocation 5-19
storage increment 5-20
structure ID limit 5-20
using IXLFORCE to delete objects 5-147

coupling facility statistics
gathering with IXLMG 10-1

coupling facility structure
definition 4-1

cross-system coupling facility 2-1
See also XCF

CROSS_INVAL request 6-103
answer area information returned 6-104
identifying data to cross-invalidate 6-104
restarting 6-104
summary 6-105

D
DELETE_NAME request 6-95

answer area information returned 6-99
identifying data to delete 6-96
restarting 6-49
summary 6-99

E
ENF event code 35

issued after structure alter 5-127
purpose 5-48
when to listen for 5-47
when to use 5-49

event exit 5-128
exit 6-132, 7-116, 7-119, 7-122

See also cache services (IXLCACHE), complete exit
See also list services (IXLLIST)

G
group user routine

coding 2-95, 2-109
events that cause XCF to schedule 2-86
purpose 2-13
skipping of events 2-91

I
introduction to cache services 6-1
IXCARM 3-5

ASSOCIATE 3-8
DEREGISTER 3-7
READY 3-7
REGISTER 3-5
WAITPRED 3-7

X-4 OS/390 V2R8.0 MVS Sysplex Services Guide

IXCCREAT macro
using 2-20, 2-22, 2-23

IXCDELET macro
using 2-125

IXCJOIN macro
using 2-20, 2-22, 2-23

IXCLEAVE macro
using 2-125

IXCMG macro
using 2-120

IXCMOD macro
using 2-76

IXCMSGI macro
illustration of use 2-44
message user routine to invoke IXCMSGI 2-55
using to receive a message 2-44

IXCMSGO macro
using to send a message 2-28

IXCQUERY macro
programming considerations 2-114
using 2-110

IXCQUIES macro
using 2-125

IXCSETUS macro
example 2-24
using 2-23
using for members on different systems 2-24

IXCTERM macro
using 2-126

IXCYAMDA mapping macro
information mapped 2-120

IXCYGEPL mapping macro
information mapped 2-99

IXCYQUAA mapping macro
information mapped 2-115

IXCYSEPL mapping macro
information mapped 2-80

IXLALTER macro 5-117, 5-128
IXLCACHE macro 5-153

See also cache services (IXLCACHE)
IXLCACHE operation

purging 9-2
IXLDISC macro 5-143
IXLFCOMP macro 9-1
IXLFORCE macro 5-147
IXLLIST macro 7-1

See also list services (IXLLIST)
IXLLIST operation

purging 9-2
IXLLOCK macro 8-1
IXLLOCK services 7-126, 8-61
IXLMG macro 10-1, 10-7

programming considerations 10-5
IXLPURGE macro 9-2
IXLRT macro 8-55

IXLRT operation
purging 9-2

IXLUSYNC macro 5-140, 5-143
IXLVECTR macro 9-3

list notification vector
changing size 9-3
checking list state 9-4
testing the state of a range of lists 9-4

list notification vectors 9-3
local cache vector 9-5

changing size 9-5
checking the state of a range of data items 9-6
checking validity of local cache buffer 9-6

IXLYAMDA macro
information mapped 10-2

IXLYLMI macro 7-96

L
list notification vector 9-3

See also IXLVECTR macro
list services

answer area validity 7-62
asynchronous IXLLIST operation

suspending task while waiting for completion 9-1
testing for completion 9-1

MONITOR_EVENTQ request 7-105
list services (IXLLIST) 7-1, 7-116, 7-119, 7-122

adjunct area described 7-4
answer area

conditions when valid 7-62
DELETE request 7-89
DELETE_ENTRYLIST request 7-95
DELETE_MULT request 7-92
DEQ_EVENTQ request 7-115
LOCK request 7-101
MONITOR_LIST request 7-105
MONITOR_SUBLIST request 7-109
MONITOR_SUBLISTS request 7-111
MOVE request 7-85
READ request 7-66
READ_EMCONTROLS request 7-113
READ_EQCONTROLS request 7-114
READ_LCONTROLS request 7-97
READ_LIST request 7-74
READ_MULT request 7-78
WRITE request 7-62
WRITE_LCONTROLS request 7-99

asynchronous IXLLIST operation 7-37
IXLFCOMP macro 7-40
MODE parameter 7-38

buffer
design consideration 7-52
selection 7-50
storage key 7-57

comparative lock value 7-40

 Index X-5

list services (IXLLIST) (continued)
connection ID described 7-44
connection name described 7-44
connection token described 7-44
contention described 7-42
data element described 7-4
data entry described 7-4
DELETE request 7-87, 7-88
DELETE_ENTRYLIST request 7-87, 7-93
DELETE_MULT request 7-87, 7-91
DEQ_EVENTQ request 7-115
entry ID described 7-9
entry key described 7-9
entry name described 7-9
event monitor controls

diagram 7-5
exit

complete exit 7-37, 7-116
list transition exit 7-37, 7-122
notify exit 7-37, 7-119

full list structure 7-123
KEYREQTYPE 7-12
list controls

described 7-34
list limit described 7-34
reading 7-34, 7-96
writing 7-34, 7-98

list cursor
controlling 7-17
described 7-14
initialization 7-15
set to zero 7-25

list cursor described 7-15
list entry

creating 7-60
deleting 7-87
described 7-4
moving 7-79
reading 7-64, 7-68, 7-76
referencing 7-9
updating 7-60
writing 7-57

list entry controls 7-34
list entry controls described 7-4
list entry key 7-12
list entry version

changing 7-49
using 7-49

list entry version number described 7-10
list header described 7-4
list monitoring

IXLVECTR macro 7-102
list monitoring information for a specific list 7-96
list notification vector 7-102
list transition exit 7-102, 7-122

list structure
concepts 7-3

list services (IXLLIST) (continued)
list structure (continued)

parts 7-3
lock

held by system 7-41
LOCK request 7-100
lock table described 7-40
LOCKOPER parameter 7-100
multiple requests 7-45
ownership information 7-44
persistent 7-46
protocols 7-43
reconnection with persistent lock 7-47
recovery 7-46
recovery of persistent lock 7-46

LOCK request 7-100
lock table 7-4
MONITOR_LIST request 7-102
MONITOR_SUBLIST request 7-107
MONITOR_SUBLISTS request 7-107
MOVE request

types 7-79
with create 7-84
with read 7-84
with write 7-84
without a data operation 7-84

notify exit 7-45
pageable storage

user or system provided 7-56
READ request 7-64, 7-65
READ_EMCONTROLS request 7-112
READ_EQCONTROLS request 7-113
READ_LCONTROLS request 7-96
READ_LIST request 7-64, 7-68
READ_MULT request 7-64, 7-76
serialized list structure

asynchronous lock request 7-45
conditional lock request 7-42
contention described 7-42
described 7-40
diagram 7-3
example of use 7-40
lock states 7-40, 7-41
lock stealing 7-46
LOCKCOMP parameter 7-40
LOCKDATA parameter 7-45
locking functions 7-40
locking protocols 7-43, 7-44
notify exit 7-43, 7-45
recovery of lock 7-46
REQDATA parameter 7-45
unconditional lock request 7-42

storage key for buffers 7-57
summary of functions 7-7
synchronous IXLLIST operation 7-37

MODE parameter 7-38

X-6 OS/390 V2R8.0 MVS Sysplex Services Guide

list services (IXLLIST) (continued)
WRITE request 7-57
WRITE_LCONTROLS request 7-98

list transition exit 7-122
See also list services (IXLLIST)

local cache vector 9-3
See also IXLVECTR macro
local cache vector 6-13

See also cache services (IXLCACHE)
lock cleanup and recovery service (IXLRT) 8-55
lock services (IXLLOCK)

ALTER request 8-31
completion 8-32
return and reason codes 8-32

connection identifier 8-30
contention

definition 8-5
handling 8-5
specifying user-defined protocols 8-5

description 8-1
exit routine 8-36
exit routine coding

complete exit 8-39
contention exit 8-41
general requirements 8-36
notify exit 8-52

hashing algorithm
analyzing 8-18
defining 8-18

OBTAIN request 8-28
completion 8-30
return and reason codes 8-30

PROCESSMULT request
return and reason codes 8-35

record data entry
current number available 8-20
maximum number available 8-20

recovery planning 8-23
RELEASE request 8-32

completion 8-33
return and reason codes 8-33

resource definition 8-1
resource request

definition 8-1
resource request queue

composite state 8-2
definition 8-2

using IXLRT 8-55
using IXLSYNCH 8-54

lock structure
concepts 8-12
lock table

description 8-13
parts 8-13
record data entry

description 8-20
using 8-20

lock structure (continued)
resource name length attribute 5-37

lock table 7-40
See also list services (IXLLIST), serialized list

structure

M
message user routine

coding 2-55, 2-63
purpose 2-13

N
Notices A-1
notify exit 7-45, 7-119

See also list services (IXLLIST)
See also list services (IXLLIST), exit, notify exit

P
permanent status recording

definition 2-6
obtaining 2-20

persistence of a structure 5-8
PROCESS_REFLIST request 6-112

answer area information returned 6-113
buffer method selection 6-113
identifying data items to reference 6-112
storage class specification 6-113
summary 6-113

R
READ_COCLASS request 6-120

answer area information returned 6-123
buffer method selection 6-122
cast-out class specification 6-122
data item specification 6-122
restarting 6-123
returned information format 6-122
summary 6-123

READ_COSTATS request 6-124
answer area information returned 6-128
buffer method selection 6-125
cast-out class specification 6-125
restarting 6-127
returned statistics format 6-125
summary 6-128

READ_DATA request 6-65
answer area information returned 6-69
buffer method selection 6-68
data item name specification 6-66
data item specification 6-67
registering interest in a data item 6-66
specifying data to be read 6-69
specifying no data to be read 6-69

 Index X-7

READ_DATA request (continued)
storage class assignment 6-68
summary 6-70

READ_DIRINFO request 6-116
buffer method selection 6-118
identifying entries to read 6-117
restarting 6-119
returned information format 6-118
summary 6-120

READ_STGSTATS request 6-129
answer area information returned 6-131
statistics returned 6-130
storage class specification 6-129
summary 6-132

Rebuild Event Timeline 5-101
reclaim processing with IXLCACHE macro

SET_RECLVCTR request 6-105
See also cache services (IXLCACHE)

registering with the automatic restart manager 3-5
See also IXCARM

RESET_REFBIT request 6-114
answer area information returned 6-115
identifying data items to unreference 6-115
restarting 6-115
summary 6-116

resource name length attribute
of lock structure 5-37

S
serialized list structure 7-40

See also list services (IXLLIST), serialized list
structure

SET_RECLVCTR request 6-105
answer area information returned 6-111
reclaim vector activation 6-110
reclaim vector deactivation 6-110
reclaim vector specification 6-107
storage class specification 6-107
summary 6-111

signalling services
illustration of sending and receiving message 2-25
receiving a message using the IXCMSGI

macro 2-25, 2-44
sending a message using the IXCMSGO

macro 2-25
status user routine

coding 2-77, 2-85
purpose 2-13
using 2-69

structure 4-1
See also coupling facility structure
persistence 5-8

synchronous IXLCACHE request 6-36
See also cache services (IXLCACHE), synchronous

request

synchronous IXLLIST operation 7-37
See also list services (IXLLIST), synchronous

IXLLIST operation
synchronous update service (IXLSYNCH) 8-54
sysplex

definition 2-1
obtaining information 2-109

capacity planning 2-120
tuning 2-120

sysplex services for data sharing
benefits of use 4-1
concepts and terminology 4-2
coupling facility structure

types 4-4
programming considerations 4-5
programming features 4-3
summary of services 4-7

System-Managed Rebuild Timeline 5-117

U
UNLOCK_CASTOUT request 6-84

affect on directory entry 6-89
answer area information returned 6-88
buffer method selection 6-87
cast-out lock specification 6-85
initializing elements in cast-out list 6-86
process identifier 6-87
restarting 6-87
summary 6-90

UNLOCK_CO_NAME request 6-91
affect on directory entry 6-93
answer area information returned 6-93
buffer method selection 6-93
cast-out lock specification 6-92
initializing a name element 6-92
process identifier 6-93
summary 6-94

user state field
changing value 2-23
definition 2-10
initializing 2-21

Using the Automatic Restart Manager 3-21

W
WRITE_DATA request 6-53

answer area information returned 6-62
buffer method selection 6-61
cast-out class 6-59
cast-out lock 6-58
changed state specification 6-57
data item name specification 6-57
parity specification 6-59
process identifier 6-58
registering interest in a data item 6-54, 6-81

X-8 OS/390 V2R8.0 MVS Sysplex Services Guide

WRITE_DATA request (continued)
specifying data to be written 6-61
storage class assignment 6-60
summary 6-62, 6-64
unchanged state specification 6-57
user-defined data 6-60
vector entry assignment 6-48, 6-56, 6-67

X
XCF (cross-system coupling facility) 2-1, 2-142

active member state 2-7
capacity planning

obtaining information 2-120
communicating between members 2-5
concepts 2-1
created member state 2-7
defining a member to XCF

through IXCCREAT macro 2-20
through IXCJOIN macro 2-20

disassociating a member from XCF 2-124
through IXCDELET macro 2-125
through IXCLEAVE macro 2-125
through IXCQUIES macro 2-125
through IXCTERM macro 2-126

failed member state 2-9
group

definition 2-2
maximum number 2-22
name 2-11
obtaining information 2-109

group services
definition 2-4

group user routine
coding 2-95, 2-109
events that cause XCF to schedule 2-86
purpose 2-13
skipping of events 2-91

information
group 2-109
member 2-109
obtaining 2-109
obtaining through IXCMG macro 2-120
obtaining through IXCQUERY macro 2-110
sysplex 2-109

IXCCREAT macro
using 2-20, 2-22, 2-23

IXCDELET macro
using 2-125

IXCJOIN macro
using 2-20, 2-22, 2-23

IXCLEAVE macro
using 2-125

IXCMG macro
using 2-120

IXCMOD macro
using 2-76

XCF (cross-system coupling facility) (continued)
IXCQUERY macro

using 2-110
IXCQUIES macro

using 2-125
IXCSETUS macro

example 2-24
using 2-23
using for members on different systems 2-24

IXCTERM macro
using 2-126

IXCYAMDA mapping macro
information mapped 2-120

IXCYGEPL mapping macro
information mapped 2-99

IXCYQUAA mapping macro
information mapped 2-115

IXCYSEPL mapping macro
information mapped 2-80

macro
address space restrictions 2-16
summary of XCF 2-15
table summarizing for XCF 2-18

maximum number of groups and members 2-22
member

association 2-14
attributes 2-6
defining to XCF 2-20
definition 2-2
disassociating from XCF 2-124
maximum number 2-22
name 2-11
obtaining information 2-109
state 2-7
token 2-12

member association 2-14, 2-21
member data field 2-21
member state

active 2-7
created 2-7
failed 2-9
illustration 2-9
not-defined 2-9
quiesced 2-8

member termination 2-126
address space 2-128
system 2-128
task 2-127

member token 2-12
message response collection

specifying 2-21
message user routine

purpose 2-13
multisystem application

definition 2-2
design considerations 2-3
example of designing and implementing 2-128

 Index X-9

XCF (cross-system coupling facility) (continued)
multisystem environment

definition 2-1
not-defined member state 2-9
notifying members of changes 2-85
permanent status recording

definition 2-6
obtaining 2-20

quiesced member state 2-8
services

categories 2-3
group 2-4
signalling 2-5
status monitoring 2-5

signalling services
definition 2-5

status field
updating 2-75

status monitoring services
definition 2-5
events other than normal processing 2-74
illustration 2-71
normal processing 2-69
requesting 2-68
summary of important concepts 2-73
using a status user routine 2-69

status user routine
coding 2-77, 2-85
purpose 2-13
using 2-69

status-checking interval
changing 2-76
changing through IXCMOD macro 2-76
setting 2-76

sysplex
definition 2-1
obtaining information 2-109

system cleanup
specifying 2-21

tuning
obtaining information 2-120

user routine
group 2-13
identifying on IXCJOIN macro 2-21
message 2-13
message user 2-13
status 2-13

user state field
changing through IXCSETUS macro 2-23
changing value 2-23
definition 2-10
initializing 2-21

X-10 OS/390 V2R8.0 MVS Sysplex Services Guide

Communicating Your Comments to IBM

OS/390
MVS Programming:
Sysplex Services Guide

Publication No. GC28-1771-07

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers' comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

� If you prefer to send comments by mail, use the RCF at the back of this book.

� If you prefer to send comments by FAX, use this number:

1-(914)-432-9405

� If you prefer to send comments electronically, use this network ID:

mhvrcfs@us.ibm.com

Make sure to include the following in your note:

� Title and publication number of this book
� Page number or topic to which your comment applies.

Readers' Comments — We'd Like to Hear from You

OS/390
MVS Programming:
Sysplex Services Guide

Publication No. GC28-1771-07

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? Ø Yes Ø No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction Ø Ø Ø Ø Ø

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
GC28-1771-07 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
522 South Road
Poughkeepsie, NY 12601-5400

Fold and Tape Please do not staple Fold and Tape

GC28-1771-07

IBM

Program Number: 5647-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

GC28-1771-ð7

	Contents
	Figures
	About This Book
	Who Should Use This Book
	How This Book Is Organized
	Where to Find More Information
	Notes on Terminology

	Summary of Changes
	Introduction to Sysplex Services
	Chapter 1. Introduction to Sysplex Services
	Sysplex Services for Communication
	Sysplex Services for Recovery (Automatic Restart Management)
	Sysplex Services for Data Sharing

	Sysplex Services for Communication (XCF)
	Chapter 2. Using the Cross-System Coupling Facility (XCF)
	XCF Concepts
	XCF Communication Services
	Group Services
	Signalling Services
	Status Monitoring Services

	Member Attributes
	Permanent Status Recording
	The Five Member States
	The Active State
	The Created State
	The Quiesced State
	The Failed State
	The Not-Defined State

	The User State Field
	Member Name and Group Name
	The Member Token
	The User Routines
	Member Association
	XCF-Managed Response Collection
	Providing Information to Your System Programmer

	Summary of XCF Communication Macros
	Defining Members to XCF
	Changing the Value in a User State Field
	Using the IXCSETUS Macro
	Example of Using the IXCSETUS Macro

	Using IXCSETUS for Active Members on Different Systems

	Using Signalling Services to Send and Receive Messages
	What Is a Message?
	Using the IXCMSGO Signalling Service
	Sending and Receiving Messages
	Sending Large Messages
	Saving and Discarding Messages
	Broadcasting a Message to Members of a Group
	Consolidating Responses to a Message
	Providing Ordered Delivery of Messages
	Specifying a Message Timeout Value

	Using the IXCMSGO Macro
	Identifying the Sending Member
	Identifying the Target Member or Members
	Identifying the Message Data
	Specifying the Storage Key
	Supporting Asynchronous Message Access by XCF
	Specifying Message Control Information
	Specifying Message Response Collection
	Specifying the Delivery Options for Messages
	Understanding Message Completion
	Specifying a Timeout Value for Message Completion
	Requesting Notification of Message Completion
	Handling Error Conditions
	Handling IXCMSGO Requests When a Member Terminates

	Using the IXCMSGI Macro
	Identifying the Message to Be Delivered
	Determining the Length of the Message to be Received
	Determining Message Disposition
	Specifying the Storage Key
	Receiving Message Data into a Single Buffer Area
	Receiving Message Data into Multiple Buffers

	Using the IXCMSGC Macro
	Understanding the Programming Environment
	Identifying the Requestor
	Requesting that a Message or Response Be Saved
	Requesting that a Message Be Discarded
	Requesting Information about Messages
	Requesting that a Message Be Completed
	Requesting that a User Routine Is To Process a Message

	Handling Member Termination
	Coding a Message User Routine
	Environment
	Restrictions
	Entry Specifications
	Return Specifications
	User Routine Processing
	Programming Considerations
	User Routine Recovery
	Timing Considerations
	Coded Example

	Coding a Message Notify User Routine
	Environment
	Restrictions
	Entry Specifications
	Return Specifications
	User Routine Processing
	User Routine Recovery

	Requesting XCF Status Monitoring
	Using a Status User Routine
	Normal Processing
	Summary of Important Concepts
	Events Other than Normal Processing

	Updating the Status Field
	Setting and Changing a Status-Checking Interval
	Coding a Status User Routine
	User Routine Environment
	User Routine Processing
	Programming Considerations
	Entry Specifications
	Return Specifications
	Coded Example

	Notifying Members of Changes
	How XCF Works Together with the Group User Routine
	Events that Cause XCF to Schedule a Group User Routine
	Skipping of Events
	Events That XCF Might Skip
	Determining When Events Are Skipped
	User State Field Design Considerations

	Coding a Group User Routine
	User Routine Environment
	User Routine Processing
	Programming Considerations
	Entry Specifications
	Return Specifications
	Coded Example

	Obtaining XCF Information
	Obtaining Sysplex, Group, and Member Information
	Using the IXCQUERY Macro
	Specifying the Information Level
	Specifying the Type of Information
	Programming Considerations
	Information Mapped by the IXCYQUAA Mapping Macro
	Information Returned Inline to IXCQUERY

	Obtaining Tuning and Capacity Planning Information
	Handling the X'4' Reason Code
	Retrieving Information from the Answer Area
	Specifying the Type of Information

	Disassociating Members from XCF
	Using the IXCQUIES Macro
	Using the IXCLEAVE Macro
	Using the IXCDELET Macro
	Using the IXCTERM Macro
	Member Termination
	Task Termination
	Address Space Termination
	Removing Systems from the Sysplex

	Example of Designing and Implementing a Multisystem Application
	How Does PHONBOOK Work?
	How Does a Member Update its Status Field?
	What Data Structures Does PHONBOOK Use?
	What Do the User Routines Do?
	The Message User Routine
	The Status User Routine
	The Group User Routine

	How Does the Installation Set Up PHONBOOK on Each System?
	Setting Up on System 1
	Setting Up on System 2
	Setting Up on System 3

	How Does PHONBOOK Handle Different Types of Work Requests?
	Updating the Database - Requestor is the PRIMARY Member
	Updating the Database - Requestor is the NO-BACKUP Member
	Finding a Name in the Database - Requestor is the BACKUP Member
	Member 1 (PRIMARY) Misses its Status Update

	What Happens When all Processing is Complete?
	What is Another Method for Designating Members?

	Sysplex Services for Recovery (Automatic Restart Management)
	Chapter 3. Using the Automatic Restart Management Function of XCF
	Understanding How Your Installation Uses Automatic Restart Management
	Requesting Automatic Restart Management Services
	Understanding How MVS Handles Restart Processing
	Establishing Security for Restarted Jobs

	Designing Your Application to Use Automatic Restart Management Services
	Registering as an Element and Specifying Restart Parameters (IXCARM REQUEST=REGISTER)
	Indicating Readiness for Work (IXCARM REQUEST=READY)
	Deregistering the Element (IXCARM REQUEST=DEREGISTER)
	Waiting for Other Work to be Restarted (IXCARM REQUEST=WAITPRED)
	Associating One Element with Another (IXCARM REQUEST=ASSOCIATE)
	Designing an Event Exit
	Exit Routine Environment
	Exit Recovery
	Exit Routine Processing
	Processing Considerations
	Input Register Information
	Output Register Information

	Gathering Statistical Data
	Monitoring Restarts through the ENFREQ Macro
	Displaying Information about Automatic Restart Management
	IBM-Supplied Automatic Restart Manager Policy Levels

	Example of Using the IXCARM Macro

	Sysplex Services for Data Sharing (XES)
	Chapter 4. Introduction to Sysplex Services for Data Sharing (XES)
	Data Sharing Concepts and Terminology
	The Coupling Facility from the Point of View of the Programmer
	Types of Coupling Facility Structures
	Using Sysplex Services for Data Sharing
	Designing Your Application to Exploit the Coupling Facility
	Summary of the Sysplex Services for Data Sharing

	Guide to Sysplex Services Topics

	Chapter 5. Connection Services
	Overview of Connection Services
	Authorizing Coupling Facility Requests

	Structure Concepts
	Defining the Structure Attributes
	Identifying Connection States
	Understanding Connection Persistence and Structure Persistence
	Connection Persistence
	Structure Persistence

	Allocating a Structure in a Coupling Facility
	MVS Considerations When Allocating a Structure
	Specifying the Required Coupling Facility Attributes
	Specifying a Connectivity Requirement
	Specifying a Coupling Facility Level Requirement
	Specifying the Structure Size
	Understanding Coupling Facility Volatility
	Planning for Coupling Facility Failure-Independence
	Creating the Exclusion List

	Selecting a Coupling Facility for Structure Allocation
	Calculating a Coupling Facility's Attribute Value
	Using the SFM System Weights in Coupling Facility Selection
	Understanding Connectivity in a Mixed Sysplex Environment

	Coupling Facility Considerations When Allocating a Structure
	Understanding Coupling Facility Storage

	Coupling Facility Resource Allocation "Rules"
	CFRM Policy Specification
	Authorized Application Specification
	Coupling Facility Storage Constraints
	Coupling Facility Storage Increment
	Coupling Facility Structure ID Limit

	Successful Completion of Structure Allocation
	Note about designing structure connections

	Connecting to a Coupling Facility Structure
	Overview of Connect Processing
	Naming the Structure
	Naming the Connection
	Specifying Connector Data
	Providing a Connection Level
	Requesting a Coupling Facility Level
	Specifying Coupling Facility Connectivity Requirements
	Allowing User-Managed Rebuild for a Structure
	Allowing the Structure to be Duplexed
	Allowing the System to Manage Structure Rebuild
	Allowing the Structure to be Altered
	Handling Dump Serialization

	Specifying Structure Attributes for All Structures
	Connecting to a Cache Structure
	Selecting the Number of Data Elements and Their Size
	Selecting the Directory-to-Element Ratio
	Determining Whether to Have Adjunct Areas
	Selecting the Number of Cast-Out classes
	Selecting the Number of Storage Classes
	Determining Whether to Have User Data Field (UDF) Order Queues
	Determining Whether to Use Name Class Masks

	Connecting to a List Structure
	Selecting the Data Element Size
	Requesting Storage for Event Monitor Controls
	Selecting the Entry-To-Element Ratio
	Deciding How to Limit the Storage Used by Each List
	Determining Whether to Have Adjunct Areas
	Determining Whether to Have Named or Keyed List Entries

	Connecting to a Lock Structure
	Determining Whether to Specify Record Data
	Understanding the Resource Name Length Attribute
	Determining the Number of Lock Entries
	Determining the Number of Lock Structure Users
	Using the IXLCSP Service to Determine Structure Size or Attributes

	Defining the Required Exit Routines
	Event Exit
	Complete Exit
	Notify Exit
	Contention Exit
	List Transition Exit
	Summary of Required Exit Routines

	Determining the Success of a Connection
	Receiving Answer Area Information
	Successful Completion of a Connection
	Verifying Structure Attributes

	Handling Failed Attempts to Connect to a Structure
	Using ENF Event Code 35

	Understanding the Structure Version Numbers
	Reconnecting to a Structure
	Connecting to a Structure During User-Managed Rebuild
	Connecting to a Structure During User-Managed Duplexing Rebuild
	Connecting to a Structure During a System-Managed Process
	Connecting to a Structure That Is Being Altered
	Connecting to a Structure when a Synchronization Point Is Set
	Dumping Considerations
	Handling a Connection's Abnormal Termination
	Deleting Persistent Structures
	Deleting Failed-Persistent Connections
	Using IXLFORCE or the SETXCF FORCE Command

	Structure Rebuild Processing
	Initiating a Structure Rebuild
	Overview of User-Managed Rebuild Processing
	Requesting Rebuild or Duplexing Rebuild
	Phases for User-Managed Processes
	Role of CFRM Policy in the Rebuild Process
	User-Managed Rebuild Enhancements

	Using the IXLREBLD Macro
	User-Managed Rebuild Events and the Event Exit
	XES Monitoring of Rebuild Event Responses

	Starting the User-Managed Rebuild Process
	Understanding the Rebuild Quiesce Phase
	Delivery of the Rebuild Quiesce Event
	Responding to the Rebuild Quiesce Event
	Completing the Rebuild Quiesce Phase

	Connecting to the New Structure
	Understanding the Rebuild Connect Phase
	Delivery of Rebuild Connect Event
	Using the IXLCONN REBUILD Macro
	Specifying Coupling Facility Connectivity Requirements for Rebuild Processing
	Successful Completion of IXLCONN REBUILD
	Handling a Failed IXLCONN REBUILD Request
	Receiving Answer Area Information from IXLCONN REBUILD
	Reconstructing the New Coupling Facility Structure
	Delivery of the Rebuild Connects Complete Event
	Completing the Rebuild Connect Phase

	Working with Structures in the Duplex Established Phase
	Understanding the Duplex Established Phase
	Delivery of Rebuild Duplex Established Event

	Stopping a Duplexing Rebuild Process to Forward Complete
	Understanding Rebuild Stopduplex Processing to Forward Complete
	Delivery of Rebuild Switch Event
	Responding to the Rebuild Switch Event

	Completing the User-Managed Rebuild Process
	Understanding the Rebuild Cleanup Phase
	Delivery of Rebuild Cleanup Event
	Responding to the Rebuild Cleanup Event
	Completing the Rebuild Cleanup Phase
	Delivery of the Rebuild Process Complete Event

	Stopping a User-Managed Rebuild Process
	Understanding Rebuild Stop Processing
	Delivery of Rebuild Stop Event
	Responding to a Rebuild Stop Event

	Handling New Connections During a User-Managed Rebuild Process
	Handling Disconnections During Rebuilding
	Handling Failed Connections During Rebuilding
	Providing a Response for a Failed Connector

	Handling Rebuild Connect Failures
	Handling Failures during Duplexing Rebuild
	Handling Loss of Connectivity during Duplexing Rebuild
	Handling Structure Failure
	Handling Connection Failure

	MVS-Initiated Rebuild Processing
	How MVS Determines Whether to Initiate Structure Rebuild Processing
	Reporting Policy-Based Actions to Connectors
	Responding to the XES Recommended Action Event

	Dumping Considerations
	Summary of User-Managed Structure Rebuild Processing
	User-Managed Rebuild Timeline
	Summary of User-Managed Duplexing Rebuild Process
	User-Managed Duplexing Rebuild Timeline
	Summary of Rebuild and Duplexing Rebuild Stop Processing

	Overview of System-Managed Rebuild Processing
	Requesting System-Managed Rebuild Processing
	Role of CFRM in the System-Managed Rebuild Process
	Phases for System-Managed Rebuild
	Startup Phase
	Quiesce
	Allocate
	Attach
	Copy
	Cleanup

	System-Managed Events Presented to an Active Connector
	XES Monitoring of Active Connector Event Responses

	Using the IXLREBLD Macro for System-Managed Processes
	Starting the System-Managed Rebuild Process
	Responding to the Structure Temporarily Unavailable Event
	Suspending Work Units during System-Managed Rebuild Processing

	Creating a New Structure during System-Managed Rebuild
	Allocating the New Structure
	Connecting Users to the New Structure
	Populating the New Structure
	Understanding the Cleanup Phase

	Completing the System-Managed Rebuild Process
	Stopping the System-Managed Rebuild Process
	Handling Connection Changes During System-Managed Rebuild
	New Connections
	Existing Connections
	Failed Connections

	Handling Loss of Connectivity during System-Managed Rebuild
	Loss of Connectivity Before System-Managed Rebuild Is Initiated
	Loss of Connectivity Before the System Commits to the New Structure
	Loss of Connectivity After the System Commits to the New Structure
	Loss of Connectivity During the Stop of System-Managed Rebuild

	Handling Structure Failure during System-Managed Rebuild
	Dumping Considerations during System-Managed Rebuild
	Summary of System-Managed Rebuild Processing

	Altering a Coupling Facility Structure
	Overview of Structure Alter Processing
	Changing the Structure Size
	Changing the Structure Entry-to-Element Ratio
	Changing the Percentage of Event Monitor Controls
	Altering a Duplexed Structure
	Structure Type Considerations

	Starting the Structure Alter Process
	Notifying Connectors of Structure Alter Initiation
	Initiating Alter for a Structure with No Connectors
	Initiating Alter for a Structure with Failed-Persistent Connectors

	Completing the Structure Alter Process
	Notifying Connectors of Structure Alter Completion
	Requesting that Structure Alter Be Stopped
	Altering a Structure in the Duplex Established Phase
	Detecting ENF Code 35 for Structure Alter

	Handling New Connections during Alter Processing

	Responding to Connection Events
	Using IXLYEEPL to Provide a Response
	Using IXLYEEPL and the IXLEERSP macro
	Handling Outstanding Event Responses

	Events Reported to the Event Exit
	XES Monitoring of Event Responses
	Events Monitored by XES

	Using IXLUSYNC to Coordinate Processing of Events
	Overview of IXLUSYNC Processing
	Information Returned in IXLYEEPL
	XES Monitoring of User Sync Point Event Responses

	Handling Connection Failures during Synchronization

	Disconnecting from a Coupling Facility Structure
	Overview of Disconnect Processing
	Coding the IXLDISC Macro
	Disconnect Events and the Event Exit
	Retrieving Information from IXLYEEPL
	Responding to a Disconnected or Failed Connection Event
	XES Monitoring of Disconnected or Failed Connection Event Responses

	Persistence Considerations
	Normal Disconnection
	Disconnection Because of Failure
	Handling Resources for a Disconnection

	Dumping Considerations
	Successful Completion of a Disconnection

	Forcing the Deletion of a Coupling Facility Object
	Deleting a Coupling Facility Structure
	Deleting a Coupling Facility Connection to a Structure
	Deleting a Structure Dump
	Deleting Structure Dump Serialization
	Authorizing the Use of IXLFORCE
	Forcing a Structure with Failed-Persistent Connections

	Coding Exit Routines for Connection Services
	Coding the Event Exit
	Exit Routine Environment
	Exit Recovery
	Exit Routine Processing
	Processing Considerations
	Input Register Information
	Output Register Information
	Return Specifications

	Using IXLEERSP

	Chapter 6. Using Cache Services (IXLCACHE)
	Benefits of Using Cache Services
	Elements of A Cache System
	Elements of a Cache Structure
	Important Terms
	Using the Cache Structure
	Store-in Cache
	Accessing the Data
	Casting out Data from the Cache Structure
	Assigning Storage Classes
	Recovery

	Store-through Cache
	Accessing the Data
	Casting out Data from the Cache Structure
	Assigning storage Classes
	Recovery

	Directory-only Cache
	Accessing the Data
	Casting out Data from the Cache Structure
	Assigning Storage Classes
	Recovery
	Sizing the Structure

	Summary of IXLCACHE Requests
	Cache Structure Allocation and Connection
	Accessing and Managing Data Within a Cache System
	Managing Local Cache Buffers
	Identifying a Data Item to the Cache Structure
	Reading, Writing, or Registering Interest in a Data Item
	Determining the Validity of a Data Item
	Defining a Storage Class for a Data Item

	Changing a Data Item in the Cache Structure
	Casting out Changed Data
	Considerations Using the Store-through Cache Method
	Considerations Using the Directory-only Cache Method

	Casting out Data or Updating Permanent Storage
	Considerations for Cast-out Using the Store-in Cache Method
	Considerations for Cast-out Using the Directory-only Cache Method

	Maintaining Data Consistency
	Registering Interest in a Data Item and Validating Local Copies
	Maintaining Connections between the Local Cache Vector and Data Items
	Registering Interest in a Data Item

	Deregistering Interest in a Data Item and Invalidating Local Copies
	Invalidating Local Cache Copies of a Data Item

	Determining the Validity of a Data Item through IXLVECTR
	Changing the Size of the Local Cache Vector

	Serializing and Managing Access to Shared Data
	Using but not Updating Data in a Store-in Cache
	Updating Data in a Store-in cache
	Using but not Updating Data in a Store-through Cache
	Updating Data in a Store-through Cache
	Using but not Updating Data in a Directory-only Cache
	Updating Data in a Directory-only Cache

	Managing Cache Structure Resources
	Storage Reclaim
	Assigning and Using Storage Classes
	Storage Reclaim Algorithm
	Defining a Reclaim Algorithm for a Storage Class
	Managing Storage Reclaim for Specific Data Items

	Deleting Data Items and Reclaim Processing
	Casting out Data Items and Reclaim Processing
	Assigning Cast-Out Classes
	Establishing a Cast-Out Process
	Releasing Cast-Out Locks

	Measuring Cache Structure Resource Usage

	Understanding Synchronous and Asynchronous Cache Operations
	The MODE Parameter — Summary
	Using the IXLFCOMP Macro
	Selecting a Data Buffer For a Request
	BUFFER Keyword
	BUFLIST Keyword
	ADJAREA
	Design Considerations for Choosing the Buffer Format
	Design Considerations for Defining Buffer Storage Areas
	Determining Buffer Storage Ownership
	Design Considerations for Page-Fixed Storage
	Specifying the Buffer Storage Key

	Receiving Information from a Request
	Requesting Return and Reason Codes
	Defining an Answer Area (ANSAREA)
	Specifying the IXLYCAA Level

	Determining Valid Information in the Answer Area

	Specifying the Vector Entry Index on IXLCACHE Requests
	Using Filters for Names on Requests
	Restarting a Request that Ends Prematurely
	Using the Restart Token
	Restarting Requests Multiple Times with Restart Tokens

	Using an Index Value
	Restarting Requests Multiple Times with Index Values

	Understanding the Cache Data Entry Version Number
	Setting the Cache Entry Version Number
	Using the Version Number to Select Data Entries for Processing
	Using the Version Number to Serialize Data Entry Operations

	Other Services Used with IXLCACHE
	WRITE_DATA: Writing a Data Item to a Cache Structure
	IXLCACHE Functions for REQUEST=WRITE_DATA
	Registering Interest in the Data Item for WRITE_DATA Requests
	Specifying the Data Item Name
	Specifying the Changed or Unchanged State of the Data Item
	Obtaining the Cast-Out Lock on Write Requests
	Writing Changed and Unchanged Data items to the Cache
	Assigning a Changed Data Item to a Cast-Out Class
	Specifying Parity of a Changed Data Item
	Writing User-Defined Data
	Assigning a Storage Class
	Specifying the Size of the Data Entry to Hold the Data
	Selecting the Buffering Method
	Specifying Data on a Write Request
	Specifying that No Data Is to Be Written on a Write Request
	Specifying the Cache Entry Version Number on a WRITE_DATA Request
	Receiving Answer Area Information
	Defining and Writing a New Data Item: Summary
	Updating an Existing Data Item: Summary

	READ_DATA: Reading a Data Item from a Cache Structure
	IXLCACHE Functions for REQUEST=READ_DATA
	Specifying the Data Item Name
	Registering Interest in the Data Item for READ_ DATA Requests
	Specifying a New or Existing Data Item
	Assigning a Storage Class
	Selecting the Buffering Method
	Specifying the Data to be Read
	Specifying that No Data Is To Be Read
	Receiving Answer Area Information
	Defining a New Data Item: Summary
	Reading a Data Item: Summary

	REG_NAMELIST: Registering Interest in a List of Data Items
	IXLCACHE Functions for REQUEST=REG_NAMELIST
	Specifying a Data Item for Registration Block Processing
	Specifying the Registration Block Buffer
	Specifying the Index Values for Registration Block Processing
	Providing a Storage Area for Returned Registration Information
	Receiving Answer Area Information
	Description of Returned Registration Information
	Restarting a REG_NAMELIST Request that Ends Prematurely
	Registering Interest in a List of Data Items: Summary

	CASTOUT_DATA: Casting Out Data from a Cache Structure
	Reasons for Casting out Data
	Cast-out Requests
	IXLCACHE Functions for CASTOUT_DATA
	Specifying the Data Item Name
	Registering Interest in the Data Item for CASTOUT_DATA Requests
	Specifying a Process Identifier
	Selecting the Buffering Method
	Specifying the Data to be Cast Out
	Receiving Answer Area Information
	Casting Out A Data Item: Summary

	UNLOCK_CASTOUT: Releasing Cast-Out Locks
	IXLCACHE Functions for REQUEST=UNLOCK_CASTOUT
	Identifying the Cast-Out Locks to Release
	Initializing Elements in the List of Name Elements
	Specifying a Process Identifier
	Selecting a Buffering Method
	Processing an UNLOCK_CASTOUT Request that Ends Prematurely
	Receiving Answer Area Information
	Changing the Directory Entry for the Data Item
	Releasing Cast-Out Locks: Summary

	UNLOCK_CO_NAME: Releasing a Single Cast-Out Lock
	IXLCACHE Functions for REQUEST=UNLOCK_CO_NAME
	Identifying the Cast-Out Lock to Release
	Initializing a Name Element
	Specifying a Process Identifier
	Selecting a Buffering Method
	Receiving Answer Area Information
	Changing the Directory Entry for the Data Item
	Releasing a Single Cast-Out Lock: Summary

	DELETE_NAME: Deleting Data Items From a Cache Structure
	IXLCACHE Functions for REQUEST=DELETE_NAME
	Identifying Data Items to Delete
	Specifying the Type of Deletion
	Using Name Classes in a Coupling Facility
	Restarting Requests
	Receiving Answer Area Information
	Deleting Data Items: Summary

	DELETE_NAMELIST: Deleting a List of Data Items
	IXLCACHE Functions for REQUEST=DELETE_NAMELIST
	Identifying Data Items to Delete
	Selecting a Buffering Method
	Specifying the Type of Deletion
	Requesting Version Comparison
	Handling Error Processing
	Restarting a DELETE_NAMELIST Request that Ends Prematurely
	Receiving Answer Area Information
	Deleting a List of Data Items: Summary

	CROSS_INVAL: Invalidating Other Users' Copies of Data Items
	Timing and CROSS_INVAL Requests
	IXLCACHE Functions for REQUEST=CROSS_INVAL
	Identifying Data Items to Cross-Invalidate
	Restarting a Request that Ends Prematurely
	Receiving Answer Area Information
	Cross-Invalidating a Data Item: Summary

	SET_RECLVCTR: Overriding or Restoring the Default Reclaim Algorithm
	Defining the Reclaim Vector
	IXLCACHE Functions for REQUEST=SET_RECLVCTR
	Specifying the Storage Class
	Specifying the Reclaim Vector
	Example Scenarios
	Scenario 1 - First Request
	Scenario 2 - Second Request
	Scenario 3 - Third Request
	Scenario 4 - Fourth Request
	Activating a Reclaim Vector
	Deactivating a Reclaim Vector
	Effect of Structure Alter on Reclaim Vectors
	Receiving Answer Area Information
	Overriding or Restoring the Default Reclaim Algorithm: Summary

	PROCESS_REFLIST: Marking Data Items as Referenced
	IXLCACHE Functions for REQUEST=PROCESS_REFLIST
	Identifying Data Items to Mark as Referenced
	Selecting the Buffering Method
	Specifying the Storage Class
	Receiving Answer Area Information
	Marking a Data Item as Referenced: Summary

	RESET_REFBIT: Marking Data Items as Unreferenced
	IXLCACHE Functions for REQUEST=RESET_REFBIT
	Identifying Data Items to Mark as Unreferenced
	Restarting a Request that Ends Prematurely
	Receiving Answer Area Information
	Marking a Data Item as Unreferenced: Summary

	READ_DIRINFO: Reading Cache Directory Entries
	IXLCACHE Functions for REQUEST=READ_DIRINFO
	Identifying the Directory Entries to Read
	Selecting the Buffering Method
	Format of Returned Directory Information
	Restarting a Request that Ends Prematurely
	Reading Directory Entry Information: Summary

	READ_COCLASS: Reading A Cast-Out Class
	IXLCACHE Functions for REQUEST=READ_COCLASS
	Specifying the Data Item
	Specifying the Cast-Out Class
	Selecting the Buffering Method
	Format of Returned Cast-Out Class Data
	Restarting a Request that Ends Prematurely
	Receiving Answer Area Information
	Reading a Cast-Out Class: Summary

	READ_COSTATS: Reading Cast-Out Class Statistics
	IXLCACHE Functions for REQUEST=READ_COSTATS
	Specifying the Cast-out Classes
	Selecting a Buffering Method
	Format of Returned Cast-out Statistics
	Restarting A Request that Ends Prematurely
	Receiving Answer Area Information
	Reading Cast-out Statistics: Summary

	READ_STGSTATS: Reading Storage Class Statistics
	IXLCACHE Functions for REQUEST=READ_STGSTATS
	Specifying the Storage Class
	Providing a Storage Area for Returned Statistics
	Description of Returned Statistics
	Receiving Answer Area Information
	Reading Storage Class Statistics: Summary

	Coding a Complete Exit for IXLCACHE
	Information Passed to the Complete Exit
	Environment
	Input Specifications
	Registers at Entry:

	Return Specifications
	Programming Considerations

	Managing Cache Structure Utilization
	Detecting When a Cache Structure Is Becoming Full
	Responding When the Structure Is Getting Full
	Rebuilding the Structure to Increase the Storage Capacity
	Altering the Structure to Increase the Storage Capacity

	Chapter 7. Using List Services (IXLLIST)
	List Structure Concepts
	What is a List Structure?
	List Structure Enhancements

	How Is Data Maintained in a List Structure?
	What Functions Does the List Structure Provide?
	Referencing List Entries
	Understanding List Entry Key Assignment
	Specifying a List Entry by List Position
	Specifying a List Entry by List Position and Key
	Using the Entry Key in Multiple List Operations

	Understanding the List Cursor
	Initializing the List Cursor
	Controlling How the List Cursor Is Updated
	Using the List Cursor
	Resetting the List Cursor to Zero
	Specifying a List Entry by Entry ID
	Specifying a Named List Entry by Entry Name

	Understanding List Structure Monitoring
	The List Notification Vector
	Options for Detecting a List or Event Queue Transition

	Understanding the Event Queue
	Monitoring the Event Queue
	Understanding Event Queue Controls

	Understanding Event Monitor Controls
	Understanding Sublist Monitoring
	Reviewing Sublist and Event Queue Monitoring
	Understanding List Entry Controls
	Understanding List Controls
	List Controls That Can Be Updated Using WRITE_LCONTROLS
	List Controls That Cannot be Updated Using WRITE_LCONTROLS
	List Controls That Can Be Updated Using READ, WRITE, MOVE, and DELETE

	Understanding the List Authority Value
	Using the List Authority Value to Select Entries for Processing
	Updating the List Authority Value

	Understanding the User Exits
	Understanding Synchronous and Asynchronous List Operations
	Using the IXLFCOMP Macro with MODE=ASYNCTOKEN or MODE=SYNCTOKEN

	Understanding the Serialized List Structure
	Overview of Locking Functions
	Understanding Lock Contention and the Notify Exit
	Designing Protocols for Using the Serialized List Structure
	Maintaining Information about the Lock Request
	Managing Multiple, Asynchronous Lock Requests
	Recovering Locks Held by Failed or Failing Connections

	Understanding the List Entry Version Number
	Setting the List Entry Version Number
	Using the Version Number to Select List Entries for Processing
	Using the Version Number to Serialize List Entry Operations

	Selecting the Buffer Format
	BUFFER and Its Associated Parameters
	BUFLIST and Its Associated Parameters
	Design Considerations for Choosing the Buffer Format
	Design Considerations for Defining Buffer Storage Areas
	Determining Buffer Storage Ownership
	Specifying the Buffer Storage Key

	WRITE: Writing to a List Entry
	Understanding the Write Operation
	Specifying the Type of Write Operation
	Specifying the Size of the Data Entry to Hold the Data
	Specifying the List Entry Version Number on a WRITE Request
	Specifying the List Authority Value on a WRITE Request
	Requesting Automatic Key Assignment on a WRITE Request

	Passing Data for a WRITE Request
	Requesting a Lock Operation as Part of a WRITE Request
	Updating an Existing List Entry
	Creating a New List Entry
	Creating a New Keyed List Entry in a CFLEVEL=3 or Higher Coupling Facility
	Creating a List Entry With No Data

	Receiving Answer Area Information from a WRITE Request
	Determining if the Answer Area is Valid

	READ, READ_MULT, READ_LIST: Reading List Entries
	READ: Reading a Single List Entry
	Specifying the List Entry Version Number on a READ Request
	Specifying the List Authority Value on a READ Request
	Requesting a Lock Operation as Part of a READ Request
	Receiving Data from a READ Request
	Obtaining the List Entry Information from the Output Areas
	Receiving Answer Area Information from a READ Request

	READ_LIST: Reading Multiple List Entries from a List
	Specifying the Starting List Entry and the Processing Direction
	Specifying the Types of List Entry Information to be Read
	Specifying the List Entry Version Number on a READ_LIST Request
	Specifying the List Authority Value on a READ_LIST Request
	Requesting Entry Key Comparison on a READ_LIST Request
	Requesting a Lock Operation as Part of a READ_LIST Request
	Receiving Data from a READ_LIST Request
	Handling an Incompletely Processed READ_LIST Request
	Receiving Answer Area Information from a READ_LIST Request

	READ_MULT: Reading Multiple List Entries from One or More Lists
	Specifying Selection Filters on a READ_MULT Request
	Requesting a Lock Operation as Part of a READ_MULT Request
	Receiving Data from a READ_MULT Request
	Handling an Incompletely Processed READ_MULT Request
	Receiving Answer Area Information from a READ_MULT Request

	MOVE: Moving a List Entry
	Understanding the MOVE Operations
	Specifying the List Entry to be Moved
	List Cursor Placement on a MOVE Request
	Specifying the Target List and List Position
	Receiving or Passing Data on a MOVE Request
	Specifying the List Entry Version Number on a MOVE Request
	Specifying the List Authority Value on a MOVE Request
	Requesting Automatic Key Assignment on a MOVE Request
	Requesting a Lock Operation as Part of a Move Request
	Moving a Keyed List Entry in a CFLEVEL=3 or Higher Coupling Facility

	Moving a List Entry Without Performing a Read or Write Operation
	Performing a Read Operation as Part of a Move Request
	Performing a Write Operation as part of a MOVE Request
	Creating a New List Entry as Part of a MOVE Request
	Receiving Answer Area Information from a MOVE Request

	DELETE, DELETE_MULT, DELETE_ENTRYLIST: Deleting List Entries
	DELETE: Deleting a Single List Entry
	Requesting a Lock Operation as Part of a DELETE Request
	Specifying the List Entry to be Deleted
	Specifying the List Entry Version Number on a DELETE Request
	Specifying the List Authority Value on a DELETE Request
	Deleting a Keyed List Entry in a CFLEVEL=3 or Higher Coupling Facility
	Receiving Data on a DELETE Request
	Receiving Answer Area Information from a DELETE Request

	DELETE_MULT: Deleting Multiple List Entries
	Requesting a Lock Operation as Part of a DELETE_MULT Request
	Handling an Incompletely Processed DELETE_MULT Request
	Receiving Answer Area Information from a DELETE_MULT Request

	DELETE_ENTRYLIST: Deleting a List of Entries
	Passing the List of Entries to be Deleted
	Requesting a Lock Operation as Part of a DELETE_ENTRYLIST Reques
	Handling an Incompletely Processed DELETE_ENTRYLIST Request
	Receiving Answer Area Information from a DELETE_ENTRYLIST Request

	READ_LCONTROLS: Reading List Controls
	Obtaining List Monitoring Information
	Receiving Answer Area Information from a READ_LCONTROLS Request

	WRITE_LCONTROLS: Writing List Controls
	Changing the List Limit
	Effect of Structure Alter on the List Limit
	Receiving Answer Area Information from a WRITE_LCONTROLS Request

	LOCK: Performing a Lock Operation
	Selecting the Lock Operation
	Receiving Answer Area Information from a LOCK Request

	MONITOR_LIST: Monitoring List Transitions
	The List Notification Vector
	Options for Detecting a List Transition
	Steps to Set Up List Transition Monitoring

	Indicating Your Interest in List Transition Monitoring
	Starting Transition Monitoring of a List
	Stopping Transition Monitoring of a List
	Design Considerations for Using the List Transition Exit
	Timing Considerations
	Best Circumstances for Using List Monitoring

	Receiving Answer Area Information from a MONITOR_LIST Request

	MONITOR_EVENTQ: Monitoring an Event Queue
	Steps to Set Up Event Queue Transition Monitoring
	Indicating Your Interest in Event Queue Transition Monitoring
	Starting Transition Monitoring of an Event Queue
	Stopping Transition Monitoring of an Event Queue
	Receiving Answer Area Information from a MONITOR_EVENTQ Request

	MONITOR_SUBLIST, MONITOR_SUBLISTS: Monitoring Sublists
	Understanding the Event Queue
	Indicating Your Interest in Sublist Transition Monitoring
	Specifying User Notification Controls
	MONITOR_SUBLIST: Monitoring a Single Sublist
	Starting Transition Monitoring of a Sublist
	Stopping Transition Monitoring of a Sublist
	Scenario for Monitoring a Sublist
	Receiving Answer Area Information from a MONITOR_SUBLIST Request
	MONITOR_SUBLISTS: Monitoring Multiple Sublists
	Identifying the Sublists to be Monitored
	Passing Buffered Data on a MONITOR_SUBLISTS Request
	Using the Monitored Object State Vector
	Handling an Incompletely Processed MONITOR_SUBLISTS Request

	Receiving Answer Area Information from a MONITOR_SUBLISTS Request

	READ_EMCONTROLS: Reading Event Monitor Controls
	Receiving Answer Area Information from a READ_EMCONTROLS Request

	READ_EQCONTROLS: Reading Event Queue Controls
	Obtaining Event Queue Monitoring Information
	Receiving Answer Area Information from a READ_EQCONTROLS Request

	DEQ_EVENTQ: Retrieving Events from the Event Queue
	Handling an Incompletely Processed DEQ_EVENTQ Request
	Receiving Answer Area Information from a DEQ_EVENTQ Request

	Coding a Complete Exit
	Information Passed to the Complete Exit
	Environment
	Input Specifications
	Registers at Entry

	Return Specifications
	Programming Considerations

	Coding a Notify Exit
	Information Passed to the Notify Exit
	Environment
	Input Specifications
	Registers at Entry

	Return Specifications
	Programming Considerations

	Coding a List Transition Exit
	Information Passed to the List Transition Exit
	Environment
	Input Specifications
	Registers at Entry

	Return Specifications
	Programming Considerations

	Managing List Structure Utilization
	Detecting When a List Structure Is Becoming Full
	Responding When the Structure is Getting Full
	Rebuilding the Structure to Increase the Storage Capacity
	Altering the Structure to Increase the Storage Capacity

	Chapter 8. Using Lock Services (IXLLOCK)
	Resource Concepts
	What Is a Resource?
	State of a Resource Request Queue

	What Can You Do With the XES Lock Services?
	Managing Contention
	Defining a Protocol to Handle Contention
	How is Contention Resolved?
	What Can You Do in a Contention Exit?

	Sample Locking Protocol — Definition
	Sample Locking Protocol — Implementation

	Informing a User of Request Completion
	Using the IXLLOCK MODE Parameter

	Lock Structure Concepts
	The Lock Table
	Identifying a Lock Table Entry
	Mapping a Resource Name to a Lock Table Entry
	Composite State of a Lock Table Entry
	Understanding Contention
	Creating an Efficient Locking Protocol
	Analyzing Your Locking Protocol

	Record Data Entries
	Associating Record Data Entries with Connected Users
	Capacity Planning for Record Data Entries

	Size Considerations for a Lock Structure
	Lock Table Size
	Storage Required for Record Data Entries
	Effect of Structure Alter on a Lock Structure

	Recovery Considerations
	Designing for Recovery
	Defining the Connections
	Specifying Recovery Information

	XES Cleanup Processing
	Sample Recovery Protocol
	Sample Recovery Protocol - An Alternative

	Requesting Lock Services
	Requesting Ownership of a Resource (REQUEST=OBTAIN)
	Determining the Completion of an OBTAIN Request
	Return and Reason Codes

	Changing Ownership Attributes (REQUEST=ALTER)
	Determining the Completion of an ALTER Request
	Return and Reason Codes

	Releasing Ownership of a Resource (REQUEST=RELEASE)
	Determining the Completion of a RELEASE Request
	Return and Reason Codes

	Processing Multiple Resource Requests (REQUEST=PROCESSMULT)
	Processing a Lock Request Block

	Determining the Completion of a PROCESSMULT Request
	Examining PROCESSMULT Return and Reason Codes
	Examining Lock Request Block Return and Reason Codes

	Using Exits for Coupling Facility Lock Services
	General Requirements
	Environment
	Input Specifications
	Return Specifications
	Serialization
	Ordering of IXLLOCK Exit Routines
	Exit Recovery
	Programming Considerations
	Performance Implications

	Coding a Complete Exit
	Information Passed to the Complete Exit
	Return and Reason Codes
	Programming Considerations

	Coding a Contention Exit
	Assigning Resource Contention Management
	Passing Information to the Contention Exit
	Contention Exit Processing
	XES/Contention Exit Communication
	Summary of XES Contention Exit Processing
	Return and Reason Codes
	Programming Considerations

	Coding a Notify Exit
	XES/Notify Exit Communication
	Notify Exit Routine Processing
	Return and Reason Codes
	Programming Considerations

	Using the Synchronous Update Service (IXLSYNCH)
	Notify Exit/IXLSYNCH Communication
	Addressing the Notify Exit Parameter List
	Processing the Modifications

	Using the Lock Cleanup and Recovery Service (IXLRT)
	Identifying the User
	Providing an Answer Area
	Identifying the Record Data
	Assigning a Record Data Type to the Record Data
	Handling an Incompletely Processed IXLRT Request
	What You Can Request with IXLRT

	Chapter 9. Supplementary List, Lock, and Cache Services
	Using the IXLFCOMP Macro
	Issuing IXLFCOMP During Recovery Processing

	Purging a Coupling Facility Operation
	Handling Operations in Progress
	Handling Operations Yet to be Processed
	Timing Considerations

	Using the IXLVECTR Macro
	List Notification Vector
	Changing the Number of Entries in a List Notification Vector
	Testing Whether a List or Event Queue Is Empty
	Testing Whether a Range of Lists is Empty

	Local Cache Vector
	Changing the Number of Entries in a Local Cache Vector
	Checking the Validity of Data Items in a Local Cache Buffer

	Chapter 10. Coupling Facility Accounting and Measuring Services
	Using IXLMG
	Specifying the Information Level
	Types of Information Available
	Defining an Output Area
	Programming Considerations
	Specifying the Information To Be Returned by IXLMG
	Coupling Facility Information
	Coupling Facility Structure Information

	Chapter 11. Dumping Services for Coupling Facility Structures
	Using the IHABLDP Macro
	Using the IXLZSTR Macro
	Requesting Structure Information
	Receiving Information Returned by the IXLZSTR Macro

	Using Component Data in the Dump Data Set
	Associating Macros with the Data Types

	Chapter 12. Documenting your Coupling Facility Requirements
	Specifying the Coupling Facility Structure Requirements
	Naming the Structure
	Determining the Structure Size
	Providing an Exclusion List
	Understanding the Persistence Attribute
	Specifying the Rebuild and/or Alter Attribute
	Providing Connectivity Requirements

	Specifying the Coupling Facility Requirements
	Summarizing Your Requirements

	Appendixes
	Appendix A. Notices
	Programming Interface Information
	Trademarks

	Index

